Ultrasound neuromodulation is a powerful tool for brain investigation and holds great promise for treating brain diseases.However,due to the heterogeneous acoustic properties of skulls,existing ultrasound neuromodulat...Ultrasound neuromodulation is a powerful tool for brain investigation and holds great promise for treating brain diseases.However,due to the heterogeneous acoustic properties of skulls,existing ultrasound neuromodulation faces the challenge of severe transcranial acoustic attenuation.To overcome such limitations,we report an implantable bio-chip for visible and controllable mi-crowave-induced transcranial acoustic generation(MI-tAG).The bio-chip is soft,flexible,and biocompatible,with a thickness of 3mm,making it suitable for human intracranial implantation.The constituted fluid channels can cover an area of 50 mm×60 mm,enabling widefield neuronstimulation.The particles filled in the fluid channels have both high microwave absorption.ensuring efficient ultrasound generation,and magnetism,allowing noncontact and flexible ma-nipulation by external magnetic fields.The experimental results demonstrate that the optimal MI-tAG can be realized by the combination of particles arranged in a linear pattern and corre-sponding illumination via a linearly polarized microwave.Stability evaluation indicates that the particles can maintain a consistent acoustic intensity without degradation for at least seven days.The results of in vitro and in vivo experiments show that the MII-tAG can manipulate ultrasound sources and visibly locate them in real time.This study provides a potential innovative approach for future ultrasound neuromodulation,inspiring the development of more useful methods to advance brain research.This study introduces a promising innovative approach for transcranial acoustic generation,potentially inspiring the development of more effective methods for ad-vancing ultrasound neuromodulation.展开更多
基金supported by the National Key R&D Program of China under grant 2023YFF0715303in part by the National Natural Science Foundation of China under Grant Nos.62305148,62105140,62022037,and 61775028+2 种基金in part by the Department of Science and Technology of Guangdong Province under Grant Nos.2019ZT08Y191 and 2022B1212010003in part by the Shenzhen Science and Technology Program under Grant Nos.JCYJ20220530114010023,RCJC20231211090039066,20231116104616001,KQTD20190929172743294,JCYJ20230807093105010,RCBS20231211090802011in part by the Startup Grant from Southern University of Science and Technology under Grant No.PDJH2021C008.
文摘Ultrasound neuromodulation is a powerful tool for brain investigation and holds great promise for treating brain diseases.However,due to the heterogeneous acoustic properties of skulls,existing ultrasound neuromodulation faces the challenge of severe transcranial acoustic attenuation.To overcome such limitations,we report an implantable bio-chip for visible and controllable mi-crowave-induced transcranial acoustic generation(MI-tAG).The bio-chip is soft,flexible,and biocompatible,with a thickness of 3mm,making it suitable for human intracranial implantation.The constituted fluid channels can cover an area of 50 mm×60 mm,enabling widefield neuronstimulation.The particles filled in the fluid channels have both high microwave absorption.ensuring efficient ultrasound generation,and magnetism,allowing noncontact and flexible ma-nipulation by external magnetic fields.The experimental results demonstrate that the optimal MI-tAG can be realized by the combination of particles arranged in a linear pattern and corre-sponding illumination via a linearly polarized microwave.Stability evaluation indicates that the particles can maintain a consistent acoustic intensity without degradation for at least seven days.The results of in vitro and in vivo experiments show that the MII-tAG can manipulate ultrasound sources and visibly locate them in real time.This study provides a potential innovative approach for future ultrasound neuromodulation,inspiring the development of more useful methods to advance brain research.This study introduces a promising innovative approach for transcranial acoustic generation,potentially inspiring the development of more effective methods for ad-vancing ultrasound neuromodulation.