期刊文献+
共找到34,137篇文章
< 1 2 250 >
每页显示 20 50 100
Bio-inspired magnetic soft robot with dual-modal locomotion for enhanced liquid-air interface navigation
1
作者 Chonglei Hao Binhong Dou +7 位作者 Shenghao Yang Haochen Wang Lei Zhang Bing Li Qing Cao Huayong Yang Dong Han Fuzhou Niu 《Bio-Design and Manufacturing》 2025年第6期1024-1034,I0034-I0042,共20页
Small-scale magnetic soft robots are promising candidates for minimally invasive medical applications;however,they struggle to achieve efficient locomotion across various interfaces.In this study,we propose a magnetic... Small-scale magnetic soft robots are promising candidates for minimally invasive medical applications;however,they struggle to achieve efficient locomotion across various interfaces.In this study,we propose a magnetic soft robot that integrates two distinct bio-inspired locomotion modes for enhanced interface navigation.Inspired by water striders’superhydrophobic legs and the meniscus climbing behavior of Pyrrhalta nymphaeae larvae,we developed a rectangular sheet-based robot with hydrophobic surface treatment and novel control strategies.The proposed robot implements two locomotion modes:a bipedal peristaltic locomotion mode(BPLM)and a single-region contact-vibration locomotion mode(SCLM).The BPLM achieves stable movement at 20 mm/s through coordinated front-rear contact points,whereas the SCLM reaches an ultrafast speed of 52 mm/s by optimizing surface tension interactions.The proposed robot demonstrates precise trajectory control with minimal deviations and successfully navigates confined spaces while manipulating objects.Theoretical analysis and experimental validation demonstrate that the integration of triangular wave control signals and steady-state components enables smooth transitions between locomotion modes.This study presents a new paradigm for bio-inspired design of small-scale robots and demonstrates the potential for medical applications requiring precise navigation across multiple terrains. 展开更多
关键词 Magnetic soft robot Dual bio-inspired locomotion Interface navigation Water strider Pyrrhalta nymphaeae larvae
在线阅读 下载PDF
Bio-inspired geomagnetic navigation method for autonomous underwater vehicle 被引量:6
2
作者 Hong Li Mingyong Liu Kun Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第6期1203-1209,共7页
This paper presents a bio-inspired geomagnetic navigation method for autonomous underwater vehicle(AUV) without using any a priori geomagnetic information. Firstly, the multi-objective search problem is raised. Second... This paper presents a bio-inspired geomagnetic navigation method for autonomous underwater vehicle(AUV) without using any a priori geomagnetic information. Firstly, the multi-objective search problem is raised. Secondly, the geomagnetic navigation model is established by constructing a cost function. Then, by taking into consideration the biological magneto-taxis movement behavior for the geomagnetic environment stimulus, the multiobjective evolutionary search algorithm is derived to describe the search process. Finally, compared to the state-of-the-art, the proposed method presents better robustness. The simulation results demonstrate the reliability and feasibility of the proposed method. 展开更多
关键词 autonomous underwater vehicle(AUV) geomagnetic navigation bio-inspired navigation hex-path algorithm evolution ary algorithm
在线阅读 下载PDF
The effects of bio-inspired wing vein morphology on thrust generation in double-clap flapping-wing robots
3
作者 Tien Van Truong Quoc-Viet Nguyen +1 位作者 Loan Thi Kim Au Hung-Truyen Luong 《Defence Technology(防务技术)》 2026年第1期257-276,共20页
Wing design is a critical factor in the aerodynamic performance of flapping-wing(FW)robots.Inspired by the natural wing structures of insects,bats,and birds,we explored how bio-mimetic wing vein morphologies,combined ... Wing design is a critical factor in the aerodynamic performance of flapping-wing(FW)robots.Inspired by the natural wing structures of insects,bats,and birds,we explored how bio-mimetic wing vein morphologies,combined with a bio-inspired double wing clap-and-fling mechanism,affect thrust generation.This study focused on increasing vertical force and payload capacity.Through systematic experimentation with various vein configurations and structural designs,we developed innovative wings optimized for thrust production.Comprehensive tests were conducted to measure aerodynamic forces,power consumption,and wing kinematics across a range of flapping frequencies.Additionally,wings with different aspect ratios,a key factor in wing design,were fabricated and extensively evaluated.The study also examined the role of bio-inspired vein layouts on wing flexibility,a critical component in improving flight efficiency.Our findings demonstrate that the newly developed wing design led to a 20%increase in thrust,achieving up to 30 g-force(gf).This research sheds light on the clap-and-fling effect and establishes a promising framework for bio-inspired wing design,offering significant improvements in both performance and payload capacity for FW robots. 展开更多
关键词 Flapping-wing robots bio-inspired wing vein patterns Thrust generation Double clap-and-fling Fapping frequency
在线阅读 下载PDF
Review on bio-inspired polarized skylight navigation 被引量:2
4
作者 Fang KONG Yingjing GUO +2 位作者 Jianhua ZHANG Xiaojing FAN Xiaohan GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第9期14-37,共24页
In this review, the research progress of bio-inspired polarized skylight navigation is evaluated from the perspectives of theoretical basis, information detection, sensor design, and navigation realization. First, the... In this review, the research progress of bio-inspired polarized skylight navigation is evaluated from the perspectives of theoretical basis, information detection, sensor design, and navigation realization. First, the theory for characterizing the polarization mode of the skylight was introduced. Second, using sunlight, moonlight, and ocean as backgrounds, the measurement results of skylight polarization distribution under different weather conditions are described to compare the variation patterns. Third, the development history and research outcomes of bionic polarization navigation sensor for polarized skylight detection and navigation information calculation are categorized into two types, namely non-imaging and imaging types. In precision measurement, the non-imaging type is higher than the imaging type, and the accuracy that it can reach is ± 0.1° of navigation accuracy without drift error. Fourth, two polarized skylight orientation algorithms,E-vector-based method and Solar Meridian-Anti Solar Meridian(SM-ASM)-based method are summarized. Fifth, this review details the combined application of polarized skylight navigation sensors and Inertial Navigation System(INS), Global Navigation Satellite System(GNSS), Vision,Simultaneous Localization and Mapping(SLAM), and other navigation systems. The yaw and trajectory accuracy can be increased by about 40% compared to classical navigation system in complex outdoor environments. Finally, the future development trends of polarization navigation are presented. 展开更多
关键词 navigation POLARIZATION Polarized skylight navigation sensors Polarized skylight navigation system Skylight polarization pattern
原文传递
基于Navigation的移动应用屏幕导航设计方法
5
作者 李维勇 嵇雪 《三门峡职业技术学院学报》 2025年第4期133-138,共6页
移动应用的导航设计是提升用户体验的重要因素之一。随着Android平台Navigation组件的引入,导航设计变得更加方便和高效。介绍了基于Navigation的移动应用屏幕导航设计方法,包括Navigation组件的基础使用、高级特性和UI/UX设计中的应用... 移动应用的导航设计是提升用户体验的重要因素之一。随着Android平台Navigation组件的引入,导航设计变得更加方便和高效。介绍了基于Navigation的移动应用屏幕导航设计方法,包括Navigation组件的基础使用、高级特性和UI/UX设计中的应用原则。在设计流程中,将用户需求、应用场景和平台标准作为设计依据,使用Sketch、Adobe XD等工具完成原型设计,再通过用户测试和迭代完善设计。 展开更多
关键词 navigation组件 移动应用 屏幕导航设计 UI/UX设计 设计流程
在线阅读 下载PDF
Research on Offensive-Defensive Technology System and Key Technologies of Navigation Warfare 被引量:1
6
作者 WANG Jian FU Jing +2 位作者 LONG Ke CHANG Xinuo LIU Jiaxing 《Aerospace China》 2025年第1期9-13,共5页
As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of... As the core information infrastructure of modern information warfare,the offensive and defensive confrontations of satellite navigation systems have given rise to navigation warfare,which focuses on seizing control of navigation resources.Based on the space segment,control segment,and user segment of satellite navigation systems,this paper systematically constructs an offensive-defensive technology system for navigation warfare,and deeply analyzes core measures such as signal enhancement and suppression,autonomous navigation and link jamming,anti-jamming reception,and integrated navigation.It extracts key technologies including adaptive nulling antennas,joint filtering,and multi-dimensional combined jamming,and discusses the technical effectiveness of these technologies by incorporating relevant cases.The advantages of navigation warfare stem from multi-segment coordination and technological inte-gration.In the future,the development directions of navigation warfare will focus on three aspects:enhancing satellite capabilities,tackling core technical challenges,and building a multi-dimensional system. 展开更多
关键词 navigation warfare satellite navigation offensive-defensive technology ANTI-JAMMING integrated navigation
在线阅读 下载PDF
Artificial Circulation System Algorithm:A Novel Bio-Inspired Algorithm
7
作者 NerminÖzcan Semih Utku Tolga Berber 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期635-663,共29页
Metaheuristics are commonly used in various fields,including real-life problem-solving and engineering applications.The present work introduces a novel metaheuristic algorithm named the Artificial Circulatory System A... Metaheuristics are commonly used in various fields,including real-life problem-solving and engineering applications.The present work introduces a novel metaheuristic algorithm named the Artificial Circulatory System Algorithm(ACSA).The control of the circulatory system inspires it and mimics the behavior of hormonal and neural regulators involved in this process.The work initially evaluates the effectiveness of the suggested approach on 16 two-dimensional test functions,identified as classical benchmark functions.The method was subsequently examined by application to 12 CEC 2022 benchmark problems of different complexities.Furthermore,the paper evaluates ACSA in comparison to 64 metaheuristic methods that are derived from different approaches,including evolutionary,human,physics,and swarm-based.Subsequently,a sequence of statistical tests was undertaken to examine the superiority of the suggested algorithm in comparison to the 7 most widely used algorithms in the existing literature.The results show that the ACSA strategy can quickly reach the global optimum,avoid getting trapped in local optima,and effectively maintain a balance between exploration and exploitation.ACSA outperformed 42 algorithms statistically,according to post-hoc tests.It also outperformed 9 algorithms quantitatively.The study concludes that ACSA offers competitive solutions in comparison to popüler methods. 展开更多
关键词 bio-inspired EVOLUTIONARY HEURISTIC METAHEURISTIC OPTIMIZATION
在线阅读 下载PDF
Multi-objective optimal design for flexible bio-inspired meta-structure with ultra-broadband microwave absorption and thin thickness 被引量:1
8
作者 Mengfei FENG Shenyao LIU +5 位作者 Hui CHENG Kaifu ZHANG Yuan LI Guanjie YU Bo LIU Biao LIANG 《Chinese Journal of Aeronautics》 2025年第3期151-162,共12页
There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and grea... There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and great surface conformability.To meet these requirements,we designed and fabricated a flexible bioinspired meta-structure with ultra-broadband MA,thin thickness and excellent surface conformality.The carbonyl iron powder-carbon nanotubes-polydimethylsiloxane composite was synthesized by physical blending method for fabricating the MA meta-structure.Through geometry-electromagnetic optimal design by heuristic optimization algorithm,the meta-structure mimicking to the nipple photonic nanostructures on the eyes of moth can achieve ultra-broadband MA performance of 35.14 GHz MA bandwidth(reflection loss≤–10 dB),covering 4.86–40.00 GHz,with thickness of only 4.3 mm.Through simple fabrication processes,the meta-structure has been successfully fabricated and bonded on wings’leading edges,exhibiting excellent surface conformability.Furthermore,the designed flexible MA meta-structure possesses significant Radar Cross-Section(RCS)reduction capability,as demonstrated by the RCS analysis of an unmanned aerial vehicle.This flexible ultra-broadband MA meta-structure provides an outstanding candidate to meet the radar stealth requirement of variable curvature structures on aircraft. 展开更多
关键词 Broadband microwave absorption Surface conformability Flexible meta-structure bio-inspired Electromagnetic Radar cross section
原文传递
Development and Application of the Portable Electromagnetic Navigation for Neurosurgery 被引量:1
9
作者 Sheng-kun Lang Zhi-chao Gan +5 位作者 Qun Wang Xing-hua Xu Fang-ye Li Jia-shu Zhang Cai Meng Xiao-lei Chen 《Current Medical Science》 2025年第3期562-573,共12页
Background and Objective Electromagnetic navigation technology has demonstrated significant potential in enhancing the accuracy and safety of neurosurgical procedures.However,traditional electromagnetic navigation sys... Background and Objective Electromagnetic navigation technology has demonstrated significant potential in enhancing the accuracy and safety of neurosurgical procedures.However,traditional electromagnetic navigation systems face challenges such as high equipment costs,complex operation,bulky size,and insufficient anti-interference performance.To address these limitations,our study developed and validated a novel portable electromagnetic neuronavigation system designed to improve the precision,accessibility,and clinical applicability of electromagnetic navigation technology in cranial surgery.Methods The software and hardware architecture of a portable neural magnetic navigation system was designed.The key technologies of the system were analysed,including electromagnetic positioning algorithms,miniaturized sensor design,optimization of electromagnetic positioning and navigation algorithms,anti-interference signal processing methods,and fast three-dimensional reconstruction algorithms.A prototype was developed,and its accuracy was tested.Finally,a preliminary clinical application evaluation was conducted.Results This study successfully developed a comprehensive portable electromagnetic neuronavigation system capable of achieving preoperative planning,intraoperative real-time positioning and navigation,and postoperative evaluation of navigation outcomes.Through rigorous collaborative testing of the system’s software and hardware,the accuracy of electromagnetic neuronavigation has been validated to meet clinical requirements.Conclusions This study developed a portable neuroelectromagnetic navigation system and validated its effectiveness and safety through rigorous model testing and preliminary clinical applications.The system is characterized by its compact size,high precision,excellent portability,and user-friendly operation,making it highly valuable for promoting navigation technology and advancing the precision and minimally invasive nature of neurosurgical procedures. 展开更多
关键词 Electromagnetic navigation PORTABLE Cranial surgery
暂未订购
Improving the Position Accuracy and Computational Efficiency of UAV Terrain Aided Navigation Using a Two-Stage Hybrid Fuzzy Particle Filtering Method
10
作者 Sofia Yousuf Muhammad Bilal Kadri 《Computers, Materials & Continua》 SCIE EI 2025年第1期1193-1210,共18页
Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively r... Terrain Aided Navigation(TAN)technology has become increasingly important due to its effectiveness in environments where Global Positioning System(GPS)is unavailable.In recent years,TAN systems have been extensively researched for both aerial and underwater navigation applications.However,many TAN systems that rely on recursive Unmanned Aerial Vehicle(UAV)position estimation methods,such as Extended Kalman Filters(EKF),often face challenges with divergence and instability,particularly in highly non-linear systems.To address these issues,this paper proposes and investigates a hybrid two-stage TAN positioning system for UAVs that utilizes Particle Filter.To enhance the system’s robustness against uncertainties caused by noise and to estimate additional system states,a Fuzzy Particle Filter(FPF)is employed in the first stage.This approach introduces a novel terrain composite feature that enables a fuzzy expert system to analyze terrain non-linearities and dynamically adjust the number of particles in real-time.This design allows the UAV to be efficiently localized in GPS-denied environments while also reducing the computational complexity of the particle filter in real-time applications.In the second stage,an Error State Kalman Filter(ESKF)is implemented to estimate the UAV’s altitude.The ESKF is chosen over the conventional EKF method because it is more suitable for non-linear systems.Simulation results demonstrate that the proposed fuzzy-based terrain composite method achieves high positional accuracy while reducing computational time and memory usage. 展开更多
关键词 Sensor fusion fuzzy logic particle filter composite feature terrain aided navigation
在线阅读 下载PDF
Alignment-optimised coaxial visible-NIR-II dual-channel surgical navigation system and its clinical application in blood-supply assessment
11
作者 ZHANG Yu-Huang LIU Xiao-Long +3 位作者 SUN Si-Ying FAN Xiao-Xiao LIN Hui QIAN Jun 《红外与毫米波学报》 北大核心 2025年第5期663-670,共8页
Fluorescence imaging in the second near-infrared window(NIR-II,900-1880 nm)offers high signalto-background ratio(SBR),enhanced definition,and superior tissue penetration,making it ideal for real-time surgical navigati... Fluorescence imaging in the second near-infrared window(NIR-II,900-1880 nm)offers high signalto-background ratio(SBR),enhanced definition,and superior tissue penetration,making it ideal for real-time surgical navigation.However,with single-channel imaging,surgeons must frequently switch between the surgi⁃cal field and the NIR-II images on the monitor.To address this,a coaxial dual-channel imaging system that com⁃bines visible light and 1100 nm longpass(1100LP)fluorescence was developed.The system features a custom⁃ized coaxial dual-channel lens with optimized distortion,achieving precise alignment with an error of less than±0.15 mm.Additionally,the shared focusing mechanism simplifies operation.Using FDA-approved indocya⁃nine green(ICG),the system was successfully applied in dual-channel guided rat lymph node excision,and blood supply assessment of reconstructed human flap.This approach enhances surgical precision,improves opera⁃tional efficiency,and provides a valuable reference for further clinical translation of NIR-II fluorescence imaging. 展开更多
关键词 NIR-II DUAL-CHANNEL fluorescence imaging surgical navigation COAXIAL
在线阅读 下载PDF
Prediction Method of Polar Navigation Window Period Based on Risk Evaluation
12
作者 JIANG Jia−qi SHI Gui−jie WANG De−yu 《船舶力学》 北大核心 2025年第6期986-999,共14页
With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation wind... With the increase of international trade activities and the gradual melting of the polar ice cap,the importance of the Arctic route for marine transportation has been emphasized.Prediction of the polar navigation window period is crucial for navigating in the Arctic route,which is of great significance to the selection of the route and the optimization of navigation.This paper introduces the establishment of a risk index system,determination of risk index weight,establishment of a risk evaluation model,and prediction algorithm for the window period.In addition,data sources of both environmental factors and ship factors are introducted,and their shortcomings are analyzed,followed by introduction of various methods involved in window prediction and analysis of their advantages and disadvantages.The quantitative risk evaluation and window period algorithm can provide a reference for the research of polar navigation window period prediction. 展开更多
关键词 window period risk evaluation polar navigation risk index
在线阅读 下载PDF
Moment analysis of bio-inspired stochastic energy harvesters under wind conditions
13
作者 WANG Kang-Ning HUANG Dong-Mei HAN Jia-Le 《四川大学学报(自然科学版)》 北大核心 2025年第1期246-256,共11页
To further understand the performance of the energy harvesters under the influence of the wind force and the random excitation,this paper investigates the stochastic response of the bio-inspired energy harvesters subj... To further understand the performance of the energy harvesters under the influence of the wind force and the random excitation,this paper investigates the stochastic response of the bio-inspired energy harvesters subjected to Gaussian white noise and galloping excitation,simulating the flapping pattern of a seagull and its interaction with wind force.The equivalent linearization method is utilized to convert the original nonlinear model into the Itôstochastic differential equation by minimizing the mean squared error.Then,the second-order steady-state moments about the displacement,velocity,and voltage are derived by combining the moment analysis theory.The theoretical results are simulated numerically to analyze the stochastic response performance under different noise intensities,wind speeds,stiffness coefficients,and electromechanical coupling coefficients,time domain analysis is also conducted to study the performance of the harvester with different parameters.The results reveal that the mean square displacement and voltage increase with increasing the noise intensity and wind speed,larger absolute values of stiffness coefficient correspond to smaller mean square displacement and voltage,and larger electromechanical coupling coefficients can enhance the mean square voltage.Finally,the influence of wind speed and electromechanical coupling coefficient on the stationary probability density function(SPDF)is investigated,revealing the existence of a bimodal distribution under varying environmental conditions. 展开更多
关键词 bio-inspired energy harvesters Gaussian white noise Equivalent linearization method Steadystate moment
在线阅读 下载PDF
A Review on Modeling Environmental Loading Effects and Their Contributions to Nonlinear Variations of Global Navigation Satellite System Coordinate Time Series 被引量:1
14
作者 Zhao Li Weiping Jiang +3 位作者 Tonie van Dam Xiaowei Zou Qusen Chen Hua Chen 《Engineering》 2025年第4期26-37,共12页
Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including at... Nonlinear variations in the coordinate time series of global navigation satellite system(GNSS) reference stations are strongly correlated with surface displacements caused by environmental loading effects,including atmospheric, hydrological, and nontidal ocean loading. Continuous improvements in the accuracy of surface mass loading products, performance of Earth models, and precise data-processing technologies have significantly advanced research on the effects of environmental loading on nonlinear variations in GNSS coordinate time series. However, owing to theoretical limitations, the lack of high spatiotemporal resolution surface mass observations, and the coupling of GNSS technology-related systematic errors, environmental loading and nonlinear GNSS reference station displacements remain inconsistent. The applicability and capability of these loading products across different regions also require further evaluation. This paper outlines methods for modeling environmental loading, surface mass loading products, and service organizations. In addition, it summarizes recent advances in applying environmental loading to address nonlinear variations in global and regional GNSS coordinate time series. Moreover, the scientific questions of existing studies are summarized, and insights into future research directions are provided. The complex nonlinear motion of reference stations is a major factor limiting the accuracy of the current terrestrial reference frame. Further refining the environmental load modeling method, establishing a surface mass distribution model with high spatiotemporal resolution and reliability, exploring other environmental load factors such as ice sheet and artificial mass-change effects, and developing an optimal data-processing model and strategy for reprocessing global reference station data consistently could contribute to the development of a millimeter-level nonlinear motion model for GNSS reference stations with actual physical significance and provide theoretical support for establishing a terrestrial reference frame with 1 mm accuracy by 2050. 展开更多
关键词 Environmental loading Global navigation satellite system Nonlinear variations Time series analysis Surface mass distribution Green’s function Spherical harmonic function
在线阅读 下载PDF
Comment on autonomous celestial navigation technology for spacecraft
15
作者 Haonan YANG Xiaolin NING 《Chinese Journal of Aeronautics》 2025年第7期288-290,共3页
1. Introduction Celestial navigation is a kind of navigation with a long history.With the increasing demand for intelligent autonomy and antielectromagnetic interference in spacecraft, celestial navigation has become ... 1. Introduction Celestial navigation is a kind of navigation with a long history.With the increasing demand for intelligent autonomy and antielectromagnetic interference in spacecraft, celestial navigation has become one of the current research hotspots in spacecraft autonomous navigation. Spacecraft face complex electromagnetic interference in orbit. The time-varying, non-Gaussian interference from internal devices and external environment can lead to measurement distortion. 展开更多
关键词 celestial navigation spacecraft autonomous navigation autonomous navigation electromagnetic interference measurement distortion intelligent autonomy SPACECRAFT antielectromagnetic interference
原文传递
Multi-type feature fusion visual navigation for asteroid landing
16
作者 Wenbo XIU Shengying ZHU Yanjie LIU 《Chinese Journal of Aeronautics》 2025年第7期529-544,共16页
In order to address the challenges encountered in visual navigation for asteroid landing using traditional point features,such as significant recognition and extraction errors,low computational efficiency,and limited ... In order to address the challenges encountered in visual navigation for asteroid landing using traditional point features,such as significant recognition and extraction errors,low computational efficiency,and limited navigation accuracy,a novel approach for multi-type fusion visual navigation is proposed.This method aims to overcome the limitations of single-type features and enhance navigation accuracy.Analytical criteria for selecting multi-type features are introduced,which simultaneously improve computational efficiency and system navigation accuracy.Concerning pose estimation,both absolute and relative pose estimation methods based on multi-type feature fusion are proposed,and multi-type feature normalization is established,which significantly improves system navigation accuracy and lays the groundwork for flexible application of joint absolute-relative estimation.The feasibility and effectiveness of the proposed method are validated through simulation experiments through 4769 Castalia. 展开更多
关键词 Pose estimation Multi-type feature fusion Feature selection Landmark selection NORMALIZATION Absolute navigation Relative navigation Visual navigation
原文传递
Design and Ground Verification for Vision-Based Relative Navigation Systems of Microsatellites
17
作者 DU Ronghua LIAO Wenhe ZHANG Xiang 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期37-55,共19页
This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification metho... This paper presents the design and ground verification for vision-based relative navigation systems of microsatellites,which offers a comprehensive hardware design solution and a robust experimental verification methodology for practical implementation of vision-based navigation technology on the microsatellite platform.Firstly,a low power consumption,light weight,and high performance vision-based relative navigation optical sensor is designed.Subsequently,a set of ground verification system is designed for the hardware-in-the-loop testing of the vision-based relative navigation systems.Finally,the designed vision-based relative navigation optical sensor and the proposed angles-only navigation algorithms are tested on the ground verification system.The results verify that the optical simulator after geometrical calibration can meet the requirements of the hardware-in-the-loop testing of vision-based relative navigation systems.Based on experimental results,the relative position accuracy of the angles-only navigation filter at terminal time is increased by 25.5%,and the relative speed accuracy is increased by 31.3% compared with those of optical simulator before geometrical calibration. 展开更多
关键词 microsatellites vision-based relative navigation optical simulator ground verification angles-only navigation
在线阅读 下载PDF
Bio-inspired Vision Mapping and Localization Method Based on Reprojection Error Optimization and Asynchronous Kalman Fusion
18
作者 Shijie Zhang Tao Tang +3 位作者 Taogang Hou Yuxuan Huang Xuan Pei Tianmiao Wang 《Chinese Journal of Mechanical Engineering》 2025年第4期266-281,共16页
Bio-inspired visual systems have garnered significant attention in robotics owing to their energy efficiency,rapid dynamic response,and environmental adaptability.Among these,event cameras-bio-inspired sensors that as... Bio-inspired visual systems have garnered significant attention in robotics owing to their energy efficiency,rapid dynamic response,and environmental adaptability.Among these,event cameras-bio-inspired sensors that asynchronously report pixel-level brightness changes called’events’,stand out because of their ability to capture dynamic changes with minimal energy consumption,making them suitable for challenging conditions,such as low light or high-speed motion.However,current mapping and localization methods for event cameras depend primarily on point and line features,which struggle in sparse or low-feature environments and are unsuitable for static or slow-motion scenarios.We addressed these challenges by proposing a bio-inspired vision mapping and localization method using active LED markers(ALMs)combined with reprojection error optimization and asynchronous Kalman fusion.Our approach replaces traditional features with ALMs,thereby enabling accurate tracking under dynamic and low-feature conditions.The global mapping accuracy significantly improved by minimizing the reprojection error,with corner errors reduced from 16.8 cm to 3.1 cm after 400 iterations.The asynchronous Kalman fusion of multiple camera pose estimations from ALMs ensures precise localization with a high temporal efficiency.This method achieved a mean translation error of 0.078 m and a rotational error of 5.411°while evaluating dynamic motion.In addition,the method supported an output rate of 4.5 kHz while maintaining high localization accuracy in UAV spiral flight experiments.These results demonstrate the potential of the proposed approach for real-time robot localization in challenging environments. 展开更多
关键词 bio-inspired vision Event camera Mapping LOCALIZATION
在线阅读 下载PDF
Designing Load-Bearing Bio-Inspired Materials for Simultaneous Static Properties and Dynamic Damping:Multi-Objective Optimization for Micro-Structure
19
作者 Bo Dong Yunfei Jia Wei Wang 《Chinese Journal of Mechanical Engineering》 2025年第2期247-261,共15页
Biological load-bearing materials,like the nacre in shells,have a unique staggered structure that supports their superior mechanical properties.Engineers have been encouraged to imitate it to create load-bearing bio-i... Biological load-bearing materials,like the nacre in shells,have a unique staggered structure that supports their superior mechanical properties.Engineers have been encouraged to imitate it to create load-bearing bio-inspired materials which have excellent properties not present in conventional composites.To create such materials with desirable mechanical properties,the optimum structural parameters combination must be selected.Moreover,the optimal design of bio-inspired composites needs to take into account the trade-offs between various mechanical properties.In this paper,multi-objective optimization models were developed using structural parameters as design variables and mechanical properties as optimization objectives,including stiffness,strength,toughness,and dynamic damping.Using the NSGA-II optimization algorithm,a set of optimal solutions were solved.Additionally,three different structures in natural nacre were introduced in order to utilize the better structure when design bio-inspired materials.The range of optimal solutions that obtained using results from previous research were examined and explained why this collection of optimal solution ranges is better.Also,optimal solutions were compared with the structural features and mechanical properties of real nacre and artificial biomimetic composites to validate our models.Finally,the optimum design strategies can be obtained for nacre-like composites.Our research methodically proposes an optimization method for achieving load-bearing bio-inspired materials with excellent properties and creates a set of optimal solutions from which designers can select the one that best suits their preferences,allowing the fabricated materials to demonstrate preferred performance. 展开更多
关键词 Load-bearing bio-inspired composites Staggered structure Multi-objective optimization
在线阅读 下载PDF
Bio-Inspired Decentralized Model Predictive Flocking Control for UAV Swarm Trajectory Tracking
20
作者 Lanxiang Zheng Ruidong Mei +2 位作者 Mingxin Wei Zhijun Zhao Bingzhi Zou 《Journal of Bionic Engineering》 2025年第5期2660-2677,共18页
Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track pred... Inspired by the collective behaviors observed in bird flocks and fish schools,this paper proposes a novel Decentralized Model Predictive Flocking Control(DMPFC)framework to enable UAV swarms to autonomously track predefined reference trajectories while avoiding collisions and maintaining a stable quasi[Math Processing Error]-lattice formation.Unlike traditional approaches that rely on switching between predefined swarm formations,this framework utilizes identical local interaction rules for each UAV,allowing them to dynamically adjust their control inputs based on the motion states of neighboring UAVs,external environmental factors,and the desired reference trajectory,thereby enabling the swarm to adapt its formation dynamically.Through iterative state updates,the UAVs achieve consensus,allowing the swarm to follow the reference trajectory while self-organizing into a cohesive and stable group structure.To enhance computational efficiency,the framework integrates a closed-form solution for the optimization process,enabling real-time implementation even on computationally constrained micro-quadrotors.Theoretical analysis demonstrates that the proposed method ensures swarm consensus,maintains desired inter-agent distances,and stabilizes the swarm formation.Extensive simulations and real-world experiments validate the approach’s effectiveness and practicality,demonstrating that the proposed method achieves velocity consensus within approximately 200 ms and forms a stable quasi[Math Processing Error]-lattice structure nearly ten times faster than traditional models,with trajectory tracking errors on the order of millimeters.This underscores its potential for robust and efficient UAV swarm coordination in complex scenarios. 展开更多
关键词 bio-inspired UAV swarm Decentralized model predictive flocking control Path tracking
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部