This study employs an N-carboxyanhydride ring-opening polymerization(NCA ROP)signal amplification strategy to construct a novel sensing system for the simple and rapid detection of tobacco mosaic virus RNA(tRNA).In th...This study employs an N-carboxyanhydride ring-opening polymerization(NCA ROP)signal amplification strategy to construct a novel sensing system for the simple and rapid detection of tobacco mosaic virus RNA(tRNA).In the developed fluorescent biosensor,carboxylated biomagnetic beads serve as carriers for target capture based on the complementary pairing of the aptamer bases.Subsequently,NCA ROP fluorescent peptides are utilized as highly biocompatible signal carriers to achieve sensitive detection of the target.Under the optimal conditions,the biosensor exhibits a broad linear detection range from 1 pM to 10 nM,with a detection limit as low as 0.085 pM.Furthermore,the fluorescent aptamer biosensor demonstrates robust affinity and reliability in recovery experiments involving healthy R ehmannia glutinosa leaf total RNA.This work establishes a robust platform for tRNA analysis,facilitating real-time and early diagnosis of various plant viruses.展开更多
基金supported by the Project of tacking of key scientifi c and technical problems in Henan Province(192102310033)。
文摘This study employs an N-carboxyanhydride ring-opening polymerization(NCA ROP)signal amplification strategy to construct a novel sensing system for the simple and rapid detection of tobacco mosaic virus RNA(tRNA).In the developed fluorescent biosensor,carboxylated biomagnetic beads serve as carriers for target capture based on the complementary pairing of the aptamer bases.Subsequently,NCA ROP fluorescent peptides are utilized as highly biocompatible signal carriers to achieve sensitive detection of the target.Under the optimal conditions,the biosensor exhibits a broad linear detection range from 1 pM to 10 nM,with a detection limit as low as 0.085 pM.Furthermore,the fluorescent aptamer biosensor demonstrates robust affinity and reliability in recovery experiments involving healthy R ehmannia glutinosa leaf total RNA.This work establishes a robust platform for tRNA analysis,facilitating real-time and early diagnosis of various plant viruses.