With the advancement of modern technology and the continuous development of science,research into flapping wing aircraft is becoming increasingly sophisticated.Addressing issues such as the large wingspan and heavy ma...With the advancement of modern technology and the continuous development of science,research into flapping wing aircraft is becoming increasingly sophisticated.Addressing issues such as the large wingspan and heavy mass of existing bionic butterfly aircraft,this paper proposes the design of a lightweight lithium battery power supply,a chip integrated into a small circuit board,and a reference to the natural characteristics of butterfly wings.The wings are simulated using 0.125 mm polyethylene terephthalate(PET)film to replicate their movement.The driving structure employs a double motor and a four-bar mechanism to achieve natural and smooth wing vibrations.The control system features a lightweight motor,battery,and a high-performance low-power microcontroller for precise control.Using 3D printing technology,a lightweight design is realized,successfully simulating the structure and movement characteristics of a specific butterfly,demonstrating the principles of mechatronics.Furthermore,the design process incorporates multidisciplinary knowledge,and a workshop combining competitive discipline events with innovation and entrepreneurship has been established.This initiative fosters the deep integration of innovation and entrepreneurship education with professional training,effectively cultivating application-oriented technical talents.展开更多
Based on research into bionic butterflies for environmental detection and ecological management,a scheme was proposed to develop and manufacture a bionic aircraft with two wings inspired by specific butterfly species....Based on research into bionic butterflies for environmental detection and ecological management,a scheme was proposed to develop and manufacture a bionic aircraft with two wings inspired by specific butterfly species.A flapping-wing aircraft with a simple structure was designed,and its two-wing design was optimized.The research focused on several key areas:the design and optimization of the wings,the development of the transmission mechanism,hardware design and fabrication,and 3D printing for component manufacturing.This resulted in the bionic replication of the wing shape and structure of the Tiger Papilio butterfly.The final bionic butterfly features a wingspan of 29.5 cm and a total weight of 13.8 g.This project integrates mechatronic principles and provides a valuable reference for advancements in the field of bionic butterflies.Future research could explore the aerodynamic characteristics of wings and innovative design approaches in greater depth.展开更多
基金Innovation and Entrepreneurship Training Project for College Students in Hunan Province in 2024:Design of Small Bionic Butterfly Machine Under the Background of Innovation and Integration(Project No.S202413809022)2023 Innovation and Entrepreneurship Training Project of Hunan College Students:Tiger Butterfly—Bionic Manufacturing and Morphology Research(Project No.S202313809022)。
文摘With the advancement of modern technology and the continuous development of science,research into flapping wing aircraft is becoming increasingly sophisticated.Addressing issues such as the large wingspan and heavy mass of existing bionic butterfly aircraft,this paper proposes the design of a lightweight lithium battery power supply,a chip integrated into a small circuit board,and a reference to the natural characteristics of butterfly wings.The wings are simulated using 0.125 mm polyethylene terephthalate(PET)film to replicate their movement.The driving structure employs a double motor and a four-bar mechanism to achieve natural and smooth wing vibrations.The control system features a lightweight motor,battery,and a high-performance low-power microcontroller for precise control.Using 3D printing technology,a lightweight design is realized,successfully simulating the structure and movement characteristics of a specific butterfly,demonstrating the principles of mechatronics.Furthermore,the design process incorporates multidisciplinary knowledge,and a workshop combining competitive discipline events with innovation and entrepreneurship has been established.This initiative fosters the deep integration of innovation and entrepreneurship education with professional training,effectively cultivating application-oriented technical talents.
基金2023 Innovation and Entrepreneurship Training Project of Hunan College Students:Tiger Butterfly—Bionic Manufacturing and Morphology Research(Project No.S202313809022)Key Project of Education Reform of Hunan Provincial Department of Education:Research on Disciplinary Integration Education Model under Intelligence+Empowerment—A Case Study of Robotics and Logistics Management Majors(Project No.HNJG-20231561)。
文摘Based on research into bionic butterflies for environmental detection and ecological management,a scheme was proposed to develop and manufacture a bionic aircraft with two wings inspired by specific butterfly species.A flapping-wing aircraft with a simple structure was designed,and its two-wing design was optimized.The research focused on several key areas:the design and optimization of the wings,the development of the transmission mechanism,hardware design and fabrication,and 3D printing for component manufacturing.This resulted in the bionic replication of the wing shape and structure of the Tiger Papilio butterfly.The final bionic butterfly features a wingspan of 29.5 cm and a total weight of 13.8 g.This project integrates mechatronic principles and provides a valuable reference for advancements in the field of bionic butterflies.Future research could explore the aerodynamic characteristics of wings and innovative design approaches in greater depth.