Liquid leakage of pipeline networks not only results in considerableresource wastage but also leads to environmental pollution and ecological imbalance.In response to this global issue, a bioinspired superhydrophobic ...Liquid leakage of pipeline networks not only results in considerableresource wastage but also leads to environmental pollution and ecological imbalance.In response to this global issue, a bioinspired superhydrophobic thermoplastic polyurethane/carbon nanotubes/graphene nanosheets flexible strain sensor (TCGS) hasbeen developed using a combination of micro-extrusion compression molding andsurface modification for real-time wireless detection of liquid leakage. The TCGSutilizes the synergistic effects of Archimedean spiral crack arrays and micropores,which are inspired by the remarkable sensory capabilities of scorpions. This designachieves a sensitivity of 218.13 at a strain of 2%, which is an increase of 4300%. Additionally, it demonstrates exceptional durability bywithstanding over 5000 usage cycles. The robust superhydrophobicity of the TCGS significantly enhances sensitivity and stability indetecting small-scale liquid leakage, enabling precise monitoring of liquid leakage across a wide range of sizes, velocities, and compositionswhile issuing prompt alerts. This provides critical early warnings for both industrial pipelines and potential liquid leakage scenariosin everyday life. The development and utilization of bioinspired ultrasensitive flexible strain sensors offer an innovative and effectivesolution for the early wireless detection of liquid leakage.展开更多
The field of photocatalysis has witnessed a significant advancement in the development of bioinspired and biomimetic photocatalysts for various biomedical applications,including drug delivery,tissue engineering,cancer...The field of photocatalysis has witnessed a significant advancement in the development of bioinspired and biomimetic photocatalysts for various biomedical applications,including drug delivery,tissue engineering,cancer therapy,and bioimaging.Nature has evolved efficient light-harvesting systems and energy conversion mechanisms,which serve as a benchmark for researchers.However,reproducing such complexity and harnessing it for biomedical applications is a daunting task.It requires a comprehensive understanding of the underlying biological processes and the ability to replicate them synthetically.By utilizing light energy,these photocatalysts can trigger specific chemical reactions,leading to targeted drug release,enhanced tissue regeneration,and precise imaging of biological structures.In this context,addressing the stability,long-term performance,scalability,and costeffectiveness of these materials is crucial for their widespread implementation in biomedical applications.While challenges such as complexity and stability persist,their advantages such as targeted drug delivery and personalized medicine make them a fascinating area of research.The purpose of this review is to provide a comprehensive analysis and evaluation of existing research,highlighting the advancements,current challenges,advantages,limitations,and future prospects of bioinspired and biomimetic photocatalysts in biomedicine.展开更多
Rapid and robust identification of bacteria is crucial for environmental monitoring and clinical diagnosis.Herein,a bioinspired interface-mediated multichannel sensor array was developed based on three-coloremitting a...Rapid and robust identification of bacteria is crucial for environmental monitoring and clinical diagnosis.Herein,a bioinspired interface-mediated multichannel sensor array was developed based on three-coloremitting antimicrobial functional carbon dots(FCDs)and concanavalin A doped polydopamine nanoparticles(Con A-PDA)for identification of bacteria.In this sensor,the fluorescence intensity of the three FCDs was quenched by the Con A-PDA.Upon addition different types of bacteria,the fluorescence intensity of the three FCDs was restored or further quenched.Recur to statistical analysis methods,it is employed to accurately discriminate 10 types of bacteria(including three probiotics and seven pathogenic bacteria)in natural water samples and human urine samples.The discrimination ability of the sensor array was highly enhanced via different competing binding of the FCDs and the bacteria toward Con A-PDA.The proposed array-based method offers a rapid,high-throughput,and reliable sensing platform for pathogen diagnosis in the field of environmental monitoring and clinical diagnosis.展开更多
Treatment of intracranial gliomas has increasingly favored minimally invasive surgery,with a growing focus on leveraging microrobots for efficient drug delivery while overcoming the impact of body fluids.Inspired by h...Treatment of intracranial gliomas has increasingly favored minimally invasive surgery,with a growing focus on leveraging microrobots for efficient drug delivery while overcoming the impact of body fluids.Inspired by honeybee stingers,this study proposed a novel microspike robot.This robot firmly adhered to the tissue surface,enabling direct drug delivery from a hydrogel on its back into the targeted tissue via microspikes.The drug delivery rate was influenced by temperature and could be controlled by an alternating magnetic field.Microrobots could be delivered rapidly through a clinical Ommaya reservoir into the postoperative cavity or ventricle of the skull.The microrobot could be actuated for adhesion and retrieval,with its motion posture and trajectory highly precisely controlled by external magnetic fields.Biological experiments confirmed the excellent biocompatibility and biosafety of the microspike robot and demonstrated its effectiveness in treating gliomas by loading unconventional therapeutic drugs.The proposed microspike robot has significant potential for long-term drug delivery to target gliomas and other future clinical applications.展开更多
After millions of years of natural evolution,horsetails have evolved unique stem structures that enable survival in harsh environments.Inspired by the cross-sectional characteristics of horsetail stems,a series of bio...After millions of years of natural evolution,horsetails have evolved unique stem structures that enable survival in harsh environments.Inspired by the cross-sectional characteristics of horsetail stems,a series of bioinspired sandwich structures were designed and fabricated using the laser powder bed fusion(LPBF)process.By combining experimental and finite element simulation methods,the formability,mechanical properties,deformation behavior,and thermal conduction performance of these structures were determined.Results show that the surface morphology of the bioinspired sandwich structures was smooth,with no cracks observed.The bioinspired sandwich structure with an inner tube diameter of 1.9 mm(D_(1.9))exhibited optimal comprehensive mechanical properties,with a specific strength of 64.2 MPa/(g/cm^(3)),and specific energy absorption of 3.3 J/g.Stress distribution results revealed that the D_(1.9)structures had the most uniform stress distribution.Furthermore,increasing the internal conduction paths improved heat transfer;therefore,the thermal conductivities of the D_(1.4),D_(1.9),and D_(2.4)structures were higher than that of the D0 structure.This study demonstrates that a bioinspired design approach,combined with additive manufacturing technology,enables the development of high-performance structures with both load-bearing and thermally insulating capabilities.展开更多
Excessive Fe^(3+) ion concentrations in wastewater pose a long-standing threat to human health.Achieving low-cost,high-efficiency quantification of Fe^(3+) ion concentration in unknown solutions can guide environmenta...Excessive Fe^(3+) ion concentrations in wastewater pose a long-standing threat to human health.Achieving low-cost,high-efficiency quantification of Fe^(3+) ion concentration in unknown solutions can guide environmental management decisions and optimize water treatment processes.In this study,by leveraging the rapid,real-time detection capabilities of nanopores and the specific chemical binding affinity of tannic acid to Fe^(3+),a linear relationship between the ion current and Fe^(3+) ion concentration was established.Utilizing this linear relationship,quantification of Fe^(3+) ion concentration in unknown solutions was achieved.Furthermore,ethylenediaminetetraacetic acid disodium salt was employed to displace Fe^(3+) from the nanopores,allowing them to be restored to their initial conditions and reused for Fe^(3+) ion quantification.The reusable bioinspired nanopores remain functional over 330 days of storage.This recycling capability and the long-term stability of the nanopores contribute to a significant reduction in costs.This study provides a strategy for the quantification of unknown Fe^(3+) concentration using nanopores,with potential applications in environmental assessment,health monitoring,and so forth.展开更多
With the major developments that occurred during the past 40 years in the geotechnical engineering field,the usage of reinforcements in soils has been very common to improve the ultimate bearing capacity and reduce th...With the major developments that occurred during the past 40 years in the geotechnical engineering field,the usage of reinforcements in soils has been very common to improve the ultimate bearing capacity and reduce the footing settlements.These reinforcements consist of geogrids,geotextiles,geocells,etc.,all of which are in the geosynthetic family.Among these geosynthetic families,geocell performs better in soil-reinforced beds.In this study,we proposed the nine types of bioinspired geocells to improve the soil beds.For this purpose,a total of twenty numerical models were calculated via FLAC3D after validating the la-boratory model tests in the literature.The numerical results demonstrated that,except for the circular type,the performance of other geocell forms regarding increased bearing capacity was nearly identical.Regarding diffusion angles,only the circular and honeycomb geocells exhibited larger diffusion angles.The opening pocket diameter more significantly influenced the stress and strain of geocells.Geocells with nearly circular shapes,such as circular,honeycomb,hexagonal,and square,typically demonstrated higher confining stresses within the geocell walls.Conversely,for shapes that deviate from the circular form,such as dia-mond,re-entrant,and double V-shaped designs,the irregularity of the pocket shape could cause an uneven distribution of confining stresses,potentially leading to higher normal deformations at some specific areas and stress concentration at the wall joints.展开更多
Surgical electrodes are frequently associated with disadvantages such as high surface adhesion and severe thermal damage to adjacent normal tissues,which threaten operation quality and patient safety.In this study,by ...Surgical electrodes are frequently associated with disadvantages such as high surface adhesion and severe thermal damage to adjacent normal tissues,which threaten operation quality and patient safety.In this study,by mimicking the micromorphology and bio-anti-adhesion of shark skin,we proposed a strategy that utilized nanoscale aluminium oxide(Al_(2)O_(3))films deposited on bioinspired shark skin(BSS)microstructures to design a composite surface(Al_(2)O_(3)@BSS)and integrated it into both flat sides of the surgical electrodes.Micro/nano-manufacturing of the Al_(2)O_(3)@BSS surface was sequentially accomplished using nanosecond laser texturing,atomic layer deposition,and low-temperature annealing,endowing it with excellent blood-repellent properties.Visualisation experiments revealed that the tensile stress gradient of the blood coagulum with increasing thickness under a thermal field prompted it to separate from the Al_(2)O_(3)@BSS surface,resulting in anti-adhesion.Furthermore,it was observed for the first time that Al_(2)O_(3) films could transiently excite discharge along a dielectric surface(DADS)to ablate tissues while suppressing Joule heat,thereby minimising thermal damage.A combination of ex vivo tissue and living mouse experiments demonstrated that the Al_(2)O_(3)@BSS electrodes exhibited optimal comprehensive performance in terms of anti-adhesion,damage minimisation,and drag reduction.In addition,the Al_(2)O_(3)@BSS electrodes possessed remarkable antibacterial efficacy against E.coli and S.aureus.The proposed strategy can meet the extreme application requirements of surgical electrodes to improve operation quality and offer valuable insights for future studies.展开更多
Serving as the initiating explosive devices between the propellant tank and the engines,metal-based rupture diaphragms are widely used in ramjet igniters owing to the advantages provided by their simple structure,smal...Serving as the initiating explosive devices between the propellant tank and the engines,metal-based rupture diaphragms are widely used in ramjet igniters owing to the advantages provided by their simple structure,small size,and low cost.However,the reliability of rupture pressure directly affects the success of engine ignition and rocket launch,which is mainly influenced by factors like material,structure,and residual thickness of the surface notch of the diaphragm.Among those,the geometry of the notch is easy to define and control when compared to the mechanical parameters of the ruptured diaphragm.Thus,to make the diaphragm rupture(1A30 Al)within the required pressure range(0.4 MPa±3.5%)with highly sensitive and reliability,we draw inspiration from the arthropod’s force-sensitive slit organ which encompasses curved microgrooves to design a Ω-shaped notch for the rupture diaphragm.Finite element analysis is used to study the relationship between the burst pressure and geometric dimension of theΩ-shaped and bioinspired microgroove.Based on that,metal-based rupture diaphragms are fabricated by femtosecond laser processing technology,followed by rupture tests.Experiment results demonstrate that the practical rupture pressure of the diaphragm is highly consistent with the finite element analysis results,which verifies the effectiveness of the bionic design.展开更多
The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sens...The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO_(2) nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation(21° s^(-1)) and enhanced photothermal efficiency(increase by 3.7 ℃ s^(-1) under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca^(2+) endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity(gauge factor 3.94 within a wide strain range of 600%), fast response times(140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human–machine interactions.展开更多
Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing d...Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing demand in special fields for the development of surfaces that can resist wetting by high-temperature molten droplets(>1200°C)using facile design and fabrication strategies.Herein,bioinspired directional structures(BDSs)were prepared on Y2O3-stabilized ZrO2(YSZ)surfaces using femtosecond laser ablation.Benefiting from the anisotropic energy barriers,the BDSs featured with no additional modifiers showed a remarkable increase from 9.2°to 60°in the contact angle of CaO–MgO–Al2O3–SiO2(CMAS)melt and a 70.1%reduction in the spreading area of CMAS at 1250°C,compared with polished super-CMAS-melt-philic YSZ surfaces.Moreover,the BDSs demonstrated exceptional wetting inhibition even at 1400°C,with an increase from 3.3°to 31.3°in contact angle and a 67.9%decrease in spreading area.This work provides valuable insight and a facile preparation strategy for effectively inhibiting the wetting of molten droplets on super-melt-philic surfaces at extremely high temperatures.展开更多
Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural mo...Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural movements of living organisms,aiming to attain enhanced flexibility,adaptability,and versatility.On the other hand,angle-independent structural color has been achieved through innovative design strategies and engineering approaches.By carefully controlling the size,shape,and arrangement of nanostructures,researchers have been able to create materials exhibiting consistent colors regardless of the viewing angle.One promising class of materials that holds great potential for bioinspired soft actuators is MXenes in view of their exceptional mechanical,electrical,and optical properties.The integration of MXenes for bioinspired soft actuators with angle-independent structural color offers exciting possibilities.Overcoming material compatibility issues,improving color reproducibility,scalability,durability,power supply efficiency,and cost-effectiveness will play vital roles in advancing these technologies.This perspective appraises the development of bioinspired MXene-centered soft actuators with angleindependent structural color in soft robotics.展开更多
In-pipe robots have been widely used in pipes-with smooth inner walls.However,current in-pipe robots face challenges in terms of moving past obstacles and climbing in marine-vessel pipeline systems,which are affected ...In-pipe robots have been widely used in pipes-with smooth inner walls.However,current in-pipe robots face challenges in terms of moving past obstacles and climbing in marine-vessel pipeline systems,which are affected by marine biofouling and electrochemical corrosion.This paper takes inspiration from the dual-hook structure of Trypoxylus dichotomus’s feet and gecko‑like dry adhesives,proposing an in-pipe robot that is capable of climbing on rough and smooth pipe inwalls.The combination of the bioinspired hook and dry adhesives allows the robot to stably attach to rough or smooth pipe inwalls,while the wheel-leg hybrid mechanism provides better conditions for obstacle traversal.The paper explores the attachment and obstacle-surmounting mechanisms of the robot.Moreover,motion strategies for the robot are devised based on different pipe structural features.The experiments showed that this robot can adapt to both smooth and rough pipe environments simultaneously,and its motion performance is superior to conventional driving mechanisms.The robot’s active turning actuators also enable it to navigate through horizontally or vertically oriented 90°bends.展开更多
Limited by the planar imaging structure,the commercial camera needs to introduce additional optical elements to compensate for the curved focal plane to match the planar image sensor.This results in a complex and bulk...Limited by the planar imaging structure,the commercial camera needs to introduce additional optical elements to compensate for the curved focal plane to match the planar image sensor.This results in a complex and bulky structure.In contrast,biological eyes possess a simple and compact structure due to their curved imaging structure that can directly match with the curved focal plane.Inspired by the structures and functions of biological eyes,curved vision systems not only improve the image quality,but also offer a variety of advanced functions.Here,we review the recent advances in bioinspired vision systems with curved imaging structures.Specifically,we focus on their applications in implementing different functions of biological eyes,as well as the emerging curved neuromorphic imaging systems that incorporate bioinspired optical and neuromorphic processing technologies.In addition,the challenges and opportunities of bioinspired curved imaging systems are also discussed.展开更多
3D-printed Porous Titanium Alloy Implants(pTi),owing to their biologically inertness and relatively smooth surface morphology,adversely affect the biological functions of surrounding cells.To address the challenges,co...3D-printed Porous Titanium Alloy Implants(pTi),owing to their biologically inertness and relatively smooth surface morphology,adversely affect the biological functions of surrounding cells.To address the challenges,constructing a bioinspired interface that mimics the hierarchical structure of bone tissue can enhance the cellular functions of cells.In this context,Hollow Mesoporous Silica Nanoparticles(HMSNs),renowned for their unique physicochemical properties and superior biocompatibility,offer a promising direction for this research.In this research,the initially synthesized HMSNs were used to construct a“hollow-mesoporous-macroporous”hierarchical bioinspired coating on the pTi surface through the Layer-by-Layer technique.Simultaneously,diverse morphologies of coatings were established by adjusting the deposition strategy of PDDA/HMSNs on the pTi surface(pTi-HMSN-2,pTi-HMSN-4,pTi-HMSN-6).A range of techniques were employed to investigate the physicochemical properties and regulation of cellular biological functions of the diverse HMSN coating strategies.Notably,the pTi-HMSN-4 and pTi-HMSN-6 groups exhibited the uniform coatings,leading to a substantial enhancement in surface roughness and hydrophilicity.Meantime,the coating constructed strategy of pTi-HMSN-4 possessed commendable stability.Based on the aforementioned findings,both pTi-HMSN-4 and pTi-HMSN-6 facilitated the adhesion,spreading,and pseudopodia extension of BMSCs,which led to a notable upsurge in the expression levels of vinculin protein in BMSCs.Comprehensive analysis indicates that the coating,when PDDA/HMSNs are deposited four times,possesses favorable overall performance.The research will provide a solid theoretical basis for the translation of HMSN bioinspired coatings for orthopedic implants.展开更多
The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performa...The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials.The bioinspired structure consists of hard grains and soft material interfaces.While the material interface has a very low volume percentage,its property has the ability to determine the bulk material response.Machine learning technology nowadays is widely used in material science.A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite.This model was trained on a comprehensive dataset of material response and interface properties,allowing it to make accurate predictions.The results of this study demonstrate the efficiency and high accuracy of the machine learning model.The successful application of machine learning into the material property prediction process has the potential to greatly enhance both the efficiency and accuracy of the material design process.展开更多
Introducing soft crystalline phases into the glassy matrix to produce bulk metallic glass composites(BMGCs)is an effective way to enhance the ductility of bulk metallic glasses(BMGs).However,the introduction of soft c...Introducing soft crystalline phases into the glassy matrix to produce bulk metallic glass composites(BMGCs)is an effective way to enhance the ductility of bulk metallic glasses(BMGs).However,the introduction of soft crystalline phases severely sacrifices the strength,resulting in the strength-ductility trade-off.To defeat this dilemma,here,we successfully fabricate a bioinspired BMGC with architecture mimicking a porcupine fish spine.The bioinspired BMGC shows a pronounced yield strength of∼800 MPa with an excellent fracture strain of∼35%.The fabrication of the bioinspired BMGC is achieved through infiltration and vitrification of molten Zr50 Ti5 Cu27 Ni10 Al8(Zr50)melt into the crystalline Nb skeleton fabricated by laser additive manufacturing(LAM).Such enhanced strength-ductility synergy is attributed to the asynchronous deformation associated with the delicate bioinspired heterogeneous architecture.The bioinspired structural design motif,enabled by the combination of LAM and infiltration casting technologies,opens a new window to develop high-performance BMGCs on a large scale for structural applications.展开更多
The preparation of superhydrophobic or underwater superoleophobic interface materials has become a research hotspot because of their wide application in self-cleaning, drag reduction, oil-water separation, anti-oil po...The preparation of superhydrophobic or underwater superoleophobic interface materials has become a research hotspot because of their wide application in self-cleaning, drag reduction, oil-water separation, anti-oil pollution and so on. The unique wettability of organisms gives inspiration to design and create new interface materials. This review focuses on the recent research progress of femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces. This review starts with a presentation of the related background including the advantages of femtosecond laser and wettability theoretical basis. Then, organisms with unique wettability in nature, the preparation of superhydrophobic or underwater superoleophobic surfaces by femtosecond lasers on different materials, and their related important applications are introduced. Finally, the current challenges and future prospects with regard to this field are provided.展开更多
This paper presents numerical investigations into a ridged surface whose design is inspired by the geometry of a Farrer’sscallop.The objective of the performed research is to assess if the proposed Bioinspired Ridged...This paper presents numerical investigations into a ridged surface whose design is inspired by the geometry of a Farrer’sscallop.The objective of the performed research is to assess if the proposed Bioinspired Ridged Surface (BRS) can potentiallyimprove wear resistance of soil-engaging components used in agricultural machinery and to validate numerical simulationsperformed using software based on the Discrete Element Method (DEM).The wear performance of the BRS is experimentallydetermined and also compared with a conventional flat surface.Different size of soil particles and relative velocities between theabrasive sand and the testing surfaces are used.Comparative results show that the numerical simulations are in agreement withthe experimental results and support the hypothesis that abrasive wear is greatly reduced by substituting a conventional flatsurface with the BRS.展开更多
基金the National Natural Science Foundation of China(Grant No.52203037,52103031,and 52073107)the Natural Science Foundation of Hubei Province of China(Grant No.2022CFB649)the National Key Research and Development Program of China(Grant No.2022YFC3901902).
文摘Liquid leakage of pipeline networks not only results in considerableresource wastage but also leads to environmental pollution and ecological imbalance.In response to this global issue, a bioinspired superhydrophobic thermoplastic polyurethane/carbon nanotubes/graphene nanosheets flexible strain sensor (TCGS) hasbeen developed using a combination of micro-extrusion compression molding andsurface modification for real-time wireless detection of liquid leakage. The TCGSutilizes the synergistic effects of Archimedean spiral crack arrays and micropores,which are inspired by the remarkable sensory capabilities of scorpions. This designachieves a sensitivity of 218.13 at a strain of 2%, which is an increase of 4300%. Additionally, it demonstrates exceptional durability bywithstanding over 5000 usage cycles. The robust superhydrophobicity of the TCGS significantly enhances sensitivity and stability indetecting small-scale liquid leakage, enabling precise monitoring of liquid leakage across a wide range of sizes, velocities, and compositionswhile issuing prompt alerts. This provides critical early warnings for both industrial pipelines and potential liquid leakage scenariosin everyday life. The development and utilization of bioinspired ultrasensitive flexible strain sensors offer an innovative and effectivesolution for the early wireless detection of liquid leakage.
文摘The field of photocatalysis has witnessed a significant advancement in the development of bioinspired and biomimetic photocatalysts for various biomedical applications,including drug delivery,tissue engineering,cancer therapy,and bioimaging.Nature has evolved efficient light-harvesting systems and energy conversion mechanisms,which serve as a benchmark for researchers.However,reproducing such complexity and harnessing it for biomedical applications is a daunting task.It requires a comprehensive understanding of the underlying biological processes and the ability to replicate them synthetically.By utilizing light energy,these photocatalysts can trigger specific chemical reactions,leading to targeted drug release,enhanced tissue regeneration,and precise imaging of biological structures.In this context,addressing the stability,long-term performance,scalability,and costeffectiveness of these materials is crucial for their widespread implementation in biomedical applications.While challenges such as complexity and stability persist,their advantages such as targeted drug delivery and personalized medicine make them a fascinating area of research.The purpose of this review is to provide a comprehensive analysis and evaluation of existing research,highlighting the advancements,current challenges,advantages,limitations,and future prospects of bioinspired and biomimetic photocatalysts in biomedicine.
基金supported by National Natural Science Foundation of China(Nos.22376057,22174048,22274048,22274045,22274047,and 21904039)the Foundation of the Science&Technology Department of Hunan Province(Nos.2023JJ30394 and2023ZJ1123)。
文摘Rapid and robust identification of bacteria is crucial for environmental monitoring and clinical diagnosis.Herein,a bioinspired interface-mediated multichannel sensor array was developed based on three-coloremitting antimicrobial functional carbon dots(FCDs)and concanavalin A doped polydopamine nanoparticles(Con A-PDA)for identification of bacteria.In this sensor,the fluorescence intensity of the three FCDs was quenched by the Con A-PDA.Upon addition different types of bacteria,the fluorescence intensity of the three FCDs was restored or further quenched.Recur to statistical analysis methods,it is employed to accurately discriminate 10 types of bacteria(including three probiotics and seven pathogenic bacteria)in natural water samples and human urine samples.The discrimination ability of the sensor array was highly enhanced via different competing binding of the FCDs and the bacteria toward Con A-PDA.The proposed array-based method offers a rapid,high-throughput,and reliable sensing platform for pathogen diagnosis in the field of environmental monitoring and clinical diagnosis.
基金supported by the National Key R&D Program of China(No.2023YFB4705600)the National Natural Science Foundation of China(Nos.U23A20342,62273331,61925307,and 61821005)+1 种基金the CAS Project for Young Scientists in Basic Research(No.YSBR-036)the CAS/SAFEA International Partnership Program for Creative Research Teams.
文摘Treatment of intracranial gliomas has increasingly favored minimally invasive surgery,with a growing focus on leveraging microrobots for efficient drug delivery while overcoming the impact of body fluids.Inspired by honeybee stingers,this study proposed a novel microspike robot.This robot firmly adhered to the tissue surface,enabling direct drug delivery from a hydrogel on its back into the targeted tissue via microspikes.The drug delivery rate was influenced by temperature and could be controlled by an alternating magnetic field.Microrobots could be delivered rapidly through a clinical Ommaya reservoir into the postoperative cavity or ventricle of the skull.The microrobot could be actuated for adhesion and retrieval,with its motion posture and trajectory highly precisely controlled by external magnetic fields.Biological experiments confirmed the excellent biocompatibility and biosafety of the microspike robot and demonstrated its effectiveness in treating gliomas by loading unconventional therapeutic drugs.The proposed microspike robot has significant potential for long-term drug delivery to target gliomas and other future clinical applications.
基金supported by National Key Research and Development Program of China(Grant No.2021YFB1715400)National Natural Science Foundation of China(Grant No.52225503)+3 种基金Key Research and Development Program of Jiangsu Province(Grant Nos.BE2022069,BE2022069-1)Fundamental Research Funds for the Central Universities(Grant No.NI2024003)National Natural Science Foundation of China for Creative Research Groups(Grant No.51921003)the 15th Batch of“Six Talents Peaks”Innovative Talents Team Program(Grant No.TD-GDZB-001).
文摘After millions of years of natural evolution,horsetails have evolved unique stem structures that enable survival in harsh environments.Inspired by the cross-sectional characteristics of horsetail stems,a series of bioinspired sandwich structures were designed and fabricated using the laser powder bed fusion(LPBF)process.By combining experimental and finite element simulation methods,the formability,mechanical properties,deformation behavior,and thermal conduction performance of these structures were determined.Results show that the surface morphology of the bioinspired sandwich structures was smooth,with no cracks observed.The bioinspired sandwich structure with an inner tube diameter of 1.9 mm(D_(1.9))exhibited optimal comprehensive mechanical properties,with a specific strength of 64.2 MPa/(g/cm^(3)),and specific energy absorption of 3.3 J/g.Stress distribution results revealed that the D_(1.9)structures had the most uniform stress distribution.Furthermore,increasing the internal conduction paths improved heat transfer;therefore,the thermal conductivities of the D_(1.4),D_(1.9),and D_(2.4)structures were higher than that of the D0 structure.This study demonstrates that a bioinspired design approach,combined with additive manufacturing technology,enables the development of high-performance structures with both load-bearing and thermally insulating capabilities.
基金supported by the National Natural Science Foundation of China(Nos.52303380,52025132,52273305,22205185,21621091,22021001,and 22121001)Fundamental Research Funds for the Central Universities(No.20720240041)+3 种基金the 111 Project(Nos.B17027 and B16029)the National Science Foundation of Fujian Province of China(No.2022J02059)the Science and Technology Projects of Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province(No.RD2022070601)the New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘Excessive Fe^(3+) ion concentrations in wastewater pose a long-standing threat to human health.Achieving low-cost,high-efficiency quantification of Fe^(3+) ion concentration in unknown solutions can guide environmental management decisions and optimize water treatment processes.In this study,by leveraging the rapid,real-time detection capabilities of nanopores and the specific chemical binding affinity of tannic acid to Fe^(3+),a linear relationship between the ion current and Fe^(3+) ion concentration was established.Utilizing this linear relationship,quantification of Fe^(3+) ion concentration in unknown solutions was achieved.Furthermore,ethylenediaminetetraacetic acid disodium salt was employed to displace Fe^(3+) from the nanopores,allowing them to be restored to their initial conditions and reused for Fe^(3+) ion quantification.The reusable bioinspired nanopores remain functional over 330 days of storage.This recycling capability and the long-term stability of the nanopores contribute to a significant reduction in costs.This study provides a strategy for the quantification of unknown Fe^(3+) concentration using nanopores,with potential applications in environmental assessment,health monitoring,and so forth.
基金financially supported by the Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME-JBGS2403)the National Natural Science Foundation of China(No.42477205)the Hubei Provincial Innovation Group Project(No.2023AFA019).
文摘With the major developments that occurred during the past 40 years in the geotechnical engineering field,the usage of reinforcements in soils has been very common to improve the ultimate bearing capacity and reduce the footing settlements.These reinforcements consist of geogrids,geotextiles,geocells,etc.,all of which are in the geosynthetic family.Among these geosynthetic families,geocell performs better in soil-reinforced beds.In this study,we proposed the nine types of bioinspired geocells to improve the soil beds.For this purpose,a total of twenty numerical models were calculated via FLAC3D after validating the la-boratory model tests in the literature.The numerical results demonstrated that,except for the circular type,the performance of other geocell forms regarding increased bearing capacity was nearly identical.Regarding diffusion angles,only the circular and honeycomb geocells exhibited larger diffusion angles.The opening pocket diameter more significantly influenced the stress and strain of geocells.Geocells with nearly circular shapes,such as circular,honeycomb,hexagonal,and square,typically demonstrated higher confining stresses within the geocell walls.Conversely,for shapes that deviate from the circular form,such as dia-mond,re-entrant,and double V-shaped designs,the irregularity of the pocket shape could cause an uneven distribution of confining stresses,potentially leading to higher normal deformations at some specific areas and stress concentration at the wall joints.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52275425,52405473,and 52405472)the Natural Science Foundation of Guangdong Province(Grant No.2024A1515010993)。
文摘Surgical electrodes are frequently associated with disadvantages such as high surface adhesion and severe thermal damage to adjacent normal tissues,which threaten operation quality and patient safety.In this study,by mimicking the micromorphology and bio-anti-adhesion of shark skin,we proposed a strategy that utilized nanoscale aluminium oxide(Al_(2)O_(3))films deposited on bioinspired shark skin(BSS)microstructures to design a composite surface(Al_(2)O_(3)@BSS)and integrated it into both flat sides of the surgical electrodes.Micro/nano-manufacturing of the Al_(2)O_(3)@BSS surface was sequentially accomplished using nanosecond laser texturing,atomic layer deposition,and low-temperature annealing,endowing it with excellent blood-repellent properties.Visualisation experiments revealed that the tensile stress gradient of the blood coagulum with increasing thickness under a thermal field prompted it to separate from the Al_(2)O_(3)@BSS surface,resulting in anti-adhesion.Furthermore,it was observed for the first time that Al_(2)O_(3) films could transiently excite discharge along a dielectric surface(DADS)to ablate tissues while suppressing Joule heat,thereby minimising thermal damage.A combination of ex vivo tissue and living mouse experiments demonstrated that the Al_(2)O_(3)@BSS electrodes exhibited optimal comprehensive performance in terms of anti-adhesion,damage minimisation,and drag reduction.In addition,the Al_(2)O_(3)@BSS electrodes possessed remarkable antibacterial efficacy against E.coli and S.aureus.The proposed strategy can meet the extreme application requirements of surgical electrodes to improve operation quality and offer valuable insights for future studies.
基金supported by the National Key R&D Program of China(Grant No.2022YFB4601700).
文摘Serving as the initiating explosive devices between the propellant tank and the engines,metal-based rupture diaphragms are widely used in ramjet igniters owing to the advantages provided by their simple structure,small size,and low cost.However,the reliability of rupture pressure directly affects the success of engine ignition and rocket launch,which is mainly influenced by factors like material,structure,and residual thickness of the surface notch of the diaphragm.Among those,the geometry of the notch is easy to define and control when compared to the mechanical parameters of the ruptured diaphragm.Thus,to make the diaphragm rupture(1A30 Al)within the required pressure range(0.4 MPa±3.5%)with highly sensitive and reliability,we draw inspiration from the arthropod’s force-sensitive slit organ which encompasses curved microgrooves to design a Ω-shaped notch for the rupture diaphragm.Finite element analysis is used to study the relationship between the burst pressure and geometric dimension of theΩ-shaped and bioinspired microgroove.Based on that,metal-based rupture diaphragms are fabricated by femtosecond laser processing technology,followed by rupture tests.Experiment results demonstrate that the practical rupture pressure of the diaphragm is highly consistent with the finite element analysis results,which verifies the effectiveness of the bionic design.
基金The financial support from the National Natural Science Foundation of China (32201179)Guangdong Basic and Applied Basic Research Foundation (2020A1515110126 and 2021A1515010130)+1 种基金the Fundamental Research Funds for the Central Universities (N2319005)Ningbo Science and Technology Major Project (2021Z027) is gratefully acknowledged。
文摘The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO_(2) nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation(21° s^(-1)) and enhanced photothermal efficiency(increase by 3.7 ℃ s^(-1) under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca^(2+) endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity(gauge factor 3.94 within a wide strain range of 600%), fast response times(140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human–machine interactions.
基金This work was supported by National Natural Science Foundation of China(No.52105212)Sichuan Science and Technology Program(No.2023NSFSC0863)China Postdoctoral Science Foundation(No.2021M702712).
文摘Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing demand in special fields for the development of surfaces that can resist wetting by high-temperature molten droplets(>1200°C)using facile design and fabrication strategies.Herein,bioinspired directional structures(BDSs)were prepared on Y2O3-stabilized ZrO2(YSZ)surfaces using femtosecond laser ablation.Benefiting from the anisotropic energy barriers,the BDSs featured with no additional modifiers showed a remarkable increase from 9.2°to 60°in the contact angle of CaO–MgO–Al2O3–SiO2(CMAS)melt and a 70.1%reduction in the spreading area of CMAS at 1250°C,compared with polished super-CMAS-melt-philic YSZ surfaces.Moreover,the BDSs demonstrated exceptional wetting inhibition even at 1400°C,with an increase from 3.3°to 31.3°in contact angle and a 67.9%decrease in spreading area.This work provides valuable insight and a facile preparation strategy for effectively inhibiting the wetting of molten droplets on super-melt-philic surfaces at extremely high temperatures.
文摘Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural movements of living organisms,aiming to attain enhanced flexibility,adaptability,and versatility.On the other hand,angle-independent structural color has been achieved through innovative design strategies and engineering approaches.By carefully controlling the size,shape,and arrangement of nanostructures,researchers have been able to create materials exhibiting consistent colors regardless of the viewing angle.One promising class of materials that holds great potential for bioinspired soft actuators is MXenes in view of their exceptional mechanical,electrical,and optical properties.The integration of MXenes for bioinspired soft actuators with angle-independent structural color offers exciting possibilities.Overcoming material compatibility issues,improving color reproducibility,scalability,durability,power supply efficiency,and cost-effectiveness will play vital roles in advancing these technologies.This perspective appraises the development of bioinspired MXene-centered soft actuators with angleindependent structural color in soft robotics.
基金supported by the Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures(1005-IZD23002-25)the National Natural Science Foundation of China under Grant nos.52075248.
文摘In-pipe robots have been widely used in pipes-with smooth inner walls.However,current in-pipe robots face challenges in terms of moving past obstacles and climbing in marine-vessel pipeline systems,which are affected by marine biofouling and electrochemical corrosion.This paper takes inspiration from the dual-hook structure of Trypoxylus dichotomus’s feet and gecko‑like dry adhesives,proposing an in-pipe robot that is capable of climbing on rough and smooth pipe inwalls.The combination of the bioinspired hook and dry adhesives allows the robot to stably attach to rough or smooth pipe inwalls,while the wheel-leg hybrid mechanism provides better conditions for obstacle traversal.The paper explores the attachment and obstacle-surmounting mechanisms of the robot.Moreover,motion strategies for the robot are devised based on different pipe structural features.The experiments showed that this robot can adapt to both smooth and rough pipe environments simultaneously,and its motion performance is superior to conventional driving mechanisms.The robot’s active turning actuators also enable it to navigate through horizontally or vertically oriented 90°bends.
基金financially supported by the National Natural Science Foundation of China(Nos.52125205,U20A20166,61805015 and 61804011,52102184,52202181)the National key R&D program of China(Nos.2021YFB3200302 and 2021YFB3200304)the Fundamental Research Funds for the Central Universities。
文摘Limited by the planar imaging structure,the commercial camera needs to introduce additional optical elements to compensate for the curved focal plane to match the planar image sensor.This results in a complex and bulky structure.In contrast,biological eyes possess a simple and compact structure due to their curved imaging structure that can directly match with the curved focal plane.Inspired by the structures and functions of biological eyes,curved vision systems not only improve the image quality,but also offer a variety of advanced functions.Here,we review the recent advances in bioinspired vision systems with curved imaging structures.Specifically,we focus on their applications in implementing different functions of biological eyes,as well as the emerging curved neuromorphic imaging systems that incorporate bioinspired optical and neuromorphic processing technologies.In addition,the challenges and opportunities of bioinspired curved imaging systems are also discussed.
基金supported by the National Natural Science Foundation of China(Grant No.82372391,82001971,82102358,82202698,52105343,U21A2099 and U23A20523)Project of“Medical+X”interdisciplinary innovation team of Norman Bethune Health Science Center of Jilin University(Grant No.2022JBGS06)+5 种基金Project of youth interdisciplinary innovation team of Jilin University(Grant No.419070623054)China Postdoctoral Science Foundation(Grant No.2021M701384)Bethune Plan of Jilin University(Grant No.2022B27,2022B03)Wu Jieping Medical Foundation(Grant No.320.6750.18522)Scientific Development Program of Jilin Province(Grant No.20220402067GH)Jilin Province Development and Reform Commission(Grant No.2022C044-2).
文摘3D-printed Porous Titanium Alloy Implants(pTi),owing to their biologically inertness and relatively smooth surface morphology,adversely affect the biological functions of surrounding cells.To address the challenges,constructing a bioinspired interface that mimics the hierarchical structure of bone tissue can enhance the cellular functions of cells.In this context,Hollow Mesoporous Silica Nanoparticles(HMSNs),renowned for their unique physicochemical properties and superior biocompatibility,offer a promising direction for this research.In this research,the initially synthesized HMSNs were used to construct a“hollow-mesoporous-macroporous”hierarchical bioinspired coating on the pTi surface through the Layer-by-Layer technique.Simultaneously,diverse morphologies of coatings were established by adjusting the deposition strategy of PDDA/HMSNs on the pTi surface(pTi-HMSN-2,pTi-HMSN-4,pTi-HMSN-6).A range of techniques were employed to investigate the physicochemical properties and regulation of cellular biological functions of the diverse HMSN coating strategies.Notably,the pTi-HMSN-4 and pTi-HMSN-6 groups exhibited the uniform coatings,leading to a substantial enhancement in surface roughness and hydrophilicity.Meantime,the coating constructed strategy of pTi-HMSN-4 possessed commendable stability.Based on the aforementioned findings,both pTi-HMSN-4 and pTi-HMSN-6 facilitated the adhesion,spreading,and pseudopodia extension of BMSCs,which led to a notable upsurge in the expression levels of vinculin protein in BMSCs.Comprehensive analysis indicates that the coating,when PDDA/HMSNs are deposited four times,possesses favorable overall performance.The research will provide a solid theoretical basis for the translation of HMSN bioinspired coatings for orthopedic implants.
文摘The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials.The bioinspired structure consists of hard grains and soft material interfaces.While the material interface has a very low volume percentage,its property has the ability to determine the bulk material response.Machine learning technology nowadays is widely used in material science.A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite.This model was trained on a comprehensive dataset of material response and interface properties,allowing it to make accurate predictions.The results of this study demonstrate the efficiency and high accuracy of the machine learning model.The successful application of machine learning into the material property prediction process has the potential to greatly enhance both the efficiency and accuracy of the material design process.
基金supported by the National Key Research and Development Program of China under Grant No.2023YFB3408101the National Natural Science Foundation of China under Grant Nos.52171164 and 52271022the Youth Innovation Promotion Association CAS(No.2021188).
文摘Introducing soft crystalline phases into the glassy matrix to produce bulk metallic glass composites(BMGCs)is an effective way to enhance the ductility of bulk metallic glasses(BMGs).However,the introduction of soft crystalline phases severely sacrifices the strength,resulting in the strength-ductility trade-off.To defeat this dilemma,here,we successfully fabricate a bioinspired BMGC with architecture mimicking a porcupine fish spine.The bioinspired BMGC shows a pronounced yield strength of∼800 MPa with an excellent fracture strain of∼35%.The fabrication of the bioinspired BMGC is achieved through infiltration and vitrification of molten Zr50 Ti5 Cu27 Ni10 Al8(Zr50)melt into the crystalline Nb skeleton fabricated by laser additive manufacturing(LAM).Such enhanced strength-ductility synergy is attributed to the asynchronous deformation associated with the delicate bioinspired heterogeneous architecture.The bioinspired structural design motif,enabled by the combination of LAM and infiltration casting technologies,opens a new window to develop high-performance BMGCs on a large scale for structural applications.
基金Projects(52075557,51805553) supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2019-12) supported by the Project of State Key Laboratory of High Performance Complex Manufacturing,China。
文摘The preparation of superhydrophobic or underwater superoleophobic interface materials has become a research hotspot because of their wide application in self-cleaning, drag reduction, oil-water separation, anti-oil pollution and so on. The unique wettability of organisms gives inspiration to design and create new interface materials. This review focuses on the recent research progress of femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces. This review starts with a presentation of the related background including the advantages of femtosecond laser and wettability theoretical basis. Then, organisms with unique wettability in nature, the preparation of superhydrophobic or underwater superoleophobic surfaces by femtosecond lasers on different materials, and their related important applications are introduced. Finally, the current challenges and future prospects with regard to this field are provided.
基金supported by the National High Technology Research and Development Program of China(863 Program)(Grant No.2009AA043603-4,2009AA043604-2)by National Foundations of Agricultural Technological Transformation of China(Grant No.2009GB23600507)+1 种基金by National Natural Science Foundation of China(Grant No.50675087,50635030)by "985 Project" of Jilin University
文摘This paper presents numerical investigations into a ridged surface whose design is inspired by the geometry of a Farrer’sscallop.The objective of the performed research is to assess if the proposed Bioinspired Ridged Surface (BRS) can potentiallyimprove wear resistance of soil-engaging components used in agricultural machinery and to validate numerical simulationsperformed using software based on the Discrete Element Method (DEM).The wear performance of the BRS is experimentallydetermined and also compared with a conventional flat surface.Different size of soil particles and relative velocities between theabrasive sand and the testing surfaces are used.Comparative results show that the numerical simulations are in agreement withthe experimental results and support the hypothesis that abrasive wear is greatly reduced by substituting a conventional flatsurface with the BRS.