Technological and economic opportunities,alongside the apparent ecological benefits,point to biodesign as a new industrial paradigm for the fabrication of products in the twenty-first century.The presented work studie...Technological and economic opportunities,alongside the apparent ecological benefits,point to biodesign as a new industrial paradigm for the fabrication of products in the twenty-first century.The presented work studies plant roots as a biodesign material in the fabrication of self-supported 3D structures,where the biologically and digitally designed materials provide each other with structural stability.Taking a material-driven design approach,we present our systematic tinkering activities with plant roots to better understand and anticipate their responsive behaviour.These helped us to identify the key design parameters and advance the unique potential of plant roots to bind discrete porous structures.We illustrate this binding potential of plant roots with a hybrid 3D object,for which plant roots connect 600 computationally designed,optimized,and fabricated bioplastic beads into a low stool.展开更多
For cell culture scaffold innovation,3DPVS,namely 3D printed vibratory scaffold,was indicated as a future novel product,and it currently stands at conceptual development stage.One essential part for 3DPVS design is in...For cell culture scaffold innovation,3DPVS,namely 3D printed vibratory scaffold,was indicated as a future novel product,and it currently stands at conceptual development stage.One essential part for 3DPVS design is innovation,and TRIZ(algorithm of inventive problem solving)was studied as promising method for generating novel conceptual solutions.This study targets designing and solving 3DPVS problems using TRIZ in the new biodimension.We aim to utilize TRIZ to conduct a multi-layer problem-solving process,which is to address design concerns of 3DPVS,especially at super-system to system level.In this connection,TRIZ is used to address basic constraints and contradictions inside regarding trinity of 3D printing,3D scaffold and bio-based vibratory functionality.In the study,five basic conceptual solutions for potential 3DPVS,namely magnetic,electric,mechanical,light and thermal based,have been generated.A brief evaluation has also been conducted,where magnetic-based 3DPVS shows the relatively highest applicability as potential 3DPVS.Compared with traditional experimental-oriented processes for biodesign,the approach of utilizing TRIZ can be inspiring and reinvigorating,which prepares a ground for future 3DPVS design to address detailed sub-system concerns.This study might,to some extent,fill a gap in scaffold design and TRIZ literature and hopefully provide a comprehensive perspective of a timely topic.展开更多
Baoquan Ding(丁宝全)Prof.Baoquan Ding received his bachelor’s degree in chemistry from Jilin University,China,in 2000.He obtained his Ph.D.in 2006 from the Department of Chemistry,New York University,USA,under the su...Baoquan Ding(丁宝全)Prof.Baoquan Ding received his bachelor’s degree in chemistry from Jilin University,China,in 2000.He obtained his Ph.D.in 2006 from the Department of Chemistry,New York University,USA,under the supervision of Professor Nadrian Seeman.He then worked as a Postdoctoral Research Fellow at the Molecular Foundry,Lawrence Berkeley National Laboratory,USA.He joined the Biodesign Institute at Arizona State University,USA,as a Research Assistant Professor in October 2009.He established his research group as a Professor at the National Center for Nanoscience and Technology,China,in November 2010.His research interests include DNA nanotechnology,coassembled biomolecules,and drug delivery.展开更多
Synthetic biology is capable of delivering new solutions to key challenges spanning the bioeconomy,both nationally and internationally.Recognising this significant potential and the associated need to facilitate its t...Synthetic biology is capable of delivering new solutions to key challenges spanning the bioeconomy,both nationally and internationally.Recognising this significant potential and the associated need to facilitate its translation and commercialisation the UK government commissioned the production of a national Synthetic Biology Roadmap in 2011,and subsequently provided crucial support to assist its implementation.Critical infrastructural investments have been made,and important strides made towards the development of an effectively connected community of practitioners and interest groups.A number of Synthetic Biology Research Centres,DNA Synthesis Foundries,a Centre for Doctoral Training,and an Innovation Knowledge Centre have been established,creating a nationally distributed and integrated network of complementary facilities and expertise.The UK Synthetic Biology Leadership Council published a UK Synthetic Biology Strategic Plan in 2016,increasing focus on the processes of translation and commercialisation.Over 50 start-ups,SMEs and larger companies are actively engaged in synthetic biology in the UK,and inward investments are starting to flow.Together these initiatives provide an important foundation for stimulating innovation,actively contributing to international research and development partnerships,and helping deliver useful benefits from synthetic biology in response to local and global needs and challenges.展开更多
文摘Technological and economic opportunities,alongside the apparent ecological benefits,point to biodesign as a new industrial paradigm for the fabrication of products in the twenty-first century.The presented work studies plant roots as a biodesign material in the fabrication of self-supported 3D structures,where the biologically and digitally designed materials provide each other with structural stability.Taking a material-driven design approach,we present our systematic tinkering activities with plant roots to better understand and anticipate their responsive behaviour.These helped us to identify the key design parameters and advance the unique potential of plant roots to bind discrete porous structures.We illustrate this binding potential of plant roots with a hybrid 3D object,for which plant roots connect 600 computationally designed,optimized,and fabricated bioplastic beads into a low stool.
文摘For cell culture scaffold innovation,3DPVS,namely 3D printed vibratory scaffold,was indicated as a future novel product,and it currently stands at conceptual development stage.One essential part for 3DPVS design is innovation,and TRIZ(algorithm of inventive problem solving)was studied as promising method for generating novel conceptual solutions.This study targets designing and solving 3DPVS problems using TRIZ in the new biodimension.We aim to utilize TRIZ to conduct a multi-layer problem-solving process,which is to address design concerns of 3DPVS,especially at super-system to system level.In this connection,TRIZ is used to address basic constraints and contradictions inside regarding trinity of 3D printing,3D scaffold and bio-based vibratory functionality.In the study,five basic conceptual solutions for potential 3DPVS,namely magnetic,electric,mechanical,light and thermal based,have been generated.A brief evaluation has also been conducted,where magnetic-based 3DPVS shows the relatively highest applicability as potential 3DPVS.Compared with traditional experimental-oriented processes for biodesign,the approach of utilizing TRIZ can be inspiring and reinvigorating,which prepares a ground for future 3DPVS design to address detailed sub-system concerns.This study might,to some extent,fill a gap in scaffold design and TRIZ literature and hopefully provide a comprehensive perspective of a timely topic.
文摘Baoquan Ding(丁宝全)Prof.Baoquan Ding received his bachelor’s degree in chemistry from Jilin University,China,in 2000.He obtained his Ph.D.in 2006 from the Department of Chemistry,New York University,USA,under the supervision of Professor Nadrian Seeman.He then worked as a Postdoctoral Research Fellow at the Molecular Foundry,Lawrence Berkeley National Laboratory,USA.He joined the Biodesign Institute at Arizona State University,USA,as a Research Assistant Professor in October 2009.He established his research group as a Professor at the National Center for Nanoscience and Technology,China,in November 2010.His research interests include DNA nanotechnology,coassembled biomolecules,and drug delivery.
文摘Synthetic biology is capable of delivering new solutions to key challenges spanning the bioeconomy,both nationally and internationally.Recognising this significant potential and the associated need to facilitate its translation and commercialisation the UK government commissioned the production of a national Synthetic Biology Roadmap in 2011,and subsequently provided crucial support to assist its implementation.Critical infrastructural investments have been made,and important strides made towards the development of an effectively connected community of practitioners and interest groups.A number of Synthetic Biology Research Centres,DNA Synthesis Foundries,a Centre for Doctoral Training,and an Innovation Knowledge Centre have been established,creating a nationally distributed and integrated network of complementary facilities and expertise.The UK Synthetic Biology Leadership Council published a UK Synthetic Biology Strategic Plan in 2016,increasing focus on the processes of translation and commercialisation.Over 50 start-ups,SMEs and larger companies are actively engaged in synthetic biology in the UK,and inward investments are starting to flow.Together these initiatives provide an important foundation for stimulating innovation,actively contributing to international research and development partnerships,and helping deliver useful benefits from synthetic biology in response to local and global needs and challenges.