期刊文献+
共找到75,751篇文章
< 1 2 250 >
每页显示 20 50 100
Free-standing membranes based on 2D materials for selective separation
1
作者 Huiwen Feng Han Xiang +3 位作者 Haowen Li Yonggang Li Jun Ma Xiao Sui 《Nano Research》 2026年第1期1222-1248,共27页
Two-dimensional(2D)materials show great potential as novel membrane materials due to their atomic thickness and periodic pore structure.Currently,free-standing membranes based on 2D materials open up new avenues for u... Two-dimensional(2D)materials show great potential as novel membrane materials due to their atomic thickness and periodic pore structure.Currently,free-standing membranes based on 2D materials open up new avenues for ultra-fast and highly selective separation.With the absence of porous substrates,free-standing membranes offer shortened transport paths for efficient mass transfer.The interfacial defects between the substrate and selective layer are eliminated to alleviate the internal membrane fouling,enabling the intact structure for precise separation.Hence,this review aims to outline the superiority of 2D material-based free-standing membranes for selective separation applications.Free-standing 2D material membranes composed of the most representative graphenebased materials,MXene,covalent organic framework(COF),metal organic framework(MOF),and hydrogen-bonded organic framework(HOF)are summarized with the discussion on the influence of substrate on their structural properties.The separation performance enhancement strategies in regard to the 2D material,membrane structure,and mechanical properties are examined.Finally,we propose several critical challenges and perspectives in terms of pore size control,mechanical strength improvement,understanding the underlying mass transfer mechanism,issues related to membrane fabrication optimization,scale production,and separation application versatility.This review will provide researchers with practical guidelines for advancing free-standing 2D material membranes for future selective separation applications. 展开更多
关键词 two-dimensional(2D)materials free-standing membrane membrane structure membrane separation membrane fabrication
原文传递
Cactus Thorn‑Inspired Janus Nanofiber Membranes as a Water Diode for Light‑Enhanced Diabetic Wound Healing
2
作者 Mei Wen Nuo Yu +6 位作者 Xiaojing Zhang Wenjing Zhao Pu Qiu Wei Feng Zhigang Chen Yu Chen Meifang Zhu 《Nano-Micro Letters》 2026年第3期757-772,共16页
Diabetic wounds present challenges in clinical management due to persistent inflammation caused by excessive exudate infiltration.Inspired by the gradient wettability of cactus thorn,this study has devised a biomimeti... Diabetic wounds present challenges in clinical management due to persistent inflammation caused by excessive exudate infiltration.Inspired by the gradient wettability of cactus thorn,this study has devised a biomimetic Janus nanofiber membrane as a water diode,which endows with gradient wettability and gradient pore size,offering sustainable unidirectional self-drainage and antibacterial properties for enhanced diabetic wound healing.The Janus membrane is fabricated by depositing a hydrophilic polyacrylonitrile/chlorin e6 layer with smaller pore sizes onto a hydrophobic poly(ε-caprolactone)with larger pore sizes,thereby generating a vertical gradient in both wettability and pore structure.The incorporation of chlorin e6 in the upper layer enables the utilization of external light energy to generate heat for evaporation and produce reactive oxygen species,achieving a high sterilization efficiency of 99%.Meanwhile,the gradient structure of the Janus membrane facilitates continuous antigravity exudate drainage at a rate of 0.95 g cm^(−2) h^(−1).This dual functionality of effective exudate drainage and sterilization significantly reduces inflammatory factors,allows the polarization of macrophages toward the M2 proliferative phenotype,enhances angiogenesis,and accelerates wound healing.Therefore,this study provides a groundbreaking bioinspired strategy for the development of advanced wound dressings tailored for diabetic wound regeneration. 展开更多
关键词 Janus membranes BIOMIMETIC Diabetic wound Self-drainage
在线阅读 下载PDF
Synergistic“melee attack”:Interfacial band-engineered lamellar heterojunction overcome membrane barriers for enhanced antibacterial therapy
3
作者 Ping Zhang Xueling Chang +13 位作者 Chenxi Dai Zixuan Wang Yuecong Guo Shuhan Zhang Ziwei Chen Yong Guan Zheng Dang Chengcheng Lin Peng Chen Dongsheng Zhou Yurui Gao Chunying Chen Yanyan Cui Yaling Wang 《Nano Research》 2026年第1期916-937,共22页
Drug-resistant bacteria,using their dense cell membranes as strong barrier,significantly reduce the efficacy of conventional antibacterial treatments.Phototriggered 2D catalytic nanomaterials have emerged as promising... Drug-resistant bacteria,using their dense cell membranes as strong barrier,significantly reduce the efficacy of conventional antibacterial treatments.Phototriggered 2D catalytic nanomaterials have emerged as promising candidates against drug-resistant bacteria by inducing membrane mechanical damage and generating reactive oxygen species(ROS).However,the practical antibacterial efficacy of typical 2D graphitic carbon nitride(g-C_(3)N_(4))is severely limited due to the low ROS production.Herein,we report an interfacial band-engineered lamellar heterojunctions(MnCN LHJs)through in situ Mn_(2)O_(3)growth on g-C_(3)N_(4).The charges generated in g-C_(3)N_(4)are stabilized by Mn_(2)O_(3),minimizing electron-hole recombination and boosting ROS production.Meanwhile,the photocatalytic effect of MnCN LHJs works synergistically with photothermal effects of Mn_(2)O_(3)to induce a robust“melee attack”against drug-resistant bacteria.High-resolution synchrotron radiation X-ray tomography directly visualized that MnCN LHJs possessed bacterial trapping capabilities,revealing their ability to induce mechanical damage to bacteria membrane for the first time.Additionally,MnCN LHJs can deplete endogenous glutathione,thereby enhancing ROS generation and weakening the bacterial antioxidant defense system.These combined effects achieve a remarkable bactericidal rate exceeding 98% against methicillin-resistant Staphylococcus aureus(MRSA).Notably,MnCN LHJs demonstrate prolonged retention at wound sites,helping to reduce inflammation and promote angiogenesis in infected wounds.This work not only advances interfacial band engineering approach to enhance the photocatalytic performance of g-C_(3)N_(4)but also underscores the significance of nanomaterial-bacteria interaction in design of next-generation antibacterial materials. 展开更多
关键词 lamellar heterojunction reactive oxygen species photocatalytic/photothermal antibacteria membrane interaction wound regeneration
原文传递
Advancing layered double hydroxides (LDHs) as the anodes for efficient anion-exchange-membrane water electrolyzers
4
作者 Dan Pan Tingting Zhai +3 位作者 Ran Zhang Yongjuan Yuan Hao Wang Siyu Lu 《Nano Research》 2026年第1期115-139,共25页
The transition to sustainable energy systems necessitates efficient hydrogen production via water electrolysis,with anion-exchange membrane water electrolyzers(AEMWEs)emerging as a cost-effective alternative by combin... The transition to sustainable energy systems necessitates efficient hydrogen production via water electrolysis,with anion-exchange membrane water electrolyzers(AEMWEs)emerging as a cost-effective alternative by combining the merits of alkaline water electrolyzers(AWEs)and proton-exchange membrane water electrolyzers(PEMWEs).However,challenges persist in membrane stability,oxygen evolution reaction(OER)kinetics,and mass transport efficiency.This review highlights the pivotal role of transition metal-based layered double hydroxides(LDHs)as high-performance,non-precious OER catalysts for AEMWEs,emphasizing their tunable electronic structures,abundant active sites,and alkaline stability.We systematically outline LDHs synthesis strategies(top-down/bottom-up approaches,and self-supporting LDHs engineering on the conductive substrates),and AEMWE component design,including membraneelectrode assembly optimization and ionomer-free architectures.Standardized evaluation protocols-short-circuit inspection,impedance spectroscopy,and durability assessment are detailed to benchmark performance.Moreover,recent advances in LDHs modification(cation/anion doping,heterojunction design,three-dimensional(3D)electrode structuring)are discussed for alkaline-fed systems,alongside emerging applications in seawater and pure-water electrolysis.By correlating material innovations with device-level metrics,this work provides a roadmap to address scalability challenges,offering perspectives on advancing AEMWEs for sustainable,large-scale hydrogen production. 展开更多
关键词 anion-exchange-membrane water electrolyzers layered double hydroxides anode construction feedstock solution membrane electrode assembly
原文传递
Insights into risk factors and interactive effects on epiretinal membrane development from the National Health and Nutrition Examination Survey
5
作者 Xiao-Juan Lai Mei-Xia Zhang 《International Journal of Ophthalmology(English edition)》 2026年第2期362-369,共8页
AIM:To assess risk factors for epiretinal membranes(ERM)and examine their interactions in a nationally representative U.S.dataset.METHODS:Data from the 2005–2008 National Health and Nutrition Examination Survey(NHANE... AIM:To assess risk factors for epiretinal membranes(ERM)and examine their interactions in a nationally representative U.S.dataset.METHODS:Data from the 2005–2008 National Health and Nutrition Examination Survey(NHANES)were analyzed,a nationally representative U.S.dataset.ERM was identified via retinal imaging based on the presence of cellophane changes.Key predictors included age group,eye surgery history,and refractive error,with additional demographic and health-related covariates.Weighted univariate and multiple logistic regression models were used to assess associations and interaction effects between eye surgery and refractive error.RESULTS:Totally 3925 participants were analyzed.Older age,eye surgery,and refractive errors were significantly associated with ERM.Compared to those under 65y,the odds ratio(OR)for ERM was 3.08 for ages 65–75y(P=0.0014)and 4.76 for ages 75+years(P=0.0069).Eye surgery increased ERM risk(OR=3.48,P=0.0018).Moderate to high hyperopia and myopia were also associated with ERM(OR=2.65 and 1.80,respectively).A significant interaction between refractive error and eye surgery was observed(P<0.0001).Moderate to high myopia was associated with ERM only in those without eye surgery(OR=1.92,P=0.0443).Eye surgery was most strongly associated with ERM in the emmetropic group(OR=3.60,P=0.0027),followed by the moderate to high myopia group(OR=3.01,P=0.0031).CONCLUSION:ERM is significantly associated with aging,eye surgery,and refractive errors.The interaction between eye surgery and refractive error modifies ERM risk and highlights the importance of considering combined effects in clinical risk assessments.These findings may help guide individualized ERM risk assessment that may inform personalized approaches to ERM prevention and management. 展开更多
关键词 epiretinal membranes National Health and Nutrition Examination Survey logistic regression models risk factors
原文传递
Biomembrane nanostructure-driven potentiation of bacterial protein vaccines:Mechanisms,platforms,and immunotherapeutic advances
6
作者 Yuan-Yuan Chen Hui-Fen Qiang +2 位作者 Jie Gao Ting-Lin Zhang Yan Wu 《Infectious Diseases Research》 2026年第1期13-22,共10页
The global burden of bacterial infections,exacerbated by antimicrobial resistance(AMR),necessitates innovative strategies.Bacterial protein vaccines offer promise by eliciting targeted immunity while circumventing AMR... The global burden of bacterial infections,exacerbated by antimicrobial resistance(AMR),necessitates innovative strategies.Bacterial protein vaccines offer promise by eliciting targeted immunity while circumventing AMR.However,their clinical translation is hindered by their inherently low immunogenicity,often requiring potent adjuvants and advanced delivery systems.Biomembrane nanostructures(e.g.,liposomes,exosomes,and cell membrane-derived nanostructures),characterized by superior biocompatibility,intrinsic targeting ability,and immune-modulating properties,could serve as versatile platforms that potentiate vaccine efficacy by increasing antigen stability,enabling codelivery of immunostimulants,and facilitating targeted delivery to lymphoid tissues/antigen-presenting cells.This intrinsic immunomodulation promotes robust humoral and cellular immune responses to combat bacteria.This review critically reviews(1)key biomembrane nanostructure classes for bacterial protein antigens,(2)design strategies leveraging biomembrane nanostructures to enhance humoral and cellular immune responses,(3)preclinical efficacy against diverse pathogens,and(4)translational challenges and prospects.Biomembrane nanostructure-driven approaches represent a paradigm shift in the development of next-generation bacterial protein vaccines against resistant infections. 展开更多
关键词 biomembrane nanostructures bacterial protein vaccines antimicrobial resistance vaccine delivery IMMUNOMODULATION nanovaccines liposomes EXOSOMES cell membrane coating
暂未订购
Wave Energy System Combined by a Heaving Box and a Perforated Flexible Membrane Wall
7
作者 Sarat Chandra Mohapatra C.Guedes Soares 《哈尔滨工程大学学报(英文版)》 2026年第1期110-121,共12页
An analytical model of a floating heaving box integrated with a vertical flexible porous membrane placed right next to the box applications to wave energy extraction and breakwater systems is developed under the reduc... An analytical model of a floating heaving box integrated with a vertical flexible porous membrane placed right next to the box applications to wave energy extraction and breakwater systems is developed under the reduced wave equation.The theoretical solutions for the heave radiating potential to the assigned physical model in the corresponding zones are attained by using the separation of variables approach along with the Fourier expansion.Applying the matching eigenfunction expansion technique and orthogonal conditions,the unknown coefficients that are involved in the radiated potentials are determined.The attained radiation potential allows the computation of hydrodynamic coefficients of the heaving buoy,Power Take-Off damping,and wave quantities.The accuracy of the analytical solution for the hydrodynamic coefficients is demonstrated for different oblique angles with varying numbers of terms in the series solution.The current analytical analysis findings are confirmed by existing published numerical boundary element method simulations.Several numerical results of the hydrodynamic coefficients,power capture,power take-off optimal damping,and transmission coefficients for numerous structural and physical aspects are conducted.It has been noted that the ideal power take-off damping increases as the angle of incidence rises,and the analysis suggests that the ability to capture waves is more effective in shallower waters compared to deeper ones. 展开更多
关键词 Analytical model Heaving buoy Flexible membrane perforated wall Boundary element method code Power take-off Power capture
在线阅读 下载PDF
Nanofiber-based polymer electrolyte membranes for fuel cells 被引量:2
8
作者 Ning Liu Shuguang Bi +5 位作者 Yi Zhang Ying Ou Chunli Gong Jianhua Ran Yihuang Chen Yingkui Yang 《Carbon Energy》 2025年第4期1-35,共35页
Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longr... Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longrange continuous structure of the nanofiber,ion-charged groups can be induced to form long-range continuous ion transfer channels in the nanofiber composite membrane,significantly increasing the ion conductivity of the membrane.This review stands apart from previous endeavors by offering a comprehensive overview of the strategies employed over the past decade in utilizing both electrospun and natural nanofibers as key components of proton exchange membranes and anion exchange membranes for fuel cells.Electrospun nanofibers are categorized based on their material properties into two primary groups:(1)ionomer nanofibers,inherently endowed with the ability to conduct H+(such as perfluorosulfonic acid or sulfonated poly(ether ether ketone))or OH-(e.g.,FAA-3),and(2)nonionic polymer nanofibers,comprising inert polymers like polyvinylidene difluoride,polytetrafluoroethylene,and polyacrylonitrile.Notably,the latter often necessitates surface modifications to impart ion transport channels,given their inherent proton inertness.Furthermore,this review delves into the recent progress made with three natural nanofibers derived from biodegradable cellulose—cellulose nanocrystals,cellulose nanofibers,and bacterial nanofibers—as crucial elements in polyelectrolyte membranes.The effect of the physical structure of such nanofibers on polyelectrolyte membrane properties is also briefly discussed.Lastly,the review emphasizes the challenges and outlines potential solutions for future research in the field of nanofiber-based polyelectrolyte membranes,aiming to propel the development of high-performance polymer electrolyte fuel cells. 展开更多
关键词 anion exchange membranes fuel cells NANOFIBERS proton exchange membranes
在线阅读 下载PDF
Organic solvent nanofiltration membranes for separation in non-polar solvent system 被引量:1
9
作者 Shuyun Gu Siyao Li Zhi Xu 《Green Energy & Environment》 2025年第2期244-267,共24页
Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltr... Membrane technology holds significant potential for augmenting or partially substituting conventional separation techniques,such as heatdriven distillation,thereby reducing energy consumption.Organic solvent nanofiltration represents an advanced membrane separation technology capable of discerning molecules within a molecular weight range of approximately 100-1000 Da in organic solvents,offering low energy requirements and minimal carbon footprints.Molecular separation in non-polar solvent system,such as toluene,n-hexane,and n-heptane,has gained paramount importance due to their extensive use in the pharmaceutical,biochemical,and petrochemical industries.In this review,we presented recent advancements in membrane materials,membrane fabrication techniques and their promising applications for separation in nonpolar solvent system,encompassing hydrocarbon separation,bioactive molecule purification and organic solvent recovery.Furthermore,this review highlighted the challenges and opportunities associated with membrane scale-up strategies and the direct translation of this promising technology into industrial applications. 展开更多
关键词 Organic solvent nanofiltration membranes membrane separation Non-polar solvent system Petrochemical and pharmaceutical application
在线阅读 下载PDF
Facile synthesis of silicon nanoparticles chelated lanthanide(Ⅲ)-based electrospun nanofiber membranes for rapid on-site visual detection of tetracycline 被引量:1
10
作者 Xuhuan Yan Junjie Wang +3 位作者 Jiaqi Shi Xinyu Wang Xianwei Lv Chenlu Bao 《Journal of Environmental Sciences》 2025年第10期474-485,共12页
Tetracycline(TC)is a broad-spectrum antibiotic,and its residues in the environment and food are harmful to human health.Therefore,it is essential to rapidly,sensitively,and conveniently detect TC.In this work,we devel... Tetracycline(TC)is a broad-spectrum antibiotic,and its residues in the environment and food are harmful to human health.Therefore,it is essential to rapidly,sensitively,and conveniently detect TC.In this work,we developed a portable silicon nanoparticles chelated Europium(Ⅲ)-based polyacrylonitrile(Eu-SiNPs/PAN)nanofiber membrane for rapid,sensitive,and convenient detection of TC.The Eu-SiNPs were synthesized with a facile one-pot method.The Eu-SiNPs/PAN nanofiber membrane was fabricated by electrospinning,combining Eu-SiNPs and PAN with three-dimensional porous membrane structures and UV resistance.Both the Eu-SiNPs and the Eu-SiNPs/PAN nanofiber membranes have good selectivity and anti-interference ability towards TC.The combined merits of rapid response,long storage life,easy portability,and naked-eye recognition of TC make the Eu-SiNPs/PAN nanofiber membrane a promising material for convenient TC detection applications.The practicability of these nanofiber membranes was further verified by detecting TC in real samples,such as lake water,drinking water and honey,and achieved quantitative detection. 展开更多
关键词 Fluorescent probe TETRACYCLINE Nanofiber membrane VISUALIZATION
原文传递
An improved technique to treat persistent extensive Descemet’s membrane detachment following cataract surgery: a case report 被引量:1
11
作者 Ru-Xin Gao Rong Zhang +2 位作者 Yan Wang Ying-Feng Hu Xiang-Yu Ye 《International Journal of Ophthalmology(English edition)》 2025年第5期958-961,共4页
Dear Editor,Descemet’s membrane detachment(DMD)is considered as a potential sight-threatening complication following various intraocular surgeries,particularly cataract surgery[1].The labile adhesion between the Desc... Dear Editor,Descemet’s membrane detachment(DMD)is considered as a potential sight-threatening complication following various intraocular surgeries,particularly cataract surgery[1].The labile adhesion between the Descemet’s membrane(DM)and the posterior corneal stromal layer can be easily separated with minimal mechanical force.Several risk factors have been associated with the development of DMD including old age,improper intraoperative operation,corneal ectatic disorders,and endothelial disorders and so on[1-4]. 展开更多
关键词 labile adhesion endothelial disorders membrane detachment dmd cataract surgery descemet s membrane dm intraocular surgeriesparticularly posterior corneal stromal layer Cataract surgery
原文传递
Proton exchange membrane-based electrocatalytic systems for hydrogen production 被引量:1
12
作者 Yangyang Zhou Hongjing Zhong +6 位作者 Shanhu Chen Guobin Wen Liang Shen Yanyong Wang Ru Chen Li Tao Shuangyin Wang 《Carbon Energy》 2025年第1期292-311,共20页
Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promisi... Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs. 展开更多
关键词 ELECTROLYSIS hydrogen production proton exchange membrane
在线阅读 下载PDF
Preparation of Modified Composite Nanofiltration Membrane Synergistically Using Carboxylic Multi- walled Carbon Nanotube and β-cyclodextrin
13
作者 LIU Peng MAO Junpeng +7 位作者 FANG Yanfeng YU Yunwu CHEN Changxiu TANG Ning WAN Ye GU Yaxin LIU Yunxue WANG Lihua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期232-239,共8页
A new modified blend ultrafiltration(UF)membrane with good hydrophilicity,high porosity and excellent anti-fouling performance was developed by using carboxylic multi-walled carbon nanotube(CMWCNT)as casting solution ... A new modified blend ultrafiltration(UF)membrane with good hydrophilicity,high porosity and excellent anti-fouling performance was developed by using carboxylic multi-walled carbon nanotube(CMWCNT)as casting solution additive.Furthermore,a composite nanofiltration(NF)membrane with large water flux and good retention rate was fabricated by using the PVDF/CMWCNT blend UF membrane as the substrate,and polyvinyl alcohol(PVA),β-cyclodextrin(β-CD)and polyethylenimine(PEI)as the coating solution.The results show that with the appropriate addition of CMWCNT in the casting solution,the surface roughness,porosity and recovery rate of the PVDF/CMWCNT blend UF membrane is obviously increased.The water flux of blend UF membrane is significantly improved when the CMWCNT content increases from 0 wt%to 0.2 wt%.The water flux of blend UF membrane with 0.2 wt%CMWCNT is 162.7 L/(m^(2)·h),which is 44.3%higher than that of the pure PVDF membrane.Whenβ-CD content is 0.8 wt%,the retention rate of Congo red by PVDF/CMWCNT/β-CD composite NF membrane reaches 98.7%,which is 28.3%higher than that of single PVA/PEI modified membrane.This research will provide a new idea and simple method for developing novel high-performance composite NF membranes. 展开更多
关键词 CMWCNT CYCLODEXTRIN NANOFILTRATION membrane
原文传递
Precursor-chemistry engineering toward ultrapermeable carbon molecular sieve membrane for CO_(2)capture 被引量:2
14
作者 Mengjie Hou Lin Li +5 位作者 Ruisong Xu Yunhua Lu Jing Song Zhongyi Jiang Tonghua Wang Xigao Jian 《Journal of Energy Chemistry》 2025年第3期421-430,共10页
Carbon capture is an important strategy and is implemented to achieve the goals of CO_(2)reduction and carbon neutrality.As a high energy-efficient technology,membrane-based separation plays a crucial role in CO_(2)ca... Carbon capture is an important strategy and is implemented to achieve the goals of CO_(2)reduction and carbon neutrality.As a high energy-efficient technology,membrane-based separation plays a crucial role in CO_(2)capture.It is urgently needed for membrane-based CO_(2)capture to develop the high-performance membrane materials with high permeability,selectivity,and stability.Herein,ultrapermeable carbon molecular sieve(CMS)membranes are fabricated by py roly zing a finely-engineered benzoxazole-containing copolyimide precursor for efficient CO_(2)capture.The microstructure of CMS membrane has been optimized by initially engineering the precursor-chemistry and subsequently tuning the pyrolysis process.Deep insights into the structure-property relationship of CMSs are provided in detail by a combination of experimental characterization and molecular simulations.We demonstrate that the intrinsically high free volume environment of the precursor,coupled with the steric hindrance of thermostable contorted fragments,promotes the formation of loosely packed and ultramicroporous carbon structures within the resultant CMS membrane,thereby enabling efficient CO_(2)discrimination via size sieving and affinity.The membrane achieves an ultrahigh CO_(2)permeability,good selectivity,and excellent stability.After one month of long-term operation,the CO_(2)permeability in the mixed gas is maintained at 11,800 Barrer,with a CO_(2)/N_(2)selectivity exceeding 60.This study provides insights into the relationship between precursor-chemistry and CMS performance,and our ultrapermeable CMS membrane,which is scalable using thin film manufacturing,holds great potential for industrial CO_(2)capture. 展开更多
关键词 CO_(2)capture Gas separation Carbon molecular sieve membrane precursor-chemistry
在线阅读 下载PDF
Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway 被引量:2
15
作者 Xiongbo Song Jinwen Xiao +2 位作者 Juan Wu Li Sun Long Chen 《Chinese Chemical Letters》 2025年第1期403-407,共5页
Macrophages undergo dynamic transitions between M1 and M2 states,exerting profound influences on both inflammatory and regenerative processes.The biocompatible and wound-healing properties of decellularized amniotic m... Macrophages undergo dynamic transitions between M1 and M2 states,exerting profound influences on both inflammatory and regenerative processes.The biocompatible and wound-healing properties of decellularized amniotic membrane(d AM)make it a subject of exploration for its potential impact on the anti-inflammatory response of macrophages.Experimental findings unequivocally demonstrate that d AM promotes anti-inflammatory M2 polarization of macrophage,with its cytokine-rich content posited as a potential mediator.The application of RNA sequencing unveils differential gene expression,implicating the hypoxia inducible factor-1α(HIF-1α)signaling pathway in this intricate interplay.Subsequent investigation further demonstrates that d AM facilitates anti-inflammatory M2 polarization of macrophage through the upregulation of epidermal growth factor(EGF),which,in turn,activates the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)pathway and stabilizes HIF-1α.This cascade results in a noteworthy augmentation of anti-inflammatory gene expression.This study significantly contributes to advancing our comprehension of d AM's immunomodulatory role in tissue repair,thereby suggesting promising therapeutic potential. 展开更多
关键词 MACROPHAGE Decellularized amniotic membrane Anti-inflammatory response Hypoxia inducible factor-1α Epidermal growth factor
原文传递
Comparison of a direct vs consultative advanced heart failure role in the outcomes of extracorporeal membrane oxygenation patients 被引量:2
16
作者 James Zhang Todd Nagamine +5 位作者 Kimberly Vu Mohammed Ali Nath Limpruttidham Maan Gozun Jesus Pino Moreno Dipanjan Banerjee 《World Journal of Transplantation》 2025年第3期128-134,共7页
BACKGROUND Advanced heart failure and transplant(AHFTC)teams are crucial in the management of patients in cardiogenic shock.We sought to explore the impact of AHFTC physicians on outcomes in patients receiving extraco... BACKGROUND Advanced heart failure and transplant(AHFTC)teams are crucial in the management of patients in cardiogenic shock.We sought to explore the impact of AHFTC physicians on outcomes in patients receiving extracorporeal membrane oxygenation(ECMO)support.AIM To determine whether outcomes differ in the care of ECMO patients when AHFTC physicians serve in a primary vs consultative role.METHODS We conducted a retrospective cohort study of 51 patients placed on veno-venous(VV)and veno-arterial(VA)ECMO between January 2015 and February 2023 at our institution.We compared ECMO outcomes between teams managed primarily by intensivists vs teams where AHFTC physicians played a direct role in ECMO management,including patient selection.Our primary outcome measure was survival to 30 days post hospital discharge.RESULTS For combined VA and VV ECMO patients,survival to 30 days post discharge in the AHFTC cohort was significantly higher(67%vs 30%,P=0.01),largely driven by a significantly increased 30-day post discharge survival in VA ECMO patients in the AHFTC group(64%vs 20%,P=0.05).CONCLUSION This study suggests that patients in shock requiring VA ECMO support may have improved survival 30 days after hospital discharge when an AHFTC team serves in a direct role in the selection and management of patients.Further studies are needed to validate this impact. 展开更多
关键词 Heart failure Extracorporeal membrane oxygenation Critical care Advanced heart failure and transplant cardiology MORTALITY
暂未订购
ESCRT Mechanism-mediated Repair of Plasma Membrane Damage Induced by Regulatory Cell Death
17
作者 FENG Tian-Yang DENG Le +2 位作者 XU Gou LI Li GUO Miao-Miao 《生物化学与生物物理进展》 北大核心 2025年第5期1099-1112,共14页
The plasma membrane(PM)plays an essential role in maintaining cell homeostasis,therefore,timely and effective repair of damage caused by factors such as mechanical rupture,pore-forming toxins,or pore-forming proteins ... The plasma membrane(PM)plays an essential role in maintaining cell homeostasis,therefore,timely and effective repair of damage caused by factors such as mechanical rupture,pore-forming toxins,or pore-forming proteins is crucial for cell survival.PM damage induces membrane rupture and stimulates an immune response.However,damage resulting from regulated cell death processes,including pyroptosis,ferroptosis,and necroptosis,cannot be repaired by simple sealing mechanisms and thus,requires specialized repair machinery.Recent research has identified a PM repair mechanism of regulated cell death-related injury,mediated by the endosomal sorting complexes required for transport(ESCRT)machinery.Here,we review recent progress in elucidating the ESCRT machinery-mediated repair mechanism of PM injury,with particular focus on processes related to regulated cell death.This overview,along with continued research in this field,may provide novel insights into therapeutic targets for diseases associated with dysregulation of regulated cell death pathways. 展开更多
关键词 ESCRT PYROPTOSIS ferroptosis NECROPTOSIS plasma membrane repair
原文传递
Facilitated transport membranes in post-combustion carbon capture:Recent advancements in polymer materials and challenges towards practical application 被引量:1
18
作者 Zihan Wang Zhien Zhang +1 位作者 Mohamad Reza Soltanian Ruizhi Pang 《Green Energy & Environment》 2025年第3期500-517,共18页
Facilitated transport membranes for post-combustion carbon capture are one of the technologies to achieve efficient and large-scale capture.The central principle is to utilize the affinity of CO_(2) for the carrier to... Facilitated transport membranes for post-combustion carbon capture are one of the technologies to achieve efficient and large-scale capture.The central principle is to utilize the affinity of CO_(2) for the carrier to achieve efficient separation and to break the Robson upper bound.This paper reviews the progress of facilitated transport membranes research regarding polymer materials,principles,and problems faced at this stage.Firstly,we briefly introduce the transport mechanism of the facilitated transport membranes.Then the research progress of several major polymers used for facilitated transport membranes for CO_(2)/N_(2) separation was presented in the past five years.Additionally,we analyze the primary challenges of facilitated transport membranes,including the influence of water,the effect of temperature,the saturation effect of the carrier,and the process configuration.Finally,we also delve into the challenges and competitiveness of facilitated transport membranes. 展开更多
关键词 Facilitated transport CO_(2)/N_(2)separation Polymer materials membrane stability
在线阅读 下载PDF
Junctophilin-2 MORN-Helix Domain:Structural Basis for Membrane Binding and Hypertrophic Cardiomyopathy-associated Mutations
19
作者 WANG Jing-Xin LI Zhi-Wei +2 位作者 LIU Wei ZHANG Wen-Qing LI Jian-Chao 《生物化学与生物物理进展》 北大核心 2025年第8期2103-2116,共14页
Objective Junctophilin-2(JPH2)is an essential structural protein that maintains junctional membrane complexes(JMCs)in cardiomyocytes by tethering the plasma membrane to the sarcoplasmic reticulum,thereby facilitating ... Objective Junctophilin-2(JPH2)is an essential structural protein that maintains junctional membrane complexes(JMCs)in cardiomyocytes by tethering the plasma membrane to the sarcoplasmic reticulum,thereby facilitating excitationcontraction(E-C)coupling.Mutations in JPH2 have been associated with hypertrophic cardiomyopathy(HCM),but the molecular mechanisms governing its membrane-binding properties and the functional relevance of its membrane occupation and recognition nexus(MORN)repeat motifs remain incompletely understood.This study aimed to elucidate the structural basis of JPH2 membrane association and its implications for HCM pathogenesis.Methods A recombinant N-terminal fragment of mouse JPH2(residues 1-440),encompassing the MORN repeats and an adjacent helical region,was purified under near-physiological buffer conditions.X-ray crystallography was employed to determine the structure of the JPH2 MORN-Helix domain.Sequence conservation analysis across species and junctophilin isoforms was performed to assess the evolutionary conservation of key structural features.Functional membrane-binding assays were conducted using liposome co-sedimentation and cell-based localization studies in COS7 and HeLa cells.In addition,site-directed mutagenesis targeting positively charged residues and known HCM-associated mutations,including R347C,was used to evaluate their effects on membrane interaction and subcellular localization.Results The crystal structure of the mouse JPH2 MORN-Helix domain was resolved at 2.6Å,revealing a compact,elongated architecture consisting of multiple tandem MORN motifs arranged in a curved configuration,forming a continuous hydrophobic core stabilized by alternating aromatic residues.A C-terminalα-helix further reinforced structural integrity.Conservation analysis identified the inner groove of the MORN array as a highly conserved surface,suggesting its role as a protein-binding interface.A flexible linker segment enriched in positively charged residues,located adjacent to the MORN motifs,was found to mediate direct electrostatic interactions with negatively charged phospholipid membranes.Functional assays demonstrated that mutation of these basic residues impaired membrane association,while the HCM-linked R347C mutation completely abolished membrane localization in cellular assays,despite preserving the overall MORN-Helix fold in structural modeling.Conclusion This study provides structural insight into the membrane-binding mechanism of the cardiomyocyte-specific protein JPH2,highlighting the dual roles of its MORN-Helix domain in membrane anchoring and protein interactions.The findings clarify the structural basis for membrane targeting via a positively charged linker and demonstrate that disruption of this interaction—such as that caused by the R347C mutation—likely contributes to HCM pathogenesis.These results not only enhance current understanding of JPH2 function in cardiac E-C coupling but also offer a structural framework for future investigations into the assembly and regulation of JMCs in both physiological and disease contexts. 展开更多
关键词 Junctophilin-2 MORN repeats membrane binding hypertrophic cardiomyopathy
原文传递
Z-Scheme membrane CdZnS/TiO_(2) heterojunction photocatalyst for efficient photocatalytic removal of Microcystis aeruginosa under simulated sunlight:Adjustable suspended depth and flexible assembly 被引量:1
20
作者 Jing Tian Feng Qian +4 位作者 Yanguang Zhang Weibing Li Jiarun Li Shiqiang Chen Lei Wang 《Journal of Materials Science & Technology》 2025年第14期70-79,共10页
The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts.Loading photocatalyst on magnetic or floatable carriers is the most po... The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts.Loading photocatalyst on magnetic or floatable carriers is the most popular method for overcoming the above inadequacies.In this work,a CdZnS/TiO_(2) membrane photocatalyst with adjustable suspended depth(include floating)and flexible assembly is designed,which is less prone to dislodgement due to in situ synthesis and has a wider range of applicability than previously reported photocatalysts.The photocatalytic removal of Microcystis aeruginosa revealed that the suspended depth and distribution format of the CdZnS/TiO_(2) membrane photocatalysts have striking effects on the photocatalytic removal performance of Microcystis aeruginosa,the photocatalytic removal efficiency of CdZnS/TiO_(2)-2 membrane photocatalysts for Microcystis aeruginosa could reach to 98.6%in 60 min when the photocatalysts assembled in the form of 3×3 arrays suspended at a depth of 2 cm from the liquid surface.A tiny amount of TiO_(2) loading allows the formation of Z-Scheme heterojunction,resulting in accelerating the separation efficiency of photogenerated carriers,preserving the photogenerated electrons and holes with stronger reduction and oxidation ability and inhabiting the photo-corrosion of CdZnS. 展开更多
关键词 Suspended Flexible assembly CdZnS/TiO_(2) membrane photocatalyst Photocatalytic removal of Microcystis aeruginosa
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部