To adapt to a complex and variable environment,self-adaptive camouflage technology is becoming more and more important in all kinds of military applications by overcoming the weakness of the static camouflage.In natur...To adapt to a complex and variable environment,self-adaptive camouflage technology is becoming more and more important in all kinds of military applications by overcoming the weakness of the static camouflage.In nature,the chameleon can achieve self-adaptive camouflage by changing its skin color in real time with the change of the background color.To imitate the chameleon skin,a camouflaged film controlled by a color-changing microfluidic system is proposed in this paper.The film with microfluidic channels fabricated by soft materials can achieve dynamic cloaking and camouflage by circulating color liquids through channels inside the film.By sensing and collecting environmental color change information,the control signal of the microfluidic system can be adjusted in real time to imitate chameleon skin.The microstructure of the film and the working principle of the microfluidic color-changing system are introduced.The mechanism to generate the control signal by information processing of background colors is illustrated.“Canny”double-threshold edge detection algorithm and color similarity are used to analyze and evaluate the camouflage.The tested results show that camouflaged images have a relatively high compatibility with environmental backgrounds and the dynamic cloaking eff ect can be achieved.展开更多
Combining deep-learning image inpainting algorithms with the microfluidic technology,the paper proposes a method to achieve dynamic stealth and camouflage by using a microfluidic vision camouflage system simulating th...Combining deep-learning image inpainting algorithms with the microfluidic technology,the paper proposes a method to achieve dynamic stealth and camouflage by using a microfluidic vision camouflage system simulating the chameleon skin.The basic principle is to perceive color changes in the external environment and collect ambient image information,and then utilize the image inpainting algorithm to adjust the control signals of the microfluidic system in real time.The detailed working principle of the microfluidic vision camouflage system is presented,and the mechanism of generating control signals for the system through deep-learning image inpainting algorithms and image-processing techniques is elucidated.The camouflage effect of the chameleon skin is analyzed and evaluated using color similarity.Results indicate that the camouflaged images are consistent with the background environment,thereby improving the target’s stealth and maneuvering characteristics.The camouflage technology developed in the paper based on the microfluidic vision camouflage system can be applied to several situations,such as military camouflage uniforms,robot skins,and weapon equipment.展开更多
基金the National Natural Science Foundation of China for the support(No.51175101)on this paper.
文摘To adapt to a complex and variable environment,self-adaptive camouflage technology is becoming more and more important in all kinds of military applications by overcoming the weakness of the static camouflage.In nature,the chameleon can achieve self-adaptive camouflage by changing its skin color in real time with the change of the background color.To imitate the chameleon skin,a camouflaged film controlled by a color-changing microfluidic system is proposed in this paper.The film with microfluidic channels fabricated by soft materials can achieve dynamic cloaking and camouflage by circulating color liquids through channels inside the film.By sensing and collecting environmental color change information,the control signal of the microfluidic system can be adjusted in real time to imitate chameleon skin.The microstructure of the film and the working principle of the microfluidic color-changing system are introduced.The mechanism to generate the control signal by information processing of background colors is illustrated.“Canny”double-threshold edge detection algorithm and color similarity are used to analyze and evaluate the camouflage.The tested results show that camouflaged images have a relatively high compatibility with environmental backgrounds and the dynamic cloaking eff ect can be achieved.
基金the National Natural Science Foundation of China for the support(No.51175101)on this paper.
文摘Combining deep-learning image inpainting algorithms with the microfluidic technology,the paper proposes a method to achieve dynamic stealth and camouflage by using a microfluidic vision camouflage system simulating the chameleon skin.The basic principle is to perceive color changes in the external environment and collect ambient image information,and then utilize the image inpainting algorithm to adjust the control signals of the microfluidic system in real time.The detailed working principle of the microfluidic vision camouflage system is presented,and the mechanism of generating control signals for the system through deep-learning image inpainting algorithms and image-processing techniques is elucidated.The camouflage effect of the chameleon skin is analyzed and evaluated using color similarity.Results indicate that the camouflaged images are consistent with the background environment,thereby improving the target’s stealth and maneuvering characteristics.The camouflage technology developed in the paper based on the microfluidic vision camouflage system can be applied to several situations,such as military camouflage uniforms,robot skins,and weapon equipment.