期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Smart Bionic Structures:Connecting Nature and Technology through Additive Manufacturing 被引量:3
1
作者 Xingran Li Shuang Zhang +9 位作者 Pengfei Jiang Minghao Nie Deyin Kong Zhongxiong Kang Mengqi Liu Dandan Zhu Chaorui Jiang Qingquan Zhang Shuo Zu Zhihui Zhang 《Additive Manufacturing Frontiers》 2024年第2期112-129,共18页
The ability of organisms to adjust to environmental changes offers valuable insights into the development and creation of innovative smart systems. As requirements increase, the ability of smart materials to change th... The ability of organisms to adjust to environmental changes offers valuable insights into the development and creation of innovative smart systems. As requirements increase, the ability of smart materials to change their shapes has become a broader aim beyond their original capabilities. In contrast to conventional manufacturing methods, additive manufacturing (AM) skillfully combines precise three-dimensional structures and the intricate response mechanisms of biological organisms with smart materials. This combination enables the production of smart bionic structures with programmable shapes and features. Trends such as dynamic modulation, responsive- ness to multiple stimuli, and the integration of functions are emerging as significant in the development of smart bionic structures. This review first presents smart structures that nature has designed and built in various organ- isms, highlighting the relationship between the structural characteristics and patterns of deformation. The review then discusses how smart bionic structures developed using AM techniques respond to different stimuli. Addi- tionally, the potential uses of smart bionic structures in biomedicine, intelligent robotics, origami construction, and aerospace are discussed. Finally, the challenges and future prospects for smart bionic structures are exam- ined with the goal of offering innovative solutions for creating the next generation of smart systems through interdisciplinary research. 展开更多
关键词 Additive manufacturing bionic structure Smart material Stimulus response
在线阅读 下载PDF
Method of Bionic Fish Scale Structure on Pressure Fluctuation Suppression of a Centrifugal Pump
2
作者 Xingyu Jia Qixuan Sun +2 位作者 Xuechu Zhao Bing Liu Lei Tan 《哈尔滨工程大学学报(英文版)》 2025年第5期1037-1048,共12页
Centrifugal pumps are extensively employed in ocean engineering,such as ship power systems,water transportation,and mineral exploitation.Pressure fluctuation suppression is essential for the operation stability and se... Centrifugal pumps are extensively employed in ocean engineering,such as ship power systems,water transportation,and mineral exploitation.Pressure fluctuation suppression is essential for the operation stability and service life of the centrifugal pump.In this paper,a new method of bionic structure is proposed for the blade surface of a centrifugal pump,which is inspired by the fish scale and comprises a leading edge,a trailing edge,and two symmetrical side edges.This fish scale structure is applied to the blade pressure and suction surfaces,and an impeller with a fish scale structure is constructed.A test rig for a centrifugal pump is developed to determine the pressure fluctuation in the pump with a prototype impeller and fish scale structure impeller.Results reveal that the dominant frequency of pressure fluctuation in volute is the blade passing frequency(f_(bpf))of 193.33 Hz,which is triggered by the interaction between the tongue and the impeller.The bionic structure of the fish scale effectively suppresses the pressure fluctuation amplitude at f_(bpf).From flow rates of 0.6 Q_(d)to 1.2 Q_(d),the average suppressions in pressure fluctuation amplitudes at f_(bpf)are 20.98%,5.85%,19.20%,and 25.77%. 展开更多
关键词 Pressure fluctuation Centrifugal pump Fish scale bionic structure Blade passing frequency
在线阅读 下载PDF
Aerodynamic Performance Analysis on Blade Snubber with Bionic Structure
3
作者 LIU Yunfeng YAN Han +4 位作者 DU Wei ZHANG Hongtao LI Yufeng WEN Fengbo ZHOU Xun 《Journal of Thermal Science》 2025年第2期579-589,共11页
The utilization of a part-span connector(PSC)has the potential to enhance the blade frequency,but with the penalty of aerodynamic performance.In this study,we numerically investigate the aerodynamic performance of two... The utilization of a part-span connector(PSC)has the potential to enhance the blade frequency,but with the penalty of aerodynamic performance.In this study,we numerically investigate the aerodynamic performance of two types of bionic structure snubbers:(1)Harbor seal whisker(HSW)and(2)Atropus's body shape(ABS).The investigation is conducted by solving the three-dimensional Reynolds-Averaged Navier-Stokes(RANS)equations and utilizing the SST turbulent model.In this study,the performance impact of classical snubbers on a cascade blade has been examined by modeling it with and without an ellipse-shaped snubber.The vortex induced by the snubber predominantly manifests on the suction side and can be categorized into three primary vortices:upper,lower,and tail.The upper and lower vortices serve as the primary contributors to loss.Compared to the conventional ellipse snubber,the ABS snubber exhibits a reduction in the total pressure loss coefficient by 0.11%and an increase in the mass flow rate by 0.41%.On the contrary,the implementation of the HSW snubber has the potential to mitigate parameter fluctuations.However,it is important to note that this comes at the cost of a 0.10%increase in the total pressure loss coefficient and a 0.20%decrease in mass flow rate.This article further examines the factors contributing to these disparities. 展开更多
关键词 bionic structure turbine blade snubber aerodynamic performance
原文传递
Design and additive manufacturing of bionic hybrid structure inspired by cuttlebone to achieve superior mechanical properties and shape memory function 被引量:1
4
作者 Luhao Yuan Dongdong Gu +8 位作者 Xin Liu Keyu Shi Kaijie Lin He Liu Han Zhang Donghua Dai Jianfeng Sun Wenxin Chen Jie Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期189-206,共18页
Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g.... Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g.aerospace,automobiles,electronics,etc.Cuttlebone produced in the cuttlefish has evolved vertical walls with the optimal corrugation gradient,enabling stress homogenization,significant load bearing,and damage tolerance to protect the organism from high external pressures in the deep sea.This work illustrated that the complex hybrid wave shape in cuttlebone walls,becoming more tortuous from bottom to top,creates a lightweight,load-bearing structure with progressive failure.By mimicking the cuttlebone,a novel bionic hybrid structure(BHS)was proposed,and as a comparison,a regular corrugated structure and a straight wall structure were designed.Three types of designed structures have been successfully manufactured by laser powder bed fusion(LPBF)with NiTi powder.The LPBF-processed BHS exhibited a total porosity of 0.042% and a good dimensional accuracy with a peak deviation of 17.4μm.Microstructural analysis indicated that the LPBF-processed BHS had a strong(001)crystallographic orientation and an average size of 9.85μm.Mechanical analysis revealed the LPBF-processed BHS could withstand over 25000 times its weight without significant deformation and had the highest specific EA value(5.32 J·g^(−1))due to the absence of stress concentration and progressive wall failure during compression.Cyclic compression testing showed that LPBF-processed BHS possessed superior viscoelastic and elasticity energy dissipation capacity.Importantly,the uniform reversible phase transition from martensite to austenite in the walls enables the structure to largely recover its pre-deformation shape when heated(over 99% recovery rate).These design strategies can serve as valuable references for the development of intelligent components that possess high mechanical efficiency and shape memory capabilities. 展开更多
关键词 additive manufacturing laser powder bed fusion bionic structure CUTTLEBONE mechanical properties shape memory function
在线阅读 下载PDF
HTEC foot:A novel foot structure for humanoid robots combining static stability and dynamic adaptability
5
作者 Jintao Zhang Xuechao Chen +6 位作者 Zhangguo Yu Lianqiang Han Zhifa Gao Qingrui Zhao Gao Huang Ke Li Qiang Huang 《Defence Technology(防务技术)》 2025年第2期30-51,共22页
Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet s... Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved. 展开更多
关键词 Humanoid robot bionic structure Passive foot structure Rigid-elastic hybrid dynamics model Optimal stiffness matching
在线阅读 下载PDF
Preparation and Mechanical Properties of Bionic Carbon Fiber/Epoxy Resin Composites Inspired by Owl Feather 被引量:1
6
作者 Zerun Yu Jiaan Liu +2 位作者 Tian Yang Linyang Zhang Chunhua Hu 《Journal of Bionic Engineering》 2025年第1期282-292,共11页
Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are kn... Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are known for their unique compact structure;they are not only lightweight but also strong.In this study,an in-depth look at owl feathers was made and it found that owl feathers not only have the macro branches structure between feather shafts and branches but also have fine feather structures on the branches.The presence of these fine feather structures increases the specific surface area of the plume branches and allows neighboring plume branches to hook up with each other,forming an effective mechanical interlocking structure.These structures bring owl feathers excellent mechanical properties.Inspired by the natural structure of owl feathers,a weaving technique and a sizing process were combined to prepare bionic Carbon Fiber(CF)fabrics and then to fabricate the bionic CFRP with structural characteristics similar to owl feathers.To evaluate the effect of the fine feather structure on the mechanical properties of CFRP,a mechanical property study on CFRP with and without the fine feather imitation structure were conducted.The experimental results show that the introduction of the fine feather branch structure enhance the mechanical properties of CFRP significantly.Specifically,the tensile strength of the composites increased by 6.42%and 13.06%and the flexural strength increased by 8.02%and 16.87%in the 0°and 90°sample directions,respectively.These results provide a new design idea for the improvement of the mechanical properties of the CFRP,promoting the application of CFRP in engineering fields,such as automotive transportation,rail transit,aerospace,and construction. 展开更多
关键词 Carbon fiber reinforced epoxy composites Owl feather bionic feather structure Mechanical properties
在线阅读 下载PDF
Study of Impact Resistance Based on Porcupine Quills Bionic Thin-walled Structure 被引量:1
7
作者 Tianshu Huang Zhengyu Mao +2 位作者 Lijun Chang Xingyuan Huang Zhihua Cai 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期1942-1955,共14页
Using an electron microscope to observe the microstructure of a porcupine quills cross-section and a bionic method,a new bionic structure was proposed.The performance of the structure in terms of energy absorption,max... Using an electron microscope to observe the microstructure of a porcupine quills cross-section and a bionic method,a new bionic structure was proposed.The performance of the structure in terms of energy absorption,maximum impact force withstood,and impact force efficiency was evaluated using Ansys finite element simulation software to simulate the structure's impact.To examine the impact of ribs on the structural performance of the bionic porcupine quills,a control structure was developed.According to the results of the finite element simulation,the presence of ribs in the Bionic porcupine quills structure can transfer stress uniformly to the overall structure and share stress for some of the rupture-prone regions.Ribs reduce stress concentration in specific areas and increase the impact force efficiency of the structure.The SEA and IFE values of bionic porcupine quills were 30.01 kJ/kg and 84.22%,respectively.The structure is then optimized for parameter design in order to find the optimal structure by response surface in order to improve the structure's SEA and decrease its MIF.In order to evaluate the precision of the response surface,the optimal structure predicted is validated using finite element simulation. 展开更多
关键词 bionic structure design Thin-walled structure Impact resistance Specific energy absorption Multi-objective optimization
在线阅读 下载PDF
Shock-Resistant and Energy-Absorbing Properties of Bionic NiTi Lattice Structure Manufactured by SLM 被引量:5
8
作者 Zhenglei Yu Renlong Xin +7 位作者 Zezhou Xu Luming Sha Lixin Chen Yining Zhu Ping Liang Zhihui Zhang Zhenze Liu Qing Cao 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第6期1684-1698,共15页
Each specific structure of organisms is the best choice under specific circumstances.The excellent characteristic structures of these organisms have great application potential in the design and multi-functional optim... Each specific structure of organisms is the best choice under specific circumstances.The excellent characteristic structures of these organisms have great application potential in the design and multi-functional optimization of energy-absorbing structures such as vehicle collisions,satellite landings,and military equipment.In this paper,using the principle of structural bionics,using the advantages of the honeycomb structure and the light weight and high strength of beetle elytra,four bionic lattice structures are studied:CH,ZPRH,SCH and IBE.Using NiTi shape memory alloy,a unique material as the base material,samples are prepared using selective laser melting(SLM)technology.By comparing the test results of the quasi-static compression test with the results of the numerical simulation,it is found that compared with the other three bionic lattice structures,the SCH structure has the best energy absorption effect in the effective stroke in the test,and the specific energy absorption can reach 6.32 J/g.ZPRH,SCH,and IBE structures not only have good and stable deformation behavior,but also have excellent impact resistance and shape memory properties.The design of these structures provides a reference for the design of anti-shock cushioning structures with self-recovery functions in the future. 展开更多
关键词 Engineering bionics bionic structural design Additive manufacturing Quasi-static compression Numerical simulation Shape memory effect
在线阅读 下载PDF
A Novel Approach for the Fabrication of Sharkskin Structured Bionic Surfaces with Hydrophobic Wettability:Laser Processing and Ordered Abrasive Belt Grinding 被引量:1
9
作者 Guijian Xiao Zhenyang Liu +3 位作者 Ouchuan Lin Yi He Shuai Liu Jianchao Huang 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第4期1687-1700,共14页
A new process for the fabrication of sharkskin bionic structures on metal surfaces is proposed.The sharkskin bionic surface was successfully machined on the surface of IN718 by laser sequencing of the abrasive belt su... A new process for the fabrication of sharkskin bionic structures on metal surfaces is proposed.The sharkskin bionic surface was successfully machined on the surface of IN718 by laser sequencing of the abrasive belt surface,laser processing of the layered scale-like structure,and ribbed texture grinding.The flexible contact properties of belt grinding allow ribbed structures to be machined uniformly on a hierarchical,scale-like microstructure.Sharkskin bionic microstructures with radii greater than 75µm were prepared after parameter optimisation.The influence of processing parameters on the geometrical accuracy of the microstructure was investigated,the microstructure microform and elemental distribution were analyzed,and the relationship between the ribbed microstructure and chemical properties of the surface of the bionic sharkskin on wettability was revealed.The results indicate that reducing the laser power and increasing the laser scan rate can reduce the laser thermal effect and improve the microstructure processing accuracy.The laser ablation process is accompanied by a violent chemical reaction that introduces a large amount of oxygen and carbon elements and infiltrates them at a certain depth.The wettability of the surface undergoes a transition from hydrophilic(contact angle 69.72°)to hydrophobic(contact angle 131.56°)due to the adsorption of C-C/C-H and the reduction of C=O/O=C-O during the placement process.The ribbed microstructure changes the solid-liquid contact on the surface into a solid-liquid-gas contact,which has an enhanced effect on hydrophobicity.This study is a valuable guide to the processing of hydrophobic layered bionic microstructures. 展开更多
关键词 Laser processing Abrasive belt grinding bionic sharkskin structure WETTABILITY
在线阅读 下载PDF
Laser-based bionic manufacturing 被引量:2
10
作者 Xingran Li Baoyu Zhang +3 位作者 Timothy Jakobi Zhenglei Yu Luquan Ren Zhihui Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期62-84,共23页
Over millions of years of natural evolution,organisms have developed nearly perfect structures and functions.The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generati... Over millions of years of natural evolution,organisms have developed nearly perfect structures and functions.The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generation of structural materials,and is driving the future paradigm shift of modern materials science and engineering.However,the complex structures and multifunctional integrated optimization of organisms far exceed the capability of artificial design and fabrication technology,and new manufacturing methods are urgently needed to achieve efficient reproduction of biological functions.As one of the most valuable advanced manufacturing technologies of the 21st century,laser processing technology provides an efficient solution to the critical challenges of bionic manufacturing.This review outlines the processing principles,manufacturing strategies,potential applications,challenges,and future development outlook of laser processing in bionic manufacturing domains.Three primary manufacturing strategies for laser-based bionic manufacturing are elucidated:subtractive manufacturing,equivalent manufacturing,and additive manufacturing.The progress and trends in bionic subtractive manufacturing applied to micro/nano structural surfaces,bionic equivalent manufacturing for surface strengthening,and bionic additive manufacturing aiming to achieve bionic spatial structures,are reported.Finally,the key problems faced by laser-based bionic manufacturing,its limitations,and the development trends of its existing technologies are discussed. 展开更多
关键词 bionic manufacturing laser processing bionic micro/nano structural surface bionic strengthening surface bionic spatial structure
在线阅读 下载PDF
A multi-level biomimetic LDH coatings with super hydrophobicity,corrosion resistance,anti-icing and anti-fouling properties on magnesium alloy
11
作者 Lin Dai Hongzhi Cui +3 位作者 Xiaohua Chen Ruiqi Xu Yuhao Zhang Leigang Li 《Journal of Magnesium and Alloys》 2025年第8期3689-3701,共13页
In this study,femtosecond pulsed laser processing was applied to the magnesium alloy,followed by in situ growth of Mg-Al layered double hydroxides(LDHs),and finally modification with low surface energy materials to pr... In this study,femtosecond pulsed laser processing was applied to the magnesium alloy,followed by in situ growth of Mg-Al layered double hydroxides(LDHs),and finally modification with low surface energy materials to prepare a biomimetic of centipede-like superhydrophobic composite coating.The resulting biomimetic coating features a dual-scale structure,comprising a micron-scale laser-etched array and nano-scale LDH sheets,which together create a complex hierarchical architecture.The multistage bionic superhydrophobic coating exhibits exceptional corrosion resistance,with a reduction in corrosion current density by approximately five orders of magnitude compared to the bare magnesium alloy substrate.This remarkable corrosion resistance is attributed to the synergistic effects of the superhydrophobicity with a contact angle(CA)of 154.60°,the densification of the surface LDH nanosheets,and the NO_(3)^(-) exchange capacity.Additionally,compared to untreated AZ91D alloy,the biomimetic coating prolongs ice formation time by 250% at-40℃ and withstands multiple cycles of sandpaper abrasion and repeated tape peeling tests.Furthermore,it demonstrates excellent self-cleaning and anti-fouling properties,as confirmed by dye immersion and dust contamination tests.The construction of the multi-level bionic structured coating not only holds significant practical potential for metal protection but also provides valuable insights into the application of formed LDH materials in functional bionic coating engineering. 展开更多
关键词 LDH coatings bionic structure Super hydrophobicity Corrosion resistance Anti-Icing and Anti-Fouling
在线阅读 下载PDF
Snow Leopard-inspired Lower Limb Exoskeleton for Adaptive Multi-terrain Locomotion:Design and Preliminary Experimental Evaluation
12
作者 Yi Long Xiaofeng Luo +3 位作者 Tianqi Zhou Xiaopeng Hu Long He Wei Dong 《Journal of Bionic Engineering》 2025年第3期1249-1264,共16页
To overcome the limitations of traditional exoskeletons in complex outdoor terrains,this study introduces a novel lower limb exoskeleton inspired by the snow leopard’s forelimb musculoskeletal structure.It features a... To overcome the limitations of traditional exoskeletons in complex outdoor terrains,this study introduces a novel lower limb exoskeleton inspired by the snow leopard’s forelimb musculoskeletal structure.It features a non-fully anthropomorphic design,attaching only at the thigh and ankle with a backward-knee configuration to mimic natural human knee movement.The design incorporates a single elastic element at the hip for gravity compensation and dual elastic elements at the knee for terrain adaptability,which adjust based on walking context.The design’s effectiveness was assessed by measuring metabolic cost reduction and motor output torque under various walking conditions.Results showed significant metabolic cost savings of 5.8–8.8%across different speeds and a 7.9%reduction during 9°incline walking on a flat indoor surface.Additionally,the spring element decreased hip motor output torque by 7–15.9%and knee torque by 8.1–14.2%.Outdoor tests confirmed the design’s robustness and effectiveness in reducing motor torque across terrains,highlighting its potential to advance multi-terrain adaptive exoskeleton research. 展开更多
关键词 Lower limb exoskeleton bionic structure Multi-terrain adaptive structure Backward-knee configuration Non-exhaustive anthropomorphism
在线阅读 下载PDF
A limb-inspired bionic quasi-zero stiffness vibration isolator 被引量:12
13
作者 Rong Zeng Guilin Wen +1 位作者 Jiaxi Zhou Gang Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第7期1152-1167,I0003,共17页
Vibration reduction has always been one of hot and important topics in mechanical engineering,especially for the special measurement instrument.In this paper,a novel limb-inspired bionic structure is proposed to gener... Vibration reduction has always been one of hot and important topics in mechanical engineering,especially for the special measurement instrument.In this paper,a novel limb-inspired bionic structure is proposed to generate negative stiffness and design a new quasi-zero stiffness isolator via torsion springs,distinguishing from the existing tension spring structures in the literature.The nonlinear mathematical model of the proposed structure is developed and the corresponding dynamic properties are further investigated by using the Harmonic Balance method and ADAMS verification.To evaluate the vibration isolation performance,typical three-springs quasi-zero stiffness(TS QZS)system is selected to compare with the proposed bionic structure.And the graphical processing unit(GPU)parallel technology is applied to perform necessary two-parameter analyses,providing more insights into the effects of parameters on the transmissibility.It is shown that the proposed structure can show advantages over the typical TS QZS system in a wider vibration isolation range for harmonic excitation case and shorter decay time for the impact excitation case. 展开更多
关键词 Limb-inspired bionic structure Quasi-zero stiffness Torsion springs Two-parameter analyses
原文传递
The Lightweight Design of Low RCS Pylon Based on Structural Bionics 被引量:11
14
作者 Hongjie Jiao,Yidu Zhang,Wuyi Chen Mechanical Engineering Design Centre,Beihang University,Beijing 100191,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期182-190,共9页
A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parame... A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parameter relationship betweenhollow stem of plant and the minimum weight was deduced in detail.In order to improve SSE of pylons, the structural characteristicsof hollow stem were investigated and extracted.Bionic pylon was designed based on analogous biological structuralcharacteristics.Using finite element method based simulation, the displacements and stresses in the bionic pylon were comparedwith those of the conventional pylon.Results show that the SSE of bionic pylon is improved obviously.Static, dynamic andelectromagnetism tests were carried out on conventional and bionic pylons.The weight, stress, displacement and Radar CrossSection (RCS) of both pylons were measured.Experimental results illustrate that the SSE of bionic pylon is markedly improvedthat specific strength efficiency and specific stiffness efficiency of bionic pylon are increased by 52.9% and 43.6% respectively.The RCS of bionic pylon is reduced significantly. 展开更多
关键词 lightweight design specific structure efficiency low RCS pylon bionic structure
在线阅读 下载PDF
Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures 被引量:5
15
作者 Shaoqiang Xu Weiwei Li +2 位作者 Lin Li Tao Li Chicheng Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期929-947,共19页
Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are propose... Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are proposed to enhance structural energy absorption performance.The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load.The theoreticalmodel of themean crushing force is also derived based on the simplified super folded element theory.The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures.It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes.Furthermore,multiobjective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm,and the corresponding Pareto front diagram is obtained.This research provides a new idea for the crashworthiness design of thin-walled structures. 展开更多
关键词 bionic structure crashworthiness design hierarchical tube multi-objective optimization
在线阅读 下载PDF
A novel snail-inspired bionic design of titanium with strontium-substituted hydroxyapatite coating for promoting osseointegration
16
作者 Zhen Geng Xueping Li +6 位作者 Luli Ji Zhaoyang Li Zhenduo Cui Jing Wang Jingyuan Cui Xianjin Yang Changsheng Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第20期35-45,共11页
As the population ages,more and more people are suffering from osteoarthritis(OA),resulting in an increasing requirement for joint implants.Surface modification to improve the topology and composition of the implants ... As the population ages,more and more people are suffering from osteoarthritis(OA),resulting in an increasing requirement for joint implants.Surface modification to improve the topology and composition of the implants has been proved to be an effective way to improve the primary stability and long-term success rate of joint implants.In this work,a bionic micro/nano-structure accompanied with a strontium-substituted hydroxyapatite(SrHA)coating was fabricated on titanium(Ti)surface via electrochemical corrosion,ultrasonic treatment,and hydrothermal deposition methods.Thein vitro study demonstrated that the bionic structure and the bioactive apatite could synergistically increase the expressions of integrin-related gene(ITGα5β1)and osteoblastic genes(Col-I and OCN),and thus promote osteoblast growth.In addition,owing to the anti-bone resorption property of Sr^(2+),the coating could effectively inhibit osteoclast differentiation and proliferation.In a word,the prepared samples not only promoted osteogenesis but also inhibited osteoclastogenesis.The in vivo experiment via a rabbit model found that the bionic structured surface provided the pore for new bone ingrowth,which was beneficial to the mechanical interlocking between the implant and bone.Moreover,the bionic structure and bioactive SrHA coating had a synergistic effect on promoting bone formation,osseointegration,and bone-implant bonding strength.This study therefore presented a new strategy to fabricate bio-functionalized Ti-based implants for potential application in orthopedics field. 展开更多
关键词 bionic structure Bioactive apatite Osteoclast activity OSSEOINTEGRATION Bone-implant bonding strength
原文传递
Nonlinear Vibration Isolation of Spacecraft System by a Bionic Variable-Stiffness Device Enhanced by Electromagnetic Component
17
作者 Zeyu Chai Xuyuan Song +1 位作者 Jian Zang Yewei Zhang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2023年第6期921-932,共12页
This study addresses the modified bionic vibration isolation technology by introducing the electromagnetic system to simulate biological damping characteristics.It has been proven effective in improving the vibration ... This study addresses the modified bionic vibration isolation technology by introducing the electromagnetic system to simulate biological damping characteristics.It has been proven effective in improving the vibration environment.By assuming the spacecraft-adapter system as a two-degree-of-freedom system,an excellent simplified model can be derived.The novel bionic vibration isolation device(ABVS-EMVI),which combines an active bionic variable-stiffness device(ABVSVI)with the electromagnetic system,is proposed for the purpose of isolating vibration and harvesting energy at the same time.The dynamic equations of the spacecraft-adapter system with ABVS-EMVI are obtained using the Taylor expansion within the framework of the Lagrange equation,and the harmonic balance method is introduced to acquire the amplitude and voltage response of the system.The results indicate that the electromagnetic system can enhance the vibration isolation performance and provide energy harvesting capabilities.After confirming the ability of ABVS-EMVI to deal with different forms and amplitudes of excitation,the performance of vibration isolation and energy harvesting is investigated in terms of various parameters,and several new conclusions have been drawn. 展开更多
关键词 bionic structure Electromagnetic system Vibration isolation Energy harvesting
原文传递
Topology Optimization for Variable Thickness Shell-Infill Composites Based on Stress Analysis Preprocessing
18
作者 Xuefei Yang Ying Zhou +1 位作者 Liang Gao Hao Li 《Computers, Materials & Continua》 2025年第10期613-635,共23页
Inspired by natural biomimetic structures exemplified by femoral bones,the shell-infill composite design has emerged as a research focus in structural optimization.However,existing studies predominantly focus on unifo... Inspired by natural biomimetic structures exemplified by femoral bones,the shell-infill composite design has emerged as a research focus in structural optimization.However,existing studies predominantly focus on uniform-thickness shell designs and lack robust methodologies for generating high-resolution porous infill configurations.To address these challenges,a novel topology optimization framework for full-scale shell-filled composite structures is developed in this paper.First,a physics-driven,non-uniform partial differential equation(PDE)filter is developed,enabling precise control of variable-thickness shells by establishing explicit mapping relationships between shell thickness and filter radii.Second,this study addresses the convergence inefficiency of traditional full-scale topology optimization methods based on local volume constraints.It is revealed that a reduced influence radius exacerbates algorithm convergence challenges,thereby impeding the design of intricate porous structures.To overcome this bottleneck,a physics-driven stress skeleton generation method is developed.By integrating stress trajectories and rasterization processing,this method constructs an initial density field,effectively guiding material evolution and significantly enhancing convergence in porous structural optimization within the full-scale framework.Classical numerical examples demonstrate that our proposed optimization framework achieves biomimetic non-uniform shell thickness optimization and enables precise control of the shell thickness.Additionally,density preprocessing effectively eliminates intermediate density regions and void aggregation.Moreover,the generated trabecular-like infill patterns with spatially graded porosity,akin to multiscale topology optimization(MTO),provide an innovative solution for multifunctional,lightweight,complex shell-infill composite structures in aerospace and biomedical applications. 展开更多
关键词 Topology optimization shell-infill structure bionic structural design composite structure
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部