Brain,the material foundation of human intelligence,is the most complex tissue in the human body.Brain diseases are among the leading threats to human life,yet our understanding of their pathogenic mechanisms and drug...Brain,the material foundation of human intelligence,is the most complex tissue in the human body.Brain diseases are among the leading threats to human life,yet our understanding of their pathogenic mechanisms and drug development remains limited,largely due to the lack of accurate brain-like tissue models that replicate its complex structure and functions.Therefore,constructing brain-like models—both in morphology and function—possesses significant scientific value for advancing brain science and pathological pharmacology research,representing the frontiers in the biomanufacturing field.This review outlines the primary requirements and challenges in biomanufacturing brain-like tissue,addressing its complex structures,functions,and environments.Also,the existing biomanufacturing technologies,strategies,and characteristics for brain-like models are depicted,and cutting-edge developments in biomanufacturing central neural repair prosthetics,brain development models,brain disease models,and brain-inspired biocomputing models are systematically reviewed.Finally,the paper concludes with future perspectives on the biomanufacturing of brain-like tissue transitioning from structural manufacturing to intelligent functioning.展开更多
Neuromorphic computing has the potential to achieve the requirements of the next-generation artificial intelligence(AI)systems,due to its advantages of adaptive learning and parallel computing.Meanwhile,biocomputing h...Neuromorphic computing has the potential to achieve the requirements of the next-generation artificial intelligence(AI)systems,due to its advantages of adaptive learning and parallel computing.Meanwhile,biocomputing has seen ongoing development with the rise of synthetic biology,becoming the driving force for new generation semiconductor synthetic biology(SemiSynBio)technologies.DNA-based biomolecules could potentially perform the functions of Boolean operators as logic gates and be used to construct artificial neural networks(ANNs),providing the possibility of executing neuromorphic computing at the molecular level.Herein,we briefly outline the principles of neuromorphic computing,describe the advances in DNA computing with a focus on synthetic neuromorphic computing,and summarize the major challenges and prospects for synthetic neuromorphic computing.We believe that constructing such synthetic neuromorphic circuits will be an important step toward realizing neuromorphic computing,which would be of widespread use in biocomputing,DNA storage,information security,and national defense.展开更多
基金supported by the Program of the National Natural Science Foundation of China(52275291)(52435006)the Program for Innovation Team of Shaanxi Province(2023CX-TD-17)the Fundamental Research Funds for the Central Universities。
文摘Brain,the material foundation of human intelligence,is the most complex tissue in the human body.Brain diseases are among the leading threats to human life,yet our understanding of their pathogenic mechanisms and drug development remains limited,largely due to the lack of accurate brain-like tissue models that replicate its complex structure and functions.Therefore,constructing brain-like models—both in morphology and function—possesses significant scientific value for advancing brain science and pathological pharmacology research,representing the frontiers in the biomanufacturing field.This review outlines the primary requirements and challenges in biomanufacturing brain-like tissue,addressing its complex structures,functions,and environments.Also,the existing biomanufacturing technologies,strategies,and characteristics for brain-like models are depicted,and cutting-edge developments in biomanufacturing central neural repair prosthetics,brain development models,brain disease models,and brain-inspired biocomputing models are systematically reviewed.Finally,the paper concludes with future perspectives on the biomanufacturing of brain-like tissue transitioning from structural manufacturing to intelligent functioning.
文摘Neuromorphic computing has the potential to achieve the requirements of the next-generation artificial intelligence(AI)systems,due to its advantages of adaptive learning and parallel computing.Meanwhile,biocomputing has seen ongoing development with the rise of synthetic biology,becoming the driving force for new generation semiconductor synthetic biology(SemiSynBio)technologies.DNA-based biomolecules could potentially perform the functions of Boolean operators as logic gates and be used to construct artificial neural networks(ANNs),providing the possibility of executing neuromorphic computing at the molecular level.Herein,we briefly outline the principles of neuromorphic computing,describe the advances in DNA computing with a focus on synthetic neuromorphic computing,and summarize the major challenges and prospects for synthetic neuromorphic computing.We believe that constructing such synthetic neuromorphic circuits will be an important step toward realizing neuromorphic computing,which would be of widespread use in biocomputing,DNA storage,information security,and national defense.