期刊文献+
共找到280,581篇文章
< 1 2 250 >
每页显示 20 50 100
Bio-Inspired Algorithms in NLP Techniques:Challenges,Limitations and Its Applications
1
作者 Huu-Tuong Ho Thi-Thuy-Hoai Nguyen +1 位作者 Duong Nguyen Minh Huy Luong Vuong Nguyen 《Computers, Materials & Continua》 2025年第6期3945-3973,共29页
Natural Language Processing(NLP)has become essential in text classification,sentiment analysis,machine translation,and speech recognition applications.As these tasks become complex,traditionalmachine learning and deep... Natural Language Processing(NLP)has become essential in text classification,sentiment analysis,machine translation,and speech recognition applications.As these tasks become complex,traditionalmachine learning and deep learning models encounter challenges with optimization,parameter tuning,and handling large-scale,highdimensional data.Bio-inspired algorithms,which mimic natural processes,offer robust optimization capabilities that can enhance NLP performance by improving feature selection,optimizing model parameters,and integrating adaptive learning mechanisms.This review explores the state-of-the-art applications of bio-inspired algorithms—such as Genetic Algorithms(GA),Particle Swarm Optimization(PSO),and Ant Colony Optimization(ACO)—across core NLP tasks.We analyze their comparative advantages,discuss their integration with neural network models,and address computational and scalability limitations.Through a synthesis of existing research,this paper highlights the unique strengths and current challenges of bio-inspired approaches in NLP,offering insights into hybrid models and lightweight,resource-efficient adaptations for real-time processing.Finally,we outline future research directions that emphasize the development of scalable,effective bio-inspired methods adaptable to evolving data environments. 展开更多
关键词 Natural language processing bio-inspired genetic algorithms ant colony optimization particle swarm optimization
在线阅读 下载PDF
Artificial Circulation System Algorithm:A Novel Bio-Inspired Algorithm
2
作者 NerminÖzcan Semih Utku Tolga Berber 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期635-663,共29页
Metaheuristics are commonly used in various fields,including real-life problem-solving and engineering applications.The present work introduces a novel metaheuristic algorithm named the Artificial Circulatory System A... Metaheuristics are commonly used in various fields,including real-life problem-solving and engineering applications.The present work introduces a novel metaheuristic algorithm named the Artificial Circulatory System Algorithm(ACSA).The control of the circulatory system inspires it and mimics the behavior of hormonal and neural regulators involved in this process.The work initially evaluates the effectiveness of the suggested approach on 16 two-dimensional test functions,identified as classical benchmark functions.The method was subsequently examined by application to 12 CEC 2022 benchmark problems of different complexities.Furthermore,the paper evaluates ACSA in comparison to 64 metaheuristic methods that are derived from different approaches,including evolutionary,human,physics,and swarm-based.Subsequently,a sequence of statistical tests was undertaken to examine the superiority of the suggested algorithm in comparison to the 7 most widely used algorithms in the existing literature.The results show that the ACSA strategy can quickly reach the global optimum,avoid getting trapped in local optima,and effectively maintain a balance between exploration and exploitation.ACSA outperformed 42 algorithms statistically,according to post-hoc tests.It also outperformed 9 algorithms quantitatively.The study concludes that ACSA offers competitive solutions in comparison to popüler methods. 展开更多
关键词 bio-inspired EVOLUTIONARY HEURISTIC METAHEURISTIC OPTIMIZATION
在线阅读 下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
3
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
在线阅读 下载PDF
Multi-objective optimal design for flexible bio-inspired meta-structure with ultra-broadband microwave absorption and thin thickness 被引量:1
4
作者 Mengfei FENG Shenyao LIU +5 位作者 Hui CHENG Kaifu ZHANG Yuan LI Guanjie YU Bo LIU Biao LIANG 《Chinese Journal of Aeronautics》 2025年第3期151-162,共12页
There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and grea... There is an urgent need for the application of broadband Microwave Absorption(MA)structures on the leading edges of aircraft wings,which requires the MA structures to possess both the broadband MA performance and great surface conformability.To meet these requirements,we designed and fabricated a flexible bioinspired meta-structure with ultra-broadband MA,thin thickness and excellent surface conformality.The carbonyl iron powder-carbon nanotubes-polydimethylsiloxane composite was synthesized by physical blending method for fabricating the MA meta-structure.Through geometry-electromagnetic optimal design by heuristic optimization algorithm,the meta-structure mimicking to the nipple photonic nanostructures on the eyes of moth can achieve ultra-broadband MA performance of 35.14 GHz MA bandwidth(reflection loss≤–10 dB),covering 4.86–40.00 GHz,with thickness of only 4.3 mm.Through simple fabrication processes,the meta-structure has been successfully fabricated and bonded on wings’leading edges,exhibiting excellent surface conformability.Furthermore,the designed flexible MA meta-structure possesses significant Radar Cross-Section(RCS)reduction capability,as demonstrated by the RCS analysis of an unmanned aerial vehicle.This flexible ultra-broadband MA meta-structure provides an outstanding candidate to meet the radar stealth requirement of variable curvature structures on aircraft. 展开更多
关键词 Broadband microwave absorption Surface conformability Flexible meta-structure bio-inspired Electromagnetic Radar cross section
原文传递
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
5
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Moment analysis of bio-inspired stochastic energy harvesters under wind conditions
6
作者 WANG Kang-Ning HUANG Dong-Mei HAN Jia-Le 《四川大学学报(自然科学版)》 北大核心 2025年第1期246-256,共11页
To further understand the performance of the energy harvesters under the influence of the wind force and the random excitation,this paper investigates the stochastic response of the bio-inspired energy harvesters subj... To further understand the performance of the energy harvesters under the influence of the wind force and the random excitation,this paper investigates the stochastic response of the bio-inspired energy harvesters subjected to Gaussian white noise and galloping excitation,simulating the flapping pattern of a seagull and its interaction with wind force.The equivalent linearization method is utilized to convert the original nonlinear model into the Itôstochastic differential equation by minimizing the mean squared error.Then,the second-order steady-state moments about the displacement,velocity,and voltage are derived by combining the moment analysis theory.The theoretical results are simulated numerically to analyze the stochastic response performance under different noise intensities,wind speeds,stiffness coefficients,and electromechanical coupling coefficients,time domain analysis is also conducted to study the performance of the harvester with different parameters.The results reveal that the mean square displacement and voltage increase with increasing the noise intensity and wind speed,larger absolute values of stiffness coefficient correspond to smaller mean square displacement and voltage,and larger electromechanical coupling coefficients can enhance the mean square voltage.Finally,the influence of wind speed and electromechanical coupling coefficient on the stationary probability density function(SPDF)is investigated,revealing the existence of a bimodal distribution under varying environmental conditions. 展开更多
关键词 bio-inspired energy harvesters Gaussian white noise Equivalent linearization method Steadystate moment
在线阅读 下载PDF
Designing Load-Bearing Bio-Inspired Materials for Simultaneous Static Properties and Dynamic Damping:Multi-Objective Optimization for Micro-Structure
7
作者 Bo Dong Yunfei Jia Wei Wang 《Chinese Journal of Mechanical Engineering》 2025年第2期247-261,共15页
Biological load-bearing materials,like the nacre in shells,have a unique staggered structure that supports their superior mechanical properties.Engineers have been encouraged to imitate it to create load-bearing bio-i... Biological load-bearing materials,like the nacre in shells,have a unique staggered structure that supports their superior mechanical properties.Engineers have been encouraged to imitate it to create load-bearing bio-inspired materials which have excellent properties not present in conventional composites.To create such materials with desirable mechanical properties,the optimum structural parameters combination must be selected.Moreover,the optimal design of bio-inspired composites needs to take into account the trade-offs between various mechanical properties.In this paper,multi-objective optimization models were developed using structural parameters as design variables and mechanical properties as optimization objectives,including stiffness,strength,toughness,and dynamic damping.Using the NSGA-II optimization algorithm,a set of optimal solutions were solved.Additionally,three different structures in natural nacre were introduced in order to utilize the better structure when design bio-inspired materials.The range of optimal solutions that obtained using results from previous research were examined and explained why this collection of optimal solution ranges is better.Also,optimal solutions were compared with the structural features and mechanical properties of real nacre and artificial biomimetic composites to validate our models.Finally,the optimum design strategies can be obtained for nacre-like composites.Our research methodically proposes an optimization method for achieving load-bearing bio-inspired materials with excellent properties and creates a set of optimal solutions from which designers can select the one that best suits their preferences,allowing the fabricated materials to demonstrate preferred performance. 展开更多
关键词 Load-bearing bio-inspired composites Staggered structure Multi-objective optimization
在线阅读 下载PDF
Modeling and Layout Optimization of Bio-inspired Swarm Vigilance Tasks
8
作者 Ruyi ZHENG Zhenxin MU +3 位作者 Shihan KONG Yingnan LI Fang WU Junzhi YU 《Artificial Intelligence Science and Engineering》 2025年第3期229-238,共10页
This paper considers the swarm vigilance problem for multi-agent systems(MAS),where multiple agents are deployed within a rectangular region for perception-based vigilance.There are two main challenges,namely the task... This paper considers the swarm vigilance problem for multi-agent systems(MAS),where multiple agents are deployed within a rectangular region for perception-based vigilance.There are two main challenges,namely the task allocation for vigilance roles and the coverage planning of the perception ranges.Firstly,vigilance behavioral patterns and processes in animal populations within natural habitats are investigated.Inspired by these biological vigilance behaviors,an efficient vigilance task allocation model for MAS is proposed.Secondly,the subsequent optimization of task layouts can achieve efficient surveillance coverage with fewer agents,minimizing resource consumption.Thirdly,an improved particle swarm optimization(IPSO)algorithm is proposed,which incorporates fitness-driven adaptive inertia weight dynamics.According to simulation analysis and comparative studies,optimal parameter configurations for genetic algorithm(GA)and IPSO are determined.Finally,the results indicate the proposed IPSO's superior performance to both GA and standard particle swarm optimization(PSO)in vigilance task allocation optimization,with satisfying advantages in computational efficiency and solution quality. 展开更多
关键词 multi-agent systems swarm vigilance task optimization bio-inspired control particle swarm optimization
在线阅读 下载PDF
Numbering and Generating Quantum Algorithms
9
作者 Mohamed A. El-Dosuky 《Journal of Computer and Communications》 2025年第2期126-141,共16页
Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct ap... Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct approach to algorithm design, which involves taming quantum mechanical phenomena. This paper extends the numbering of computable programs to be applied in the quantum computing context. Numbering computable programs is a theoretical computer science concept that assigns unique numbers to individual programs or algorithms. Common methods include Gödel numbering which encodes programs as strings of symbols or characters, often used in formal systems and mathematical logic. Based on the proposed numbering approach, this paper presents a mechanism to explore the set of possible quantum algorithms. The proposed approach is able to construct useful circuits such as Quantum Key Distribution BB84 protocol, which enables sender and receiver to establish a secure cryptographic key via a quantum channel. The proposed approach facilitates the process of exploring and constructing quantum algorithms. 展开更多
关键词 Quantum algorithms Numbering Computable Programs Quantum Key Distribution
在线阅读 下载PDF
IntuiGrasp:Bio-inspired Dexterous Hand with Intuitive Teaching
10
作者 Yihao ZHOU Haohui HUANG +1 位作者 Chenguang YANG Wenjun YE 《Artificial Intelligence Science and Engineering》 2025年第3期220-228,共9页
IntuiGrasp is a novel three-fingered dexterous hand that pioneers bio-inspired demonstrations with intuitive priors(BDIP)to bridge the gap between human tactile intuition and robotic execution.Unlike conven-tional pro... IntuiGrasp is a novel three-fingered dexterous hand that pioneers bio-inspired demonstrations with intuitive priors(BDIP)to bridge the gap between human tactile intuition and robotic execution.Unlike conven-tional programming,BDIP leverages human's innate priors(e.g.,“A pack of tissues requires gentle grasps,cups demand firm contact”)by enabling real-time transfer of gesture and force policies during physical demon-stration.When a human demonstrator wears IntuiGrasp,driven rings provide real-time haptic feedback on contact stress and slip,while inte-grated tactile sensors translate these human policies into image data,offering valuable data for imitation learning.In this study,human teachers use IntuiGrasp to demonstrate how to grasp three types of objects:a cup,a crumpled tissue pack,and a thin playing card.IntuiGrasp translates the policies for grasping these objects into image information that describes tactile sensations in real time. 展开更多
关键词 bio-inspired dexterous hand haptic demonstration imitation learning intuitive priors tactile-visual fusion
在线阅读 下载PDF
Comparative analysis of GA and PSO algorithms for optimal cost management in on-grid microgrid energy systems with PV-battery integration
11
作者 Mouna EL-Qasery Ahmed Abbou +2 位作者 Mohamed Laamim Lahoucine Id-Khajine Abdelilah Rochd 《Global Energy Interconnection》 2025年第4期572-580,共9页
The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is crit... The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is critical for effective energy management,particularly in economic dispatching.This study compares the performance of Particle Swarm Optimization(PSO)and Genetic Algorithms(GA)in microgrid energy management systems,implemented using MATLAB tools.Through a comprehensive review of the literature and sim-ulations conducted in MATLAB,the study analyzes performance metrics,convergence speed,and the overall efficacy of GA and PSO,with a focus on economic dispatching tasks.Notably,a significant distinction emerges between the cost curves generated by the two algo-rithms for microgrid operation,with the PSO algorithm consistently resulting in lower costs due to its effective economic dispatching capabilities.Specifically,the utilization of the PSO approach could potentially lead to substantial savings on the power bill,amounting to approximately$15.30 in this evaluation.Thefindings provide insights into the strengths and limitations of each algorithm within the complex dynamics of grid-tied microgrids,thereby assisting stakeholders and researchers in arriving at informed decisions.This study contributes to the discourse on sustainable energy management by offering actionable guidance for the advancement of grid-tied micro-grid technologies through MATLAB-implemented optimization algorithms. 展开更多
关键词 MICROGRID EMS GA algorithm PSO algorithm Cost optimization Economic dispatch
在线阅读 下载PDF
Interface Shear Behavior Between Bio-Inspired Sidewall of a Scaled Suction Caisson and Sand Under Pull-out Load
12
作者 LI Da-yong LIANG Hao +1 位作者 ZHAO Ji-peng ZHANG Yu-kun 《China Ocean Engineering》 2025年第4期708-717,共10页
The scaled suction caisson repre sents an innovative design featuring a bio-inspired sidewall modeled after snake skin,commonly utilized in offshore mooring platforms.In comparison with traditional suction caissons,th... The scaled suction caisson repre sents an innovative design featuring a bio-inspired sidewall modeled after snake skin,commonly utilized in offshore mooring platforms.In comparison with traditional suction caissons,this bio-inspired design demonstrates reduced penetration resistance and enhanced pull-out capacity due to the anisotropic shear behaviors of its sidewall.To investigate the shear behavior of the bio-inspired sidewall under pull-out load,direct shear tests were conducted between the bio-inspired surface and sand.The research demonstrates that the interface shear strength of the bio-inspired surface significantly surpasses that of the smooth surface due to interlocking effects.Additionally,the interface shear strength correlates with the aspect ratio of the bio-inspired surface,shear angle,and particle diameter distribution,with values increasing as the uniformity coefficient Cudecreases,while initially increasing and subsequently decreasing with increases in both aspect ratio and shear angle.The ratio between the interface friction angleδand internal friction angle δ_(s) defines the interface effect factor k.For the bio-inspired surface,the interface effect factor k varies with shear angleβ,ranging from 0.9 to 1.12.The peak value occurs at a shear angleβof 60°,substantially exceeding that of the smooth surface.A method for calculating the relative roughness R_(N) is employed to evaluate the interface roughness of the bio-inspired surface,taking into account scale dimension and particle diameter distribution effects. 展开更多
关键词 scaled suction caisson interface shear test shear strength interface friction angle bio-inspired surface pull-out load
在线阅读 下载PDF
BioSkinNet: A Bio-Inspired Feature-Selection Framework for Skin Lesion Classification
13
作者 Tallha Akram Fahdah Almarshad +1 位作者 Anas Alsuhaibani Syed Rameez Naqvi 《Computer Modeling in Engineering & Sciences》 2025年第5期2333-2359,共27页
Melanoma is the deadliest form of skin cancer,with an increasing incidence over recent years.Over the past decade,researchers have recognized the potential of computer vision algorithms to aid in the early diagnosis o... Melanoma is the deadliest form of skin cancer,with an increasing incidence over recent years.Over the past decade,researchers have recognized the potential of computer vision algorithms to aid in the early diagnosis of melanoma.As a result,a number of works have been dedicated to developing efficient machine learning models for its accurate classification;still,there remains a large window for improvement necessitating further research efforts.Limitations of the existing methods include lower accuracy and high computational complexity,which may be addressed by identifying and selecting the most discriminative features to improve classification accuracy.In this work,we apply transfer learning to a Nasnet-Mobile CNN model to extract deep features and augment it with a novel nature-inspired feature selection algorithm called Mutated Binary Artificial Bee Colony.The selected features are fed to multiple classifiers for final classification.We use PH2,ISIC-2016,and HAM10000 datasets for experimentation,supported by Monte Carlo simulations for thoroughly evaluating the proposed feature selection mechanism.We carry out a detailed comparison with various benchmark works in terms of convergence rate,accuracy histogram,and reduction percentage histogram,where our method reports 99.15%(2-class)and 97.5%(3-class)accuracy on the PH^(2) dataset,while 96.12%and 94.1%accuracy for the other two datasets,respectively,against minimal features. 展开更多
关键词 Skin lesion classification CNN transfer learning artificial bee colony entropy-controlled bio-inspired computer-aided diangosis(CAD)
在线阅读 下载PDF
A comprehensive investigation on nonlinear vibration and bending characteristics of bio-inspired helicoidal laminated composite structures
14
作者 S.SAURABH R.KIRAN +2 位作者 D.SINGH R.VAISH V.S.CHAUHAN 《Applied Mathematics and Mechanics(English Edition)》 2025年第1期81-100,共20页
Bio-inspired helicoidal composite laminates,inspired by the intricate helical structures found in nature,present a promising frontier for enhancing the mechanical properties of structural designs.Hence,this study prov... Bio-inspired helicoidal composite laminates,inspired by the intricate helical structures found in nature,present a promising frontier for enhancing the mechanical properties of structural designs.Hence,this study provides a comprehensive investigation into the nonlinear free vibration and nonlinear bending behavior of bio-inspired composite plates.The inverse hyperbolic shear deformation theory(IHSDT)of plates is employed to characterize the displacement field,with the incorporation of Green-Lagrange nonlinearity.The problem is modeled using the C0finite element method(FEM),and an in-house code is developed in the MATLAB environment to solve it numerically.Various helicoidal layup configurations including helicoidal recursive(HR),helicoidal exponential(HE),helicoidal semi-circular(HS),linear helicoidal(LH),and Fibonacci helicoidal(FH)with different layup sequences and quasi-isotropic configurations are studied.The model is validated,and parametric studies are conducted.These studies investigate the effects of layup configurations,side-to-thickness ratio,modulus ratios,boundary conditions,and loading conditions at different load amplitudes on the nonlinear vibration and nonlinear bending behaviors of bio-inspired composite plates.The results show that the laminate sequence exerts a substantial impact on both nonlinear natural frequencies and nonlinear bending behaviors.Moreover,this influence varies across different side-to-thickness ratios and boundary conditions of the bio-inspired composite plate. 展开更多
关键词 finite element method(FEM) nonlinear Green-Lagrange inverse hyperbolic shear deformation theory(IHSDT) bio-inspired composite plate helicoidal
在线阅读 下载PDF
Research on three-dimensional attack area based on improved backtracking and ALPS-GP algorithms of air-to-air missile
15
作者 ZHANG Haodi WANG Yuhui HE Jiale 《Journal of Systems Engineering and Electronics》 2025年第1期292-310,共19页
In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of t... In the field of calculating the attack area of air-to-air missiles in modern air combat scenarios,the limitations of existing research,including real-time calculation,accuracy efficiency trade-off,and the absence of the three-dimensional attack area model,restrict their practical applications.To address these issues,an improved backtracking algorithm is proposed to improve calculation efficiency.A significant reduction in solution time and maintenance of accuracy in the three-dimensional attack area are achieved by using the proposed algorithm.Furthermore,the age-layered population structure genetic programming(ALPS-GP)algorithm is introduced to determine an analytical polynomial model of the three-dimensional attack area,considering real-time requirements.The accuracy of the polynomial model is enhanced through the coefficient correction using an improved gradient descent algorithm.The study reveals a remarkable combination of high accuracy and efficient real-time computation,with a mean error of 91.89 m using the analytical polynomial model of the three-dimensional attack area solved in just 10^(-4)s,thus meeting the requirements of real-time combat scenarios. 展开更多
关键词 air combat three-dimensional attack area improved backtracking algorithm age-layered population structure genetic programming(ALPS-GP) gradient descent algorithm
在线阅读 下载PDF
Hybrid Framework for Structural Analysis: Integrating Topology Optimization, Adjacent Element Temperature-Driven Pre-Stress, and Greedy Algorithms
16
作者 Ibrahim T.Teke Ahmet H.Ertas 《Computers, Materials & Continua》 2025年第7期243-264,共22页
This study presents a novel hybrid topology optimization and mold design framework that integrates process fitting,runner system optimization,and structural analysis to significantly enhance the performance of injecti... This study presents a novel hybrid topology optimization and mold design framework that integrates process fitting,runner system optimization,and structural analysis to significantly enhance the performance of injection-molded parts.At its core,the framework employs a greedy algorithm that generates runner systems based on adjacency and shortest path principles,leading to improvements in both mechanical strength and material efficiency.The design optimization is validated through a series of rigorous experimental tests,including three-point bending and torsion tests performed on key-socket frames,ensuring that the optimized designs meet practical performance requirements.A critical innovation of the framework is the development of the Adjacent Element Temperature-Driven Prestress Algorithm(AETDPA),which refines the prediction of mechanical failure and strength fitting.This algorithm has been shown to deliver mesh-independent accuracy,thereby enhancing the reliability of simulation results across various design iterations.The framework’s adaptability is further demonstrated by its ability to adjust optimization methods based on the unique geometry of each part,thus accelerating the overall design process while ensuring struc-tural integrity.In addition to its immediate applications in injection molding,the study explores the potential extension of this framework to metal additive manufacturing,opening new avenues for its use in advanced manufacturing technologies.Numerical simulations,including finite element analysis,support the experimental findings and confirm that the optimized designs provide a balanced combination of strength,durability,and efficiency.Furthermore,the integration challenges with existing injection molding practices are addressed,underscoring the framework’s scalability and industrial relevance.Overall,this hybrid topology optimization framework offers a computationally efficient and robust solution for advanced manufacturing applications,promising significant improvements in design efficiency,cost-effectiveness,and product performance.Future work will focus on further enhancing algorithm robustness and exploring additional applications across diverse manufacturing processes. 展开更多
关键词 Plastic injection molding 3D printing three-point bending tensile test adjacent element temperature-driven pre-stress algorithm D-S-ER S-D-S-ER thermal expansion greedy algorithm
在线阅读 下载PDF
Boosting algorithms for predicting end-point temperature in BOF steelmaking using big industrial datasets
17
作者 Jian-bo Zhang Maryam Khaksar Ghalati +3 位作者 Jun Fu Xiao-an Yang G.M.A.M.El-Fallah Hong-biao Dong 《Journal of Iron and Steel Research International》 2025年第7期1856-1868,共13页
The application of machine learning was investigated for predicting end-point temperature in the basic oxygen furnace steelmaking process,addressing gaps in the field,particularly large-scale dataset sizes and the und... The application of machine learning was investigated for predicting end-point temperature in the basic oxygen furnace steelmaking process,addressing gaps in the field,particularly large-scale dataset sizes and the underutilization of boosting algorithms.Utilizing a substantial dataset containing over 20,000 heats,significantly bigger than those in previous studies,a comprehensive evaluation of five advanced machine learning models was conducted.These include four ensemble learning algorithms:XGBoost,LightGBM,CatBoost(three boosting algorithms),along with random forest(a bagging algorithm),as well as a neural network model,namely the multilayer perceptron.Our comparative analysis reveals that Bayesian-optimized boosting models demonstrate exceptional robustness and accuracy,achieving the highest R-squared values,the lowest root mean square error,and lowest mean absolute error,along with the best hit ratio.CatBoost exhibited superior performance,with its test R-squared improving by 4.2%compared to that of the random forest and by 0.8%compared to that of the multilayer perceptron.This highlights the efficacy of boosting algorithms in refining complex industrial processes.Additionally,our investigation into the impact of varying dataset sizes,ranging from 500 to 20,000 heats,on model accuracy underscores the importance of leveraging larger-scale datasets to improve the accuracy and stability of predictive models. 展开更多
关键词 STEELMAKING Basic oxygen furnace Machine learning-Boosting algorithm
原文传递
Adaptive Time Synchronization in Time Sensitive-Wireless Sensor Networks Based on Stochastic Gradient Algorithms Framework
18
作者 Ramadan Abdul-Rashid Mohd Amiruddin Abd Rahman +1 位作者 Kar Tim Chan Arun Kumar Sangaiah 《Computer Modeling in Engineering & Sciences》 2025年第3期2585-2616,共32页
This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different... This study proposes a novel time-synchronization protocol inspired by stochastic gradient algorithms.The clock model of each network node in this synchronizer is configured as a generic adaptive filter where different stochastic gradient algorithms can be adopted for adaptive clock frequency adjustments.The study analyzes the pairwise synchronization behavior of the protocol and proves the generalized convergence of the synchronization error and clock frequency.A novel closed-form expression is also derived for a generalized asymptotic error variance steady state.Steady and convergence analyses are then presented for the synchronization,with frequency adaptations done using least mean square(LMS),the Newton search,the gradient descent(GraDes),the normalized LMS(N-LMS),and the Sign-Data LMS algorithms.Results obtained from real-time experiments showed a better performance of our protocols as compared to the Average Proportional-Integral Synchronization Protocol(AvgPISync)regarding the impact of quantization error on synchronization accuracy,precision,and convergence time.This generalized approach to time synchronization allows flexibility in selecting a suitable protocol for different wireless sensor network applications. 展开更多
关键词 Wireless sensor network time synchronization stochastic gradient algorithm MULTI-HOP
在线阅读 下载PDF
Many-objective evolutionary algorithms based on reference-point-selection strategy for application in reactor radiation-shielding design
19
作者 Cheng-Wei Liu Ai-Kou Sun +4 位作者 Ji-Chong Lei Hong-Yu Qu Chao Yang Tao Yu Zhen-Ping Chen 《Nuclear Science and Techniques》 2025年第6期201-215,共15页
In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding struct... In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding structures typically need to be lightweight,miniaturized,and radiation-protected,which is a multi-parameter and multi-objective optimization problem.The conventional multi-objective(two or three objectives)optimization method for radiation-shielding design exhibits limitations for a number of optimization objectives and variable parameters,as well as a deficiency in achieving a global optimal solution,thereby failing to meet the requirements of shielding optimization for newly developed reactors.In this study,genetic and artificial bee-colony algorithms are combined with a reference-point-selection strategy and applied to the many-objective(having four or more objectives)optimal design of reactor radiation shielding.To validate the reliability of the methods,an optimization simulation is conducted on three-dimensional shielding structures and another complicated shielding-optimization problem.The numerical results demonstrate that the proposed algorithms outperform conventional shielding-design methods in terms of optimization performance,and they exhibit their reliability in practical engineering problems.The many-objective optimization algorithms developed in this study are proven to efficiently and consistently search for Pareto-front shielding schemes.Therefore,the algorithms proposed in this study offer novel insights into improving the shielding-design performance and shielding quality of new reactor types. 展开更多
关键词 Many-objective optimization problem Evolutionary algorithm Radiation-shielding design Reference-point-selection strategy
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部