A major research topic within molecular evolution studies is to understand more about the causes of the molecular evolutionary patterns that are recorded within and between taxa. The amount of germ cell divisions in f...A major research topic within molecular evolution studies is to understand more about the causes of the molecular evolutionary patterns that are recorded within and between taxa. The amount of germ cell divisions in females and males causes the majority of mutations, during DNA replication, that impact molecular evolution. In an XX female and an XY male system of diploid animals, the autosomes come in duplicates, with one copy from the male and female parent. Because of this, the idea that evolution is driven by male mutations has become increasingly more likely. This paper looks at the different male-mutation rates and determines that the male-mutation rate is much higher than female-mutation rates. Ry/a to be approximately 2.2, which means that Ry is approximately -24.2. From software analysis, x was approximated to be about 0.5. And since x and Ry are known, Ry/x was determined to be -49. The results for this paper show the calculated Rx/a and Ry/a are similar to the results of another study, but they are unique in that they produced a relatively high negative number for the Ry/a, which was about -49. This provides evidence that the male-mutation rate is higher than the female-mutation rate. This is interesting because this suggests that, from the data, the mutation rate in males is the defining force in molecular evolution. And because the rate goes beyond the prescribed model, future models of molecular systems will need to consider the rate of male mutations, as well as clarifying this male-mutation rate and calculating the rate of mutation in other sex-determinant systems.展开更多
The cause of severe acute respiratory syndrome (SARS) has been identified as a new coronavirus named as SARS HCoV. Using bioinformatic methods, we have performed a detailed domain search. In addition to the vira...The cause of severe acute respiratory syndrome (SARS) has been identified as a new coronavirus named as SARS HCoV. Using bioinformatic methods, we have performed a detailed domain search. In addition to the viral structure proteins, we have found that several putative polypeptides share sequence similarity to known domains or proteins. This study may provide a basis for future studies on the infection and replication process of this notorious virus.展开更多
文摘A major research topic within molecular evolution studies is to understand more about the causes of the molecular evolutionary patterns that are recorded within and between taxa. The amount of germ cell divisions in females and males causes the majority of mutations, during DNA replication, that impact molecular evolution. In an XX female and an XY male system of diploid animals, the autosomes come in duplicates, with one copy from the male and female parent. Because of this, the idea that evolution is driven by male mutations has become increasingly more likely. This paper looks at the different male-mutation rates and determines that the male-mutation rate is much higher than female-mutation rates. Ry/a to be approximately 2.2, which means that Ry is approximately -24.2. From software analysis, x was approximated to be about 0.5. And since x and Ry are known, Ry/x was determined to be -49. The results for this paper show the calculated Rx/a and Ry/a are similar to the results of another study, but they are unique in that they produced a relatively high negative number for the Ry/a, which was about -49. This provides evidence that the male-mutation rate is higher than the female-mutation rate. This is interesting because this suggests that, from the data, the mutation rate in males is the defining force in molecular evolution. And because the rate goes beyond the prescribed model, future models of molecular systems will need to consider the rate of male mutations, as well as clarifying this male-mutation rate and calculating the rate of mutation in other sex-determinant systems.
基金Supported by the Anti- SARS Fund of Tsinghua Universitythe National Science Foundation forOutstanding Young Scientist of China (No.30 12 5 0 2 1) and the Bugher Foundation(New York)
文摘The cause of severe acute respiratory syndrome (SARS) has been identified as a new coronavirus named as SARS HCoV. Using bioinformatic methods, we have performed a detailed domain search. In addition to the viral structure proteins, we have found that several putative polypeptides share sequence similarity to known domains or proteins. This study may provide a basis for future studies on the infection and replication process of this notorious virus.