There have been reports of potential health risks for people from hydrophobic organic pollutants,such as polycyclic aromatic hydrocarbons(PAHs),polychlorinated hydrocarbons(PCHs),and organophosphate flame retardants(O...There have been reports of potential health risks for people from hydrophobic organic pollutants,such as polycyclic aromatic hydrocarbons(PAHs),polychlorinated hydrocarbons(PCHs),and organophosphate flame retardants(OPFRs).When a contaminated site is used for residential housing or public utility and recreation areas,the soil-bound organic pollutantsmight pose a threat to human health.In this study,we investigated the contamination profiles and potential risks to human health of 15 PAHs,6 PCHs,and 12 OPFRs in soils from four contaminated sites in China.We used an in vitro method to determine the oral bioaccessibility of soil pollutants.Total PAHswere found at concentrations ranging from26.4 ng/g to 987 ng/g.PCHs(0.27-14.3 ng/g)and OPFRs(6.30-310 ng/g)were detected,but at low levels compared to earlier reports.The levels of PAHs,PCHs,and OPFRs released from contaminated soils into simulated gastrointestinal fluids ranged from 1.74%to 91.0%,2.51%to 39.6%,and 1.37%to 96.9%,respectively.Based on both spiked and unspiked samples,we found that the oral bioaccessibility of pollutantswas correlated with their logKow andmolecularweight,and the total organic carbon content and pH of soils.PAHs in 13 out of 38 contaminated soil samples posed potential high risks to children.When considering oral bioaccessibility,nine soils still posed potential risks,while the risks in the remaining soils became negligible.The contribution of this paper is that it corrects the health risk of soil-bound organic pollutants by detecting bioaccessibility in actual soils from different contaminated sites.展开更多
Considerable levels of methylmercury(MeHg)have been found rice-based infant cereals as a result of MeHg transfer from the rice as a raw material to the products,hence consumption of rice products may pose a potential ...Considerable levels of methylmercury(MeHg)have been found rice-based infant cereals as a result of MeHg transfer from the rice as a raw material to the products,hence consumption of rice products may pose a potential health risk to infants who may receive cereals as the major diets and are susceptible to toxicity of MeHg.Determination of bioaccessibility of MeHg would provide a more accurate assessment of MeHg exposure through consumption of rice-based cereals,yet this information remains lacking.Further,the re-adsorption of methylmercury on the residual food will affect the accurate assessment of its bioaccessibility.Our goals in this work were 1)to determine the bioaccessibility of MeHg in infant rice cereals commonly available on the market by using a typical in vitro artificial gastrointestinal digestionmodel and 2)to evaluate the effects of MeHg re-adsorption on the in vitro assessment of MeHg bioaccessibility.The determined bioaccessibility of MeHg in the studied rice cereals after the standard dual-step(using gastric followed by intestinal juice)protocol ranged from 25%to 74%,a wide range comparable to that of fish samples observed here and in previous studies.The surprisingly higher bioaccessibility of MeHg in fish and rice cereals after the gastric step only,in comparison to after the complete two-step gastrointestinal digestion,suggests the re-adsorption of MeHg on the residual food.Separate experiments with spiked MeHg standards confirmed that the MeHg released by the acetic gastric juice was re-adsorbed on the residues during the intestinal step at neutral pH.This study provided first-hand data on the bioaccessibility of MeHg in infant rice cereals and methodological implications on using in vitro digestion to evaluate the bioaccessibility of MeHg and metal contaminants in general.展开更多
Nano-enabled silicone-rubber articles for feeding or chewing could be a source of metallic nanoparticles(NPs)directly exposed to infants and young children.However,the impact of steam disinfection on release of NPs an...Nano-enabled silicone-rubber articles for feeding or chewing could be a source of metallic nanoparticles(NPs)directly exposed to infants and young children.However,the impact of steam disinfection on release of NPs and the related potential risks to children's health are unknown.Here,we investigated contents and form of Ag and Zn in 57 nano-enabled silicone-rubber baby bottle teats,pacifiers,and teethers of seven countries and examined the impacts of steam disinfection on in vitro bioaccessibility(IVBA)of Ag and Zn in the articles.Nearly 89%articles had a mixture of Ag-and Zn-containing NPs and the teethers had relatively high Ag and Zn contents(up to 501 and 254μg/g,respectively).Steam disinfection caused rubber decomposition into micro(nano)plastics(0.54-15.7μm)and NP release from the interior of bulk rubber and micro-sized plastics,thus enhancing the IVBA of Ag and Zn by up to 5.5 times.The findings provide insights into mechanisms for NP release by steam disinfection.Though oral exposure risk assessment suggested low health concerns on individual metal release,our study points out the need to assess the potential health risks of child co-exposure to metallic NPs and micro(nano)plastics.展开更多
Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-en...Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-enriched Brassica napus L.Significant increases were observed after fermentation in total sugars,reducing sugars,soluble proteins,total phenolic content(TPC),and total flavonoid content(TFC).The organic Se was retained at a concentration of 54.75 mg/g in the freeze-dried sample.Principal component analysis and cluster analysis showed good separation between the FFS and unfermented(FS)groups.Fragrant 2-ethyloxetane had the highest content among all volatiles,while sinapine had the highest content among all phenolic compounds.The fermentation process showed remarkable improvement in the abundance and concentration of volatile compounds and phenolic contents,making FFS exhibit strong antioxidant activity and inhibitory capacity againstα-glucosidase activity.The bioaccessibility of phenolic compounds was significantly greater in FFS compared to FS.ADMET analysis revealed that the majority of phenolic compounds contained in FFS did not exhibit mutagenicity toxicity,hepatotoxicity,skin sensitization,or blood-brain barrier penetration,indicating a favorable level of biosafety.Overall,our study provides a new insight into the further utilization of Se-enriched Brassica napus L.in foods.展开更多
Background: Minerals bioaccessibility of food products could be increased by enhancing the apparent absorption of most minerals with the reduction of anti-nutritional factors (phytates) through extrusion cooking. The ...Background: Minerals bioaccessibility of food products could be increased by enhancing the apparent absorption of most minerals with the reduction of anti-nutritional factors (phytates) through extrusion cooking. The aim of the study was to increase the mineral bioaccessibility in co-extruded millet flours enriched with Moringa and Baobab for vulnerable populations. Methods: Three extruded instant formulas were developed using pearl millet, Moringa and Baobab powders: FA (90% Millet + 10% Baobab);FB (90% Millet + 10% Moringa);FC (80% Millet + 10% Baobab + 10% Moringa). Non-extruded formulations of FA, FB and FC were used as controls. Then treatments and controls were analyzed to determine their percent mineral bioaccessibility using the in vitro equilibrium dialysability method (Miller et al., 1981) and their total amounts bioaccessible according to the Burgos et al., 2018 method. Phytates in all samples were also determined using the Method of Fruhbeck et al., 1995. Results: Extrusion cooking significantly improved iron bioaccessible percentages in co-extruded flours respectively in FB and FC (p . Extrusion significantly reduced the percentages and amounts of bioaccessible zinc and calcium in all extruded flours compared to their controls (p Conclusion: Extrusion cooking reduced the chelation effect of phytates by thermal degradation, which led to a modification in the bioavailability of minerals. Food-to-food fortification and extrusion cooking displayed a positive effect on the bioaccessibility of iron, magnesium and phosphorus. For calcium and zinc, extrusion has no positive effect on their bioaccessibilities. However, with daily consumption, co-extruded fortified flours could be used as a way to fight against malnutrition in vulnerable populations.展开更多
[Objective] This study aimed to investigate the existing forms and bioaccessibility of vanadium(V) from soil and mineral of Panzhihua region.[Method] The representative Xigeda soil and vanadium-titanium magnetite we...[Objective] This study aimed to investigate the existing forms and bioaccessibility of vanadium(V) from soil and mineral of Panzhihua region.[Method] The representative Xigeda soil and vanadium-titanium magnetite were collected from Panzhihua region to determine the existing forms of vanadium from soil and mineral;in vitro bionic digestion model was established to measure the bioaccessibility of vanadium.[Result] The dissolved concentrations of vanadium from farmland,mining area and vanadium-titanium magnetite in gastric juice were respectively 5.02,9.50 and 3.88 mg/kg,and the bioaccessibility ranged from 0.09% to 3.00%;the dissolved concentrations of vanadium in intestinal juice were respectively 2.98,5.43 and 4.49 mg/kg,and the bioaccessibility ranged from 0.10% to 1.78%.The content of vanadium in various existing forms varied significantly,the contents of vanadium in non-specific adsorption state and specific adsorption state were low,but residual content was completely high,which accounted for 75.06%,95.32% and 86.27% of the total content of vanadium in samples.[Conclusion] Bioaccessibility of dissolved vanadium in gastric juice was higher than that in small intestinal juice.Vanadium from soil and mineral was difficult to generate morphological transformation and migration,which was the main reason for low bioaccessibility.展开更多
Indian mustard (Brassica juncea (L.) Czern.) has shown good potential for the phytoremediation of soil contaminated with heavy metals. However, there is little information about the speciation and bioaccessibility...Indian mustard (Brassica juncea (L.) Czern.) has shown good potential for the phytoremediation of soil contaminated with heavy metals. However, there is little information about the speciation and bioaccessibility of heavy metals in soil during the decomposition of metal-rich Indian mustard leaves. Incubation experiments (1-, 3-, and 6-month) were carried out in Beijing and Hunan soil with metal-rich Indian mustard leaves addition (1% and 3%) and the effects of mustard leaves addition on the speciation and bioaccessibility of heavy metals were studied. The results showed that the addition of mustard leaves led to significant increases in pH and DOC in the Hunan soil. Both 1% and 3% of mustard leaf amendment caused the percentage of the exchangeable (F1), precipitated with carbonates (F2), bound to Fe/Mn oxides (F3) and bound to organic matter (F4) fractions of Pb and Cd to increase dramatically, while the percentage of the residual fraction (F5) of Cd and Pb significantly dropped in both Beijing and Hunan soils. Mustard leaf addition caused the bioaccessibility of Pb to decrease in the gastric phase, whereas the values increased in the small intestinal phase. The Cd bioaccessibility increased with mustard leaf addition in both the gastric and small intestinal phases. In conclusion, the metal-enriched mustard leaves addition induces Pb and Cd concentrations and their mobility increasing in the Beijing and Hunan soils. Therefore, heavy metal risk in metal-enriched plant leaves should be considered in phytoremediation system in which heavy metal might be brought back to soil and changed over time.展开更多
Rice consumption can be a major pathway for mercury(Hg) exposure, which can cause health hazards to Chinese residents. To accurately assess the potential health risks, the bioaccessibility of Hg in rice samples coll...Rice consumption can be a major pathway for mercury(Hg) exposure, which can cause health hazards to Chinese residents. To accurately assess the potential health risks, the bioaccessibility of Hg in rice samples collected at background and Hg-contamination sites was examined using four in vitro methods. The results showed that 〈 50% of the total mercury(THg) was bioaccessible in the studied rice samples. The THg bioaccessibility in the rice samples collected at the Hg-contaminated site was higher than that observed at the background area. The bioaccessibility of arsenic(As) and cadmium(Cd) was also evaluated for comparison of the four in vitro methods used in this study. The Physiologically Based Extraction Test was found to be the most accurate method based on the consistency of the results compared to those reported in previous studies. The estimated daily intakes of THg via rice consumption using the bioaccessibility data were found to meet the recommendation value set by the JECFA and the WHO in both sites. However, the potential health risk was not negligible at the Hg-contaminated sites, due to the high THg concentration and bioaccessibility in the rice samples.展开更多
Mercury(Hg) in rice is drawing mounting concern since methylmercury(MeHg) was found capable of accumulating in rice. In-vitro bioaccessibility is a feasible and reliable method to assess the health effects of Hg in ri...Mercury(Hg) in rice is drawing mounting concern since methylmercury(MeHg) was found capable of accumulating in rice. In-vitro bioaccessibility is a feasible and reliable method to assess the health effects of Hg in rice and has been utilized in a number of studies. This study was done to investigate the impact of cultivar, planting location, and cooking on the total mercury(THg) and MeHg bioaccessibility of rice, for which multiple statistical analysis methods were used to analyze the significance of their effects. The THg concentrations of rice samples taken from non-Hg contaminated areas of China were all below 15 ng/g and their MeHg concentrations were below 2 ng/g. Cooking could significantly reduce the MeHg bioaccessibility of rice because the MeHg was mainly combined with protein and the protein will be denatured during the cooking process, and then the denatured MeHg is difficult to be dissolved into the liquid phase. Indica-and japonica-type rice cultivars did not show significant differentiation in either the concentration of Hg or its bioaccessibility. However, the glutinous rice type differed significantly from the above rice types, and it showed greater bioaccessibility of THg and MeHg due to its distinct protein contents and starch properties. Planting location can affect the Hg concentration in rice and THg bioaccessibility but has a limited impact on MeHg bioaccessibility. Based on these results, two macro factors(rice cultivar, planting location) are presumed to impact Hg bioaccessibility by how they affect micro factors(i.e., Hg forms).展开更多
To more reasonably evaluate human intake of PBDEs via dust ingestion, bioaccessibility should be taken into account. Previously, we developed an in vitro method to determine the bioaccessibility of PBDEs in food. Here...To more reasonably evaluate human intake of PBDEs via dust ingestion, bioaccessibility should be taken into account. Previously, we developed an in vitro method to determine the bioaccessibility of PBDEs in food. Here, this method was adapted to determine the bioaccessibility of PBDEs in dust and the digestion conditions that influenced the bioaccessibility of PBDEs were optimized. The digestion conditions included the incubation time of dust in the intestinal digestion solution (T), the bile concentration in the intestinal digestion solution (Chile), and the ratio of the volume of the intestinal digestion solution to dust (R). The influence of the concentrations of individual PBDE congeners (CpBDE) on the bioaccessibility of PBDEs was also investigated. Cetral composite design was used to build an experimental model and set experimental parameters, and response surface methodology was used to analyze the obtained data. The results showed that the bioaccessibility of PBDEs increased with the increases of Chile and R, and was independent of T and CpSDE. Under the digestion conditions with Chile and R being at 4.0-7.0 g/L and 150-250, respectively, the bioaccessibility of PBDEs in the method-dust varied from 39.2% to 72.8%, which were comparable with the bioaccessibility or bioavailability of PBDEs in dust/soil in the literature. Thus, the in vitro method to measure the bioaccessibility of PBDEs in dust was established and validated. Finally, the bioaccessibility of PBDEs in four natural dust samples, which ranged from 36.1% to 43.3%, were determined using the adapted method.展开更多
Mercury(Hg), mainly in cinnabar species, has been used in medicine for thousands of years in China, and worldwide concern has been raised on its toxicity. In this work, the amount of bioaccessible mercury in 16 Chin...Mercury(Hg), mainly in cinnabar species, has been used in medicine for thousands of years in China, and worldwide concern has been raised on its toxicity. In this work, the amount of bioaccessible mercury in 16 Chinese patent medicines(CPMs) was measured by using an in vitro simulated digestion system, consisting of simulated gastric and intestinal fluid, to investigate the bioavailability of mercury in CPMs and evaluate its potential risk to human health. Total mercury and mercury in the gastrointestinal extracts were measured by inductively coupled plasma mass spectrometry(ICP-MS). The levels of total Hg in 16 CPMs ranged from not detected to 11.89 mg/g, with a mean value of 1.13 mg/g, while the extractable Hg ranged from not detected to 4.37 μg/g, with a mean value of 0.42 μg/g.Mercury bioaccessibility varied significantly in the investigated CPMs, depending on the ingredient. Compared to the CPMs without cinnabar(2.5%–30.9%), the percentage of mercury in the gastrointestinal supernatants for CPMs with cinnabar was quite a bit lower(0.037%). By comparing with the Food and Agricultural Organization/World Health Organization Joint Expert Committee on Food Additives(FAO/WHO) safety guideline, the average daily intake dose(ADD) of Hg in the medicines was then calculated to access the risk of mercury to human health from taking CPMs.展开更多
The immobilization of co-contaminants of organic and inorganic pollutants by biochar is an efficient remediation strategy. However, the effect of biochar amendments on the bioaccessibility of the co-contaminants in dr...The immobilization of co-contaminants of organic and inorganic pollutants by biochar is an efficient remediation strategy. However, the effect of biochar amendments on the bioaccessibility of the co-contaminants in dry versus flooded soils has rarely been compared. In batch experiments, bamboo-derived biochar(BB) had a higher sorption capacity for phenanthrene(Phe)/pyrene(Pyr)/zinc(Zn) than corn straw-derived biochar(CB), while CB had a higher sorption capacity for lead(Pb) than BB. After 150 days of incubation, the amendments of 2% CB, 0.5% BB and 2% BB effectively suppressed the dissipation and reduced the bioaccessibility of Phe/Pyr by 15.65%/18.02%, 17.07%/18.31%and 25.43%/27.11%, respectively, in the aerobic soils. This effectiveness was more significant than that in the anaerobic soils. The accessible Zn/Pb concentrations were also significantly lower in the aerobic soils than in the anaerobic soils, regardless of treatments.The Gram-negative bacterial biomass and the Shannon–Weaver index in the aerobic soil amended with 2% CB were the highest. The soil microbial community structure was jointly affected by changes in the bioaccessibility of the co-contaminants and the soil physiochemical properties caused by biochar amendments under the two conditions. Therefore, dry land farming may be more reliable than paddy soil cultivation at reducing the bioaccessibility of Phe/Pyr/Zn/Pb and enhancing the soil microbial diversity in the short term.展开更多
Delivering high quality dietary protein at an affordable price is a major aim of the EU-funded CHANCE project. Foods have been formulated with this aim and as part of their nutritional assessment;the bioaccessbility o...Delivering high quality dietary protein at an affordable price is a major aim of the EU-funded CHANCE project. Foods have been formulated with this aim and as part of their nutritional assessment;the bioaccessbility of nutrients following simulated gastroduodenal digestion is being investigated. Nutrimetabolomics approaches can be used to comprehensively and quantitatively analyse nutrients and metabolites. They have been applied to monitor nutrient release from ham, formulated in the CHANCE project, during in vitro digestion. SDS-PAGE analysis shows that constituent ham proteins were broken down to lower molecular weight polypeptides (Mr ≤ 10 kDa) after 120 min simulated gastric digestion which was digested further by subsequent duodenal digestion. Digestion of porteins resulted in the appearance of coalesced lipid droplets associated with the loss of the muscle protein matrix of the ham. Important nutrients, such as choline, creatine, carnosine, sucrose, cholesterol, triacylglyceride and fatty acids (saturated and unsaturated) were identified using 1H NMR. Chance ham is a good source of dietary protein and the combined approach can provide representative data on the bioaccessibility of all detectable nutrients contained in CHANCE ham to human digestive system.展开更多
Salvia hispanica L. is a herbacia plant that originates from Mexico and Guatemala, and it is currently known by the popular name of chia. Currently, chia seeds have been considered to be of great importance for human ...Salvia hispanica L. is a herbacia plant that originates from Mexico and Guatemala, and it is currently known by the popular name of chia. Currently, chia seeds have been considered to be of great importance for human health and nutrition because they have a high concentration of polyunsaturated fatty acids. They contain the largest known percentage of fatty α-linolenic acid (ALA) in plants—approximately 68%. Furthermore, they are an excellent source of protein, dietary fiber, calcium, magnesium, iron, vitamin B and phenolic compounds that have antioxidant properties. However, despite the high nutritional value present in the food and the possible health benefits of its nutrients, there is a need to evaluate the bioaccessibility of its micronutrients to measure their effectiveness. Thus, we evaluated the chemical composition of chia seeds from different producers, their lipid profiles and the bioaccessibility of some of their minerals.展开更多
Edible coatings (EC) applied to fresh-cut fruits are used to increase their shelf-life and to deliver antioxidant bioactives such as phenolic compounds (PC) that reduce their oxidative damage while enhance their funct...Edible coatings (EC) applied to fresh-cut fruits are used to increase their shelf-life and to deliver antioxidant bioactives such as phenolic compounds (PC) that reduce their oxidative damage while enhance their functional value. However, the combination of different PC may have synergetic, additive or antagonic effects on the final antioxidant capacity (AOXC). The aim of this study was to examine the AOXC of binary combinations of selected PC from mango peel and their bioaccessibility from 6% alginate-based EC applied to fresh-cut papaya, under simulated gastrointestinal conditions. Among equimolar (0.1 mM) combinations, gallic + protocatechuic acids (AB) were synergic in radical scavenging activity (RSA) as assayed by DPPH (90% RSA) and FRAP (0.39 mg TE/mL) methods;when assayed in 6% alginate-based EC, their RSA increased (117.85% RSA, 0.88 mg TE/mL). The application of EC + AB to papaya cubes and further in vitro digestion decreased their AOXC probably due to interactions between EC and papaya’s matrix. Therefore, further studies are needed in order to evaluate the effect of combination of phenolic and EC applied in other fruits matrix on antioxidants bioaccessibility.展开更多
This study determined the concentrations and inhalation bioaccessibility of cadmium, chromium, nickel and zinc in some foreign and locally available tobacco snuff and leaves. For the determination of the heavy metals ...This study determined the concentrations and inhalation bioaccessibility of cadmium, chromium, nickel and zinc in some foreign and locally available tobacco snuff and leaves. For the determination of the heavy metals concentration, the samples were ashed and washed with hydrochloric acid according to standard method. The bioaccessibility test employed the Stimulated Epithelial Lung Fluid (SELF). The total concentration of heavy metals in the four samples investigated ranged between 9.7 - 14.9 μg/g, 24.1 - 37.0 μg/g, 41 - 69 μg/g and 153 - 183 μg/g for cadmium, chromium, nickel and zinc respectively. The percentage inhalation bioaccessibility fraction of the four samples investigated ranged between 20.8% - 59.8%, 3.3% - 8.1%, 21.7% - 48.8% and 7.6% - 12.5% for cadmium, chromium, nickel, and zinc respectively. Statistical analyses using SPSS 21, revealed significant differences in the total concentration of heavy metals in the samples investigated except for Zinc. Risk assessment based on daily consumption of 10 g of the tobacco snuff employing total concentration of the heavy metals suggests that excluding nickel, all other metals investigated indicated daily intake values above WHO permissible levels. However, with the bioaccessible fractions, only cadmium, a known carcinogen indicated levels above WHO limits. From the results of this study, it can be deduced that consumption of tobacco snuff may induce negative health effects such as cancer and its attendant complications, the risk analysis based on bioaccessible concentration suggests lower health risk than analysis based on total heavy metal concentration;hence the assumption that snuff is a safe alternative to tobacco smoking may be erroneous.展开更多
Food by-products containing bioactive substances, such as phenolic compounds, have garnered attention due to the possibility to increase the value of what would otherwise be considered residue. The present work sought...Food by-products containing bioactive substances, such as phenolic compounds, have garnered attention due to the possibility to increase the value of what would otherwise be considered residue. The present work sought to evaluate the extraction of phenolic compounds and their bioaccessibility from pinhão “comum” (Araucaria angustifolia var. angustifolia) and pinhão “macaco” (Araucaria angustifolia var. indehiscens) cooking water extracts during in vitro simulated gastrointestinal conditions. Our findings indicate that changes occurred depending on the type of extract and the gastrointestinal step. Although both of the evaluated pinhão extracts displayed bioaccessible phenolic compounds, the gradual bioaccessibility decrease of pinhão “macaco” extract during in vitro simulated gastrointestinal condition steps, characterizes this extract as the one with the best functional property. The functional property is related to antioxidant properties which are able to generate protective effects against various diseases.展开更多
Cadmium(Cd)pollution in agricultural soils has exerted a serious threat due to continuous application of pesticides,fertilizers,and wastewater irrigation.The present study aimed to test the efficiency of KOH-modified ...Cadmium(Cd)pollution in agricultural soils has exerted a serious threat due to continuous application of pesticides,fertilizers,and wastewater irrigation.The present study aimed to test the efficiency of KOH-modified and non-modified rice straw-derived biochar(KBC and BC,respectively)for reducing Cd solubility and bioavailability in Cd-contaminated soil.Cadmium-contaminated soil was incubated for 60 d with 15 and 30 g kg-1 BC and KBC.At the end of incubation,Cd mobility was estimated by the European Community Bureau of Reference sequential extraction and toxicity characteristic leaching procedure(TCLP),while bioavailability was determined using 1 molL-1 NH4NO3 extraction.The bioavailability risk index and bioaccessibility,assessed by a simple bioaccessibility extraction test,of Cd were used to examine the potential effects of Cd on living organisms.The results indicated that application of both KBC and BC significantly increased soil p H,cation exchange capacity,nutrients,and organic carbon.The soluble fraction of Cd was significantly decreased by 30.3%and 27.4%,respectively,with the addition of KBC and BC at 30 g kg-1 compared to the control(without biochar addition).Similarly,the bioaccessible Cd was significantly decreased by 32.4%and 25.2%,respectively,with the addition of KBC and BC at 30 g kg-1 compared to the control.In addition,both KBC and BC significantly reduced Cd leaching in the TCLP and NH4NO3-extractable Cd in the amended soil compared to the control.The reduction in Cd solubility and bioaccessibility by KBC and BC may be due to significant increases in soil pH and surface complexation.Overall,KBC at an application rate of 30 g kg-1 demonstrated positive results as soil amendment for Cd immobilization,and reduced bioaccessible Cd in contaminated soil.展开更多
Investigating the bioaccessibility of harmful inorganic elements in soil is crucial for understanding their behavior in the environment and accurately assessing the environmental risks associated with soil.Traditional...Investigating the bioaccessibility of harmful inorganic elements in soil is crucial for understanding their behavior in the environment and accurately assessing the environmental risks associated with soil.Traditional batch experimental methods and linear models,however,are time-consuming and often fall short in precisely quantifying bioaccessibility.In this study,using 937 data points gathered from 56 journal articles,we developed machine learning models for three harmful inorganic elements,namely,Cd,Pb,and As.After thorough analysis,the model optimized through a boosting ensemble strategy demonstrated the best performance,with an average R2 of 0.95 and an RMSE of 0.25.We further employed SHAP values in conjunction with quantitative analysis to identify the key features that influence bioaccessibility.By utilizing the developed integrated models,we carried out predictions for 3002 data points across China,clarifying the bioaccessibility of cadmium(Cd),lead(Pb),and arsenic(As)in the soils of various sites and constructed a comprehensive spatial distribution map of China using the inverse distance weighting(IDW)interpolation method.Based on these findings,we further derived the soil environmental standards for metallurgical sites in China.Our observations from the collected data indicate a reduction in the number of sites exceeding the standard levels for Cd,Pb,and As in mining/smelting sites from 5,58,and 14 to 1,24,and 7,respectively.This research offers a precise and scientific approach for cross-regional risk assessment at the continental scale and lays a solid foundation for soil environmental management.展开更多
Deep eutectic solvents(DESs)are the next generation of green solvents that are considered for their stability and biocompatibility.This study used 10 different DESs synthesized from choline chloride,alcohols,organic a...Deep eutectic solvents(DESs)are the next generation of green solvents that are considered for their stability and biocompatibility.This study used 10 different DESs synthesized from choline chloride,alcohols,organic acids and sugars.Red beet betalains were extracted using three conventional solvents and DESs.Characterization experiments of DESs suggested that the electrical conductivity,pH,viscosity,water activity,density and chemical structure were greatly affected by the composition of the hydrogen bond acceptors(HBA)and hydrogen bond donors(HBD).Betacyanin,betaxanthin and total betalain contents ranges were 23.68-702.17,21.49-467.77,and 45.17-1169.94 mg kg^(−1),respec-tively,with choline chloride(ChCl):glucose(Glu)(1:2)giving the highest values.ChCl:Glu was chosen for the optimization process considering the molar ratio(ChC=1:Glu=0.75-1.75),water content(15-35%)and temperature(30-60℃)factors for the central composite design.The optimum conditions were recorded as 1:0.75 molar,30.83%water content,and 30℃,respectively.Under optimum conditions,the yields of betalain,betacyanin and betaxanthin were found to be 1192.17±23.63,738.83±17.87,and 453.34±5.93 mg kg^(−1),respectively.Bioaccessibility analy-sis and stability tests were performed on the extracts obtained under optimum conditions.Stability tests revealed that the betalains of red beetroot are less stable in the light than in the dark.Bioaccessibility values for betacyanin,betaxanthin,and betalain were found to be 44.67±1.40,75.02±1.20,and 56.21±1.33%,respectively.Green extraction of betalains from red beetroot using DES,such as ChCl:Glu,is promising for a strong stabilization and high bioaccessibility of betalains.展开更多
基金supported by the National Key Research and Development Program of China(No.2019YFC1804604)Basic and Applied Basic Research Foundation of Guangdong Province(No.2021A1515010018).
文摘There have been reports of potential health risks for people from hydrophobic organic pollutants,such as polycyclic aromatic hydrocarbons(PAHs),polychlorinated hydrocarbons(PCHs),and organophosphate flame retardants(OPFRs).When a contaminated site is used for residential housing or public utility and recreation areas,the soil-bound organic pollutantsmight pose a threat to human health.In this study,we investigated the contamination profiles and potential risks to human health of 15 PAHs,6 PCHs,and 12 OPFRs in soils from four contaminated sites in China.We used an in vitro method to determine the oral bioaccessibility of soil pollutants.Total PAHswere found at concentrations ranging from26.4 ng/g to 987 ng/g.PCHs(0.27-14.3 ng/g)and OPFRs(6.30-310 ng/g)were detected,but at low levels compared to earlier reports.The levels of PAHs,PCHs,and OPFRs released from contaminated soils into simulated gastrointestinal fluids ranged from 1.74%to 91.0%,2.51%to 39.6%,and 1.37%to 96.9%,respectively.Based on both spiked and unspiked samples,we found that the oral bioaccessibility of pollutantswas correlated with their logKow andmolecularweight,and the total organic carbon content and pH of soils.PAHs in 13 out of 38 contaminated soil samples posed potential high risks to children.When considering oral bioaccessibility,nine soils still posed potential risks,while the risks in the remaining soils became negligible.The contribution of this paper is that it corrects the health risk of soil-bound organic pollutants by detecting bioaccessibility in actual soils from different contaminated sites.
基金supported by the National Natural Science Foundation of China(No.22306111)Shandong Provincial Natural Science Foundation of China(Nos.ZR2022QB242 and ZR2020ZD20).
文摘Considerable levels of methylmercury(MeHg)have been found rice-based infant cereals as a result of MeHg transfer from the rice as a raw material to the products,hence consumption of rice products may pose a potential health risk to infants who may receive cereals as the major diets and are susceptible to toxicity of MeHg.Determination of bioaccessibility of MeHg would provide a more accurate assessment of MeHg exposure through consumption of rice-based cereals,yet this information remains lacking.Further,the re-adsorption of methylmercury on the residual food will affect the accurate assessment of its bioaccessibility.Our goals in this work were 1)to determine the bioaccessibility of MeHg in infant rice cereals commonly available on the market by using a typical in vitro artificial gastrointestinal digestionmodel and 2)to evaluate the effects of MeHg re-adsorption on the in vitro assessment of MeHg bioaccessibility.The determined bioaccessibility of MeHg in the studied rice cereals after the standard dual-step(using gastric followed by intestinal juice)protocol ranged from 25%to 74%,a wide range comparable to that of fish samples observed here and in previous studies.The surprisingly higher bioaccessibility of MeHg in fish and rice cereals after the gastric step only,in comparison to after the complete two-step gastrointestinal digestion,suggests the re-adsorption of MeHg on the residual food.Separate experiments with spiked MeHg standards confirmed that the MeHg released by the acetic gastric juice was re-adsorbed on the residues during the intestinal step at neutral pH.This study provided first-hand data on the bioaccessibility of MeHg in infant rice cereals and methodological implications on using in vitro digestion to evaluate the bioaccessibility of MeHg and metal contaminants in general.
基金supported by the Key-Area Research and Development Program of Guangdong Province (No.2020B1111380003)the National Natural Science Foundation of China (Nos.42177377 and 31861133003)。
文摘Nano-enabled silicone-rubber articles for feeding or chewing could be a source of metallic nanoparticles(NPs)directly exposed to infants and young children.However,the impact of steam disinfection on release of NPs and the related potential risks to children's health are unknown.Here,we investigated contents and form of Ag and Zn in 57 nano-enabled silicone-rubber baby bottle teats,pacifiers,and teethers of seven countries and examined the impacts of steam disinfection on in vitro bioaccessibility(IVBA)of Ag and Zn in the articles.Nearly 89%articles had a mixture of Ag-and Zn-containing NPs and the teethers had relatively high Ag and Zn contents(up to 501 and 254μg/g,respectively).Steam disinfection caused rubber decomposition into micro(nano)plastics(0.54-15.7μm)and NP release from the interior of bulk rubber and micro-sized plastics,thus enhancing the IVBA of Ag and Zn by up to 5.5 times.The findings provide insights into mechanisms for NP release by steam disinfection.Though oral exposure risk assessment suggested low health concerns on individual metal release,our study points out the need to assess the potential health risks of child co-exposure to metallic NPs and micro(nano)plastics.
基金supported by the National Natural Science Foundation of China(U21A20274,31972041)the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI)+1 种基金Earmarked Fund for China Agriculture Research System(CARS-12)Support Enterprise Technology Innovation and Development Projects(2021BLB151)。
文摘Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-enriched Brassica napus L.Significant increases were observed after fermentation in total sugars,reducing sugars,soluble proteins,total phenolic content(TPC),and total flavonoid content(TFC).The organic Se was retained at a concentration of 54.75 mg/g in the freeze-dried sample.Principal component analysis and cluster analysis showed good separation between the FFS and unfermented(FS)groups.Fragrant 2-ethyloxetane had the highest content among all volatiles,while sinapine had the highest content among all phenolic compounds.The fermentation process showed remarkable improvement in the abundance and concentration of volatile compounds and phenolic contents,making FFS exhibit strong antioxidant activity and inhibitory capacity againstα-glucosidase activity.The bioaccessibility of phenolic compounds was significantly greater in FFS compared to FS.ADMET analysis revealed that the majority of phenolic compounds contained in FFS did not exhibit mutagenicity toxicity,hepatotoxicity,skin sensitization,or blood-brain barrier penetration,indicating a favorable level of biosafety.Overall,our study provides a new insight into the further utilization of Se-enriched Brassica napus L.in foods.
文摘Background: Minerals bioaccessibility of food products could be increased by enhancing the apparent absorption of most minerals with the reduction of anti-nutritional factors (phytates) through extrusion cooking. The aim of the study was to increase the mineral bioaccessibility in co-extruded millet flours enriched with Moringa and Baobab for vulnerable populations. Methods: Three extruded instant formulas were developed using pearl millet, Moringa and Baobab powders: FA (90% Millet + 10% Baobab);FB (90% Millet + 10% Moringa);FC (80% Millet + 10% Baobab + 10% Moringa). Non-extruded formulations of FA, FB and FC were used as controls. Then treatments and controls were analyzed to determine their percent mineral bioaccessibility using the in vitro equilibrium dialysability method (Miller et al., 1981) and their total amounts bioaccessible according to the Burgos et al., 2018 method. Phytates in all samples were also determined using the Method of Fruhbeck et al., 1995. Results: Extrusion cooking significantly improved iron bioaccessible percentages in co-extruded flours respectively in FB and FC (p . Extrusion significantly reduced the percentages and amounts of bioaccessible zinc and calcium in all extruded flours compared to their controls (p Conclusion: Extrusion cooking reduced the chelation effect of phytates by thermal degradation, which led to a modification in the bioavailability of minerals. Food-to-food fortification and extrusion cooking displayed a positive effect on the bioaccessibility of iron, magnesium and phosphorus. For calcium and zinc, extrusion has no positive effect on their bioaccessibilities. However, with daily consumption, co-extruded fortified flours could be used as a way to fight against malnutrition in vulnerable populations.
基金Supported by National Natural Science Foundation of China(41101484)Discipline Innovation and Intelligence Plan for Colleges(B08037)International Cooperation Project of Ministry of Science and Technology(2011DFA101222)~~
文摘[Objective] This study aimed to investigate the existing forms and bioaccessibility of vanadium(V) from soil and mineral of Panzhihua region.[Method] The representative Xigeda soil and vanadium-titanium magnetite were collected from Panzhihua region to determine the existing forms of vanadium from soil and mineral;in vitro bionic digestion model was established to measure the bioaccessibility of vanadium.[Result] The dissolved concentrations of vanadium from farmland,mining area and vanadium-titanium magnetite in gastric juice were respectively 5.02,9.50 and 3.88 mg/kg,and the bioaccessibility ranged from 0.09% to 3.00%;the dissolved concentrations of vanadium in intestinal juice were respectively 2.98,5.43 and 4.49 mg/kg,and the bioaccessibility ranged from 0.10% to 1.78%.The content of vanadium in various existing forms varied significantly,the contents of vanadium in non-specific adsorption state and specific adsorption state were low,but residual content was completely high,which accounted for 75.06%,95.32% and 86.27% of the total content of vanadium in samples.[Conclusion] Bioaccessibility of dissolved vanadium in gastric juice was higher than that in small intestinal juice.Vanadium from soil and mineral was difficult to generate morphological transformation and migration,which was the main reason for low bioaccessibility.
基金supported by the National High Technology Research and Development Program(863)of China(No.2008AA06Z336)the National Natural Science Foundation of China(No.20607028,20977110).
文摘Indian mustard (Brassica juncea (L.) Czern.) has shown good potential for the phytoremediation of soil contaminated with heavy metals. However, there is little information about the speciation and bioaccessibility of heavy metals in soil during the decomposition of metal-rich Indian mustard leaves. Incubation experiments (1-, 3-, and 6-month) were carried out in Beijing and Hunan soil with metal-rich Indian mustard leaves addition (1% and 3%) and the effects of mustard leaves addition on the speciation and bioaccessibility of heavy metals were studied. The results showed that the addition of mustard leaves led to significant increases in pH and DOC in the Hunan soil. Both 1% and 3% of mustard leaf amendment caused the percentage of the exchangeable (F1), precipitated with carbonates (F2), bound to Fe/Mn oxides (F3) and bound to organic matter (F4) fractions of Pb and Cd to increase dramatically, while the percentage of the residual fraction (F5) of Cd and Pb significantly dropped in both Beijing and Hunan soils. Mustard leaf addition caused the bioaccessibility of Pb to decrease in the gastric phase, whereas the values increased in the small intestinal phase. The Cd bioaccessibility increased with mustard leaf addition in both the gastric and small intestinal phases. In conclusion, the metal-enriched mustard leaves addition induces Pb and Cd concentrations and their mobility increasing in the Beijing and Hunan soils. Therefore, heavy metal risk in metal-enriched plant leaves should be considered in phytoremediation system in which heavy metal might be brought back to soil and changed over time.
文摘Rice consumption can be a major pathway for mercury(Hg) exposure, which can cause health hazards to Chinese residents. To accurately assess the potential health risks, the bioaccessibility of Hg in rice samples collected at background and Hg-contamination sites was examined using four in vitro methods. The results showed that 〈 50% of the total mercury(THg) was bioaccessible in the studied rice samples. The THg bioaccessibility in the rice samples collected at the Hg-contaminated site was higher than that observed at the background area. The bioaccessibility of arsenic(As) and cadmium(Cd) was also evaluated for comparison of the four in vitro methods used in this study. The Physiologically Based Extraction Test was found to be the most accurate method based on the consistency of the results compared to those reported in previous studies. The estimated daily intakes of THg via rice consumption using the bioaccessibility data were found to meet the recommendation value set by the JECFA and the WHO in both sites. However, the potential health risk was not negligible at the Hg-contaminated sites, due to the high THg concentration and bioaccessibility in the rice samples.
基金supported by the research fund of Guizhou Minzu University (No. GZMUZK[2021]YB14)the open research fund of Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education of the People’s Republic of China (No. QJH-KY[2020]247)。
文摘Mercury(Hg) in rice is drawing mounting concern since methylmercury(MeHg) was found capable of accumulating in rice. In-vitro bioaccessibility is a feasible and reliable method to assess the health effects of Hg in rice and has been utilized in a number of studies. This study was done to investigate the impact of cultivar, planting location, and cooking on the total mercury(THg) and MeHg bioaccessibility of rice, for which multiple statistical analysis methods were used to analyze the significance of their effects. The THg concentrations of rice samples taken from non-Hg contaminated areas of China were all below 15 ng/g and their MeHg concentrations were below 2 ng/g. Cooking could significantly reduce the MeHg bioaccessibility of rice because the MeHg was mainly combined with protein and the protein will be denatured during the cooking process, and then the denatured MeHg is difficult to be dissolved into the liquid phase. Indica-and japonica-type rice cultivars did not show significant differentiation in either the concentration of Hg or its bioaccessibility. However, the glutinous rice type differed significantly from the above rice types, and it showed greater bioaccessibility of THg and MeHg due to its distinct protein contents and starch properties. Planting location can affect the Hg concentration in rice and THg bioaccessibility but has a limited impact on MeHg bioaccessibility. Based on these results, two macro factors(rice cultivar, planting location) are presumed to impact Hg bioaccessibility by how they affect micro factors(i.e., Hg forms).
基金supported by the National Basic Research Program (973) of China (No. 2008CB418205)the Earmarked Fund of the State Key Laboratory of Organic Geochemistry (No. OGL-200903)+1 种基金the National Nature Science Foundation of China (No. 20807026,40830744)the Shanghai Leading Academic Disciplines (No. S30109)
文摘To more reasonably evaluate human intake of PBDEs via dust ingestion, bioaccessibility should be taken into account. Previously, we developed an in vitro method to determine the bioaccessibility of PBDEs in food. Here, this method was adapted to determine the bioaccessibility of PBDEs in dust and the digestion conditions that influenced the bioaccessibility of PBDEs were optimized. The digestion conditions included the incubation time of dust in the intestinal digestion solution (T), the bile concentration in the intestinal digestion solution (Chile), and the ratio of the volume of the intestinal digestion solution to dust (R). The influence of the concentrations of individual PBDE congeners (CpBDE) on the bioaccessibility of PBDEs was also investigated. Cetral composite design was used to build an experimental model and set experimental parameters, and response surface methodology was used to analyze the obtained data. The results showed that the bioaccessibility of PBDEs increased with the increases of Chile and R, and was independent of T and CpSDE. Under the digestion conditions with Chile and R being at 4.0-7.0 g/L and 150-250, respectively, the bioaccessibility of PBDEs in the method-dust varied from 39.2% to 72.8%, which were comparable with the bioaccessibility or bioavailability of PBDEs in dust/soil in the literature. Thus, the in vitro method to measure the bioaccessibility of PBDEs in dust was established and validated. Finally, the bioaccessibility of PBDEs in four natural dust samples, which ranged from 36.1% to 43.3%, were determined using the adapted method.
基金supported by the National Basic Research Program (973) of China (No. 2013CB430004)the National Natural Science Foundation of China (Nos. 21120102040, 21075130)
文摘Mercury(Hg), mainly in cinnabar species, has been used in medicine for thousands of years in China, and worldwide concern has been raised on its toxicity. In this work, the amount of bioaccessible mercury in 16 Chinese patent medicines(CPMs) was measured by using an in vitro simulated digestion system, consisting of simulated gastric and intestinal fluid, to investigate the bioavailability of mercury in CPMs and evaluate its potential risk to human health. Total mercury and mercury in the gastrointestinal extracts were measured by inductively coupled plasma mass spectrometry(ICP-MS). The levels of total Hg in 16 CPMs ranged from not detected to 11.89 mg/g, with a mean value of 1.13 mg/g, while the extractable Hg ranged from not detected to 4.37 μg/g, with a mean value of 0.42 μg/g.Mercury bioaccessibility varied significantly in the investigated CPMs, depending on the ingredient. Compared to the CPMs without cinnabar(2.5%–30.9%), the percentage of mercury in the gastrointestinal supernatants for CPMs with cinnabar was quite a bit lower(0.037%). By comparing with the Food and Agricultural Organization/World Health Organization Joint Expert Committee on Food Additives(FAO/WHO) safety guideline, the average daily intake dose(ADD) of Hg in the medicines was then calculated to access the risk of mercury to human health from taking CPMs.
基金supported by the National Key Basic Research Program of China(No.2014CB441105)the National Natural Science Foundation of China(No.41671236)+1 种基金the“135”Plan and Frontiers Program of the Institute of Soil Science,Chinese Academy of Sciences(No.ISSASIP1614)the Outstanding Youth Fund of Natural Science Foundation of Jiangsu,China(No.BK20150050)
文摘The immobilization of co-contaminants of organic and inorganic pollutants by biochar is an efficient remediation strategy. However, the effect of biochar amendments on the bioaccessibility of the co-contaminants in dry versus flooded soils has rarely been compared. In batch experiments, bamboo-derived biochar(BB) had a higher sorption capacity for phenanthrene(Phe)/pyrene(Pyr)/zinc(Zn) than corn straw-derived biochar(CB), while CB had a higher sorption capacity for lead(Pb) than BB. After 150 days of incubation, the amendments of 2% CB, 0.5% BB and 2% BB effectively suppressed the dissipation and reduced the bioaccessibility of Phe/Pyr by 15.65%/18.02%, 17.07%/18.31%and 25.43%/27.11%, respectively, in the aerobic soils. This effectiveness was more significant than that in the anaerobic soils. The accessible Zn/Pb concentrations were also significantly lower in the aerobic soils than in the anaerobic soils, regardless of treatments.The Gram-negative bacterial biomass and the Shannon–Weaver index in the aerobic soil amended with 2% CB were the highest. The soil microbial community structure was jointly affected by changes in the bioaccessibility of the co-contaminants and the soil physiochemical properties caused by biochar amendments under the two conditions. Therefore, dry land farming may be more reliable than paddy soil cultivation at reducing the bioaccessibility of Phe/Pyr/Zn/Pb and enhancing the soil microbial diversity in the short term.
文摘Delivering high quality dietary protein at an affordable price is a major aim of the EU-funded CHANCE project. Foods have been formulated with this aim and as part of their nutritional assessment;the bioaccessbility of nutrients following simulated gastroduodenal digestion is being investigated. Nutrimetabolomics approaches can be used to comprehensively and quantitatively analyse nutrients and metabolites. They have been applied to monitor nutrient release from ham, formulated in the CHANCE project, during in vitro digestion. SDS-PAGE analysis shows that constituent ham proteins were broken down to lower molecular weight polypeptides (Mr ≤ 10 kDa) after 120 min simulated gastric digestion which was digested further by subsequent duodenal digestion. Digestion of porteins resulted in the appearance of coalesced lipid droplets associated with the loss of the muscle protein matrix of the ham. Important nutrients, such as choline, creatine, carnosine, sucrose, cholesterol, triacylglyceride and fatty acids (saturated and unsaturated) were identified using 1H NMR. Chance ham is a good source of dietary protein and the combined approach can provide representative data on the bioaccessibility of all detectable nutrients contained in CHANCE ham to human digestive system.
文摘Salvia hispanica L. is a herbacia plant that originates from Mexico and Guatemala, and it is currently known by the popular name of chia. Currently, chia seeds have been considered to be of great importance for human health and nutrition because they have a high concentration of polyunsaturated fatty acids. They contain the largest known percentage of fatty α-linolenic acid (ALA) in plants—approximately 68%. Furthermore, they are an excellent source of protein, dietary fiber, calcium, magnesium, iron, vitamin B and phenolic compounds that have antioxidant properties. However, despite the high nutritional value present in the food and the possible health benefits of its nutrients, there is a need to evaluate the bioaccessibility of its micronutrients to measure their effectiveness. Thus, we evaluated the chemical composition of chia seeds from different producers, their lipid profiles and the bioaccessibility of some of their minerals.
文摘Edible coatings (EC) applied to fresh-cut fruits are used to increase their shelf-life and to deliver antioxidant bioactives such as phenolic compounds (PC) that reduce their oxidative damage while enhance their functional value. However, the combination of different PC may have synergetic, additive or antagonic effects on the final antioxidant capacity (AOXC). The aim of this study was to examine the AOXC of binary combinations of selected PC from mango peel and their bioaccessibility from 6% alginate-based EC applied to fresh-cut papaya, under simulated gastrointestinal conditions. Among equimolar (0.1 mM) combinations, gallic + protocatechuic acids (AB) were synergic in radical scavenging activity (RSA) as assayed by DPPH (90% RSA) and FRAP (0.39 mg TE/mL) methods;when assayed in 6% alginate-based EC, their RSA increased (117.85% RSA, 0.88 mg TE/mL). The application of EC + AB to papaya cubes and further in vitro digestion decreased their AOXC probably due to interactions between EC and papaya’s matrix. Therefore, further studies are needed in order to evaluate the effect of combination of phenolic and EC applied in other fruits matrix on antioxidants bioaccessibility.
文摘This study determined the concentrations and inhalation bioaccessibility of cadmium, chromium, nickel and zinc in some foreign and locally available tobacco snuff and leaves. For the determination of the heavy metals concentration, the samples were ashed and washed with hydrochloric acid according to standard method. The bioaccessibility test employed the Stimulated Epithelial Lung Fluid (SELF). The total concentration of heavy metals in the four samples investigated ranged between 9.7 - 14.9 μg/g, 24.1 - 37.0 μg/g, 41 - 69 μg/g and 153 - 183 μg/g for cadmium, chromium, nickel and zinc respectively. The percentage inhalation bioaccessibility fraction of the four samples investigated ranged between 20.8% - 59.8%, 3.3% - 8.1%, 21.7% - 48.8% and 7.6% - 12.5% for cadmium, chromium, nickel, and zinc respectively. Statistical analyses using SPSS 21, revealed significant differences in the total concentration of heavy metals in the samples investigated except for Zinc. Risk assessment based on daily consumption of 10 g of the tobacco snuff employing total concentration of the heavy metals suggests that excluding nickel, all other metals investigated indicated daily intake values above WHO permissible levels. However, with the bioaccessible fractions, only cadmium, a known carcinogen indicated levels above WHO limits. From the results of this study, it can be deduced that consumption of tobacco snuff may induce negative health effects such as cancer and its attendant complications, the risk analysis based on bioaccessible concentration suggests lower health risk than analysis based on total heavy metal concentration;hence the assumption that snuff is a safe alternative to tobacco smoking may be erroneous.
文摘Food by-products containing bioactive substances, such as phenolic compounds, have garnered attention due to the possibility to increase the value of what would otherwise be considered residue. The present work sought to evaluate the extraction of phenolic compounds and their bioaccessibility from pinhão “comum” (Araucaria angustifolia var. angustifolia) and pinhão “macaco” (Araucaria angustifolia var. indehiscens) cooking water extracts during in vitro simulated gastrointestinal conditions. Our findings indicate that changes occurred depending on the type of extract and the gastrointestinal step. Although both of the evaluated pinhão extracts displayed bioaccessible phenolic compounds, the gradual bioaccessibility decrease of pinhão “macaco” extract during in vitro simulated gastrointestinal condition steps, characterizes this extract as the one with the best functional property. The functional property is related to antioxidant properties which are able to generate protective effects against various diseases.
基金financially supported by the National Science and Technology Support Program of China(No.2015BAD05B02)
文摘Cadmium(Cd)pollution in agricultural soils has exerted a serious threat due to continuous application of pesticides,fertilizers,and wastewater irrigation.The present study aimed to test the efficiency of KOH-modified and non-modified rice straw-derived biochar(KBC and BC,respectively)for reducing Cd solubility and bioavailability in Cd-contaminated soil.Cadmium-contaminated soil was incubated for 60 d with 15 and 30 g kg-1 BC and KBC.At the end of incubation,Cd mobility was estimated by the European Community Bureau of Reference sequential extraction and toxicity characteristic leaching procedure(TCLP),while bioavailability was determined using 1 molL-1 NH4NO3 extraction.The bioavailability risk index and bioaccessibility,assessed by a simple bioaccessibility extraction test,of Cd were used to examine the potential effects of Cd on living organisms.The results indicated that application of both KBC and BC significantly increased soil p H,cation exchange capacity,nutrients,and organic carbon.The soluble fraction of Cd was significantly decreased by 30.3%and 27.4%,respectively,with the addition of KBC and BC at 30 g kg-1 compared to the control(without biochar addition).Similarly,the bioaccessible Cd was significantly decreased by 32.4%and 25.2%,respectively,with the addition of KBC and BC at 30 g kg-1 compared to the control.In addition,both KBC and BC significantly reduced Cd leaching in the TCLP and NH4NO3-extractable Cd in the amended soil compared to the control.The reduction in Cd solubility and bioaccessibility by KBC and BC may be due to significant increases in soil pH and surface complexation.Overall,KBC at an application rate of 30 g kg-1 demonstrated positive results as soil amendment for Cd immobilization,and reduced bioaccessible Cd in contaminated soil.
基金supported by the National Key Research and Development Program of China(2019YFC1804604).
文摘Investigating the bioaccessibility of harmful inorganic elements in soil is crucial for understanding their behavior in the environment and accurately assessing the environmental risks associated with soil.Traditional batch experimental methods and linear models,however,are time-consuming and often fall short in precisely quantifying bioaccessibility.In this study,using 937 data points gathered from 56 journal articles,we developed machine learning models for three harmful inorganic elements,namely,Cd,Pb,and As.After thorough analysis,the model optimized through a boosting ensemble strategy demonstrated the best performance,with an average R2 of 0.95 and an RMSE of 0.25.We further employed SHAP values in conjunction with quantitative analysis to identify the key features that influence bioaccessibility.By utilizing the developed integrated models,we carried out predictions for 3002 data points across China,clarifying the bioaccessibility of cadmium(Cd),lead(Pb),and arsenic(As)in the soils of various sites and constructed a comprehensive spatial distribution map of China using the inverse distance weighting(IDW)interpolation method.Based on these findings,we further derived the soil environmental standards for metallurgical sites in China.Our observations from the collected data indicate a reduction in the number of sites exceeding the standard levels for Cd,Pb,and As in mining/smelting sites from 5,58,and 14 to 1,24,and 7,respectively.This research offers a precise and scientific approach for cross-regional risk assessment at the continental scale and lays a solid foundation for soil environmental management.
基金Ondokuz Mayıs University Scientific Research ProjectsOffice for providing financial support to this project. (Project Number: PYO.MUH.1904.22.019).
文摘Deep eutectic solvents(DESs)are the next generation of green solvents that are considered for their stability and biocompatibility.This study used 10 different DESs synthesized from choline chloride,alcohols,organic acids and sugars.Red beet betalains were extracted using three conventional solvents and DESs.Characterization experiments of DESs suggested that the electrical conductivity,pH,viscosity,water activity,density and chemical structure were greatly affected by the composition of the hydrogen bond acceptors(HBA)and hydrogen bond donors(HBD).Betacyanin,betaxanthin and total betalain contents ranges were 23.68-702.17,21.49-467.77,and 45.17-1169.94 mg kg^(−1),respec-tively,with choline chloride(ChCl):glucose(Glu)(1:2)giving the highest values.ChCl:Glu was chosen for the optimization process considering the molar ratio(ChC=1:Glu=0.75-1.75),water content(15-35%)and temperature(30-60℃)factors for the central composite design.The optimum conditions were recorded as 1:0.75 molar,30.83%water content,and 30℃,respectively.Under optimum conditions,the yields of betalain,betacyanin and betaxanthin were found to be 1192.17±23.63,738.83±17.87,and 453.34±5.93 mg kg^(−1),respectively.Bioaccessibility analy-sis and stability tests were performed on the extracts obtained under optimum conditions.Stability tests revealed that the betalains of red beetroot are less stable in the light than in the dark.Bioaccessibility values for betacyanin,betaxanthin,and betalain were found to be 44.67±1.40,75.02±1.20,and 56.21±1.33%,respectively.Green extraction of betalains from red beetroot using DES,such as ChCl:Glu,is promising for a strong stabilization and high bioaccessibility of betalains.