Let S° be an inverse semigroup with semilattice biordered set E° of idempotents and E a weakly inverse biordered set with a subsemilattice Ep = { e ∈ E | arbieary f ∈ E, S(f , e) loheain in w(e)} iso...Let S° be an inverse semigroup with semilattice biordered set E° of idempotents and E a weakly inverse biordered set with a subsemilattice Ep = { e ∈ E | arbieary f ∈ E, S(f , e) loheain in w(e)} isomorphic to E° by θ:Ep→E°. In this paper, it is proved that if arbieary f, g ∈E, f ←→ g→→ f°θD^s° g°θand there exists a mapping φ from Ep into the symmetric weakly inverse semigroup P J(E∪ S°) satisfying six appropriate conditions, then a weakly inverse semigroup ∑ can be constructed in P J(S°), called the weakly inverse hull of a weakly inverse system (S°, E, θ, φ) with I(∑) ≌ S°, E(∑) ∽- E. Conversely, every weakly inverse semigroup can be constructed in this way. Furthermore, a sufficient and necessary condition for two weakly inverse hulls to be isomorphic is also given.展开更多
文摘Let S° be an inverse semigroup with semilattice biordered set E° of idempotents and E a weakly inverse biordered set with a subsemilattice Ep = { e ∈ E | arbieary f ∈ E, S(f , e) loheain in w(e)} isomorphic to E° by θ:Ep→E°. In this paper, it is proved that if arbieary f, g ∈E, f ←→ g→→ f°θD^s° g°θand there exists a mapping φ from Ep into the symmetric weakly inverse semigroup P J(E∪ S°) satisfying six appropriate conditions, then a weakly inverse semigroup ∑ can be constructed in P J(S°), called the weakly inverse hull of a weakly inverse system (S°, E, θ, φ) with I(∑) ≌ S°, E(∑) ∽- E. Conversely, every weakly inverse semigroup can be constructed in this way. Furthermore, a sufficient and necessary condition for two weakly inverse hulls to be isomorphic is also given.