Rhodococcus erythropolis USTB-03 is a promising bacterial strain for the biodesulfurization of dibenzothiophene (DBT) via a sulfurspecific pathway in which DBT is converted to 2-hydroxybiphenyl (2HBP) as an end pr...Rhodococcus erythropolis USTB-03 is a promising bacterial strain for the biodesulfurization of dibenzothiophene (DBT) via a sulfurspecific pathway in which DBT is converted to 2-hydroxybiphenyl (2HBP) as an end product. The effects of nicotinamide and riboflavin on the sulfur specific activity (SA) of DBT biodesulfurization by R. erythropolis USTB-03 were investigated. Both nicotinamide and riboflavin were found to enhance the expression of SA, which was not previously reported. When R. erythropolis USTB-03 was grown on a medium containing nicotinamide of 10.0 mmol or riboflavin of 50.0 μmol, SA was raised from 68.0 or so to more than 130 mmol 2HBP/(kg dry cells.h). When R. erythropolis USTB-03 was grown in the presence of both nicotinamide of 5.0 mmol and riboflavin of 25.0 μmol, SA was further increased to 159.0 mmol 2HBP/(kg dry cells.h). It is suggested that the biological synthesis of reduced form of flavin mononucleotide (FMNH2), an essential coenzyme for the activities of biodesulfurization enzyme Dsz C and A, might be enhanced by nicotinamide and riboflavin, which was responsible for the increased SA of R. erythropolis USTB-03.展开更多
Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans (A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for...Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans (A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30℃. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.展开更多
Rhodococcus sp.DS-3 with the ability to selectively desulfurize dibenzothiophene and grow with the sulfur atom desulfurized was quantitatively characterized in batch cultures.The fermentation process for desulphurizat...Rhodococcus sp.DS-3 with the ability to selectively desulfurize dibenzothiophene and grow with the sulfur atom desulfurized was quantitatively characterized in batch cultures.The fermentation process for desulphurization by DS-3 was analyzed.The transformation of dibenzothiophene to 2-hydroxydiphenyl was 86.3% in BioStat C10-3 fermentor with aerating at 48 L·h -1 , constant pH 7.8,fermentation temperature 30℃ and stirring at 300 r·min -1 .The kinetic models of growth,substrate consumption and product generation were established.The optimal parameters were estimated and fitted to model software MATLAB.The results, which showed the actual values in 95% confidence interval, proved that these kinetic models fitted well and fundamentally reflected the regularity of dibenzothiophene desulphurization in the fermentor.展开更多
文摘Rhodococcus erythropolis USTB-03 is a promising bacterial strain for the biodesulfurization of dibenzothiophene (DBT) via a sulfurspecific pathway in which DBT is converted to 2-hydroxybiphenyl (2HBP) as an end product. The effects of nicotinamide and riboflavin on the sulfur specific activity (SA) of DBT biodesulfurization by R. erythropolis USTB-03 were investigated. Both nicotinamide and riboflavin were found to enhance the expression of SA, which was not previously reported. When R. erythropolis USTB-03 was grown on a medium containing nicotinamide of 10.0 mmol or riboflavin of 50.0 μmol, SA was raised from 68.0 or so to more than 130 mmol 2HBP/(kg dry cells.h). When R. erythropolis USTB-03 was grown in the presence of both nicotinamide of 5.0 mmol and riboflavin of 25.0 μmol, SA was further increased to 159.0 mmol 2HBP/(kg dry cells.h). It is suggested that the biological synthesis of reduced form of flavin mononucleotide (FMNH2), an essential coenzyme for the activities of biodesulfurization enzyme Dsz C and A, might be enhanced by nicotinamide and riboflavin, which was responsible for the increased SA of R. erythropolis USTB-03.
基金financially supported by the National Natural Science Foundation of China(No.51074107)Shanghai Municipal Education Commission(Shanghai Leading Academic Discipline Project J51504)
文摘Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans (A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30℃. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.
文摘Rhodococcus sp.DS-3 with the ability to selectively desulfurize dibenzothiophene and grow with the sulfur atom desulfurized was quantitatively characterized in batch cultures.The fermentation process for desulphurization by DS-3 was analyzed.The transformation of dibenzothiophene to 2-hydroxydiphenyl was 86.3% in BioStat C10-3 fermentor with aerating at 48 L·h -1 , constant pH 7.8,fermentation temperature 30℃ and stirring at 300 r·min -1 .The kinetic models of growth,substrate consumption and product generation were established.The optimal parameters were estimated and fitted to model software MATLAB.The results, which showed the actual values in 95% confidence interval, proved that these kinetic models fitted well and fundamentally reflected the regularity of dibenzothiophene desulphurization in the fermentor.