期刊文献+
共找到54,332篇文章
< 1 2 250 >
每页显示 20 50 100
Bio-Based Polymers for Technical Applications: A Review — Part 2
1
作者 Kayode Feyisetan Adekunle 《Open Journal of Polymer Chemistry》 2014年第4期95-101,共7页
Triglyceride oil of plant seed cannot be used on its own without further modification. The fatty acids must be suitably functionalized in order to add polymerisable functionalities which will help in the curing proces... Triglyceride oil of plant seed cannot be used on its own without further modification. The fatty acids must be suitably functionalized in order to add polymerisable functionalities which will help in the curing process. The purpose of these modifications is to reach a higher level of molecular weight and cross-link density, and also to incorporate chemical functionalities known to impart stiffness in a polymer network. The modification can go through various path ways which were described in this study. 展开更多
关键词 PLANT OILS THERMOSET Synthesis bio-based CURING
暂未订购
An overview of bio-based polymers for packaging materials 被引量:3
2
作者 Yuanfeng Pan Madjid Farmahini-Farahani +2 位作者 Perry O’Hearn Huining Xiao Helen Ocampo 《Journal of Bioresources and Bioproducts》 EI 2016年第3期106-113,共8页
Synthetic polymers are the most widely used materials for packaging because of their ease of processing,low cost,and low density.However,many of these materials are not easily recyclable and are difficult to degrade c... Synthetic polymers are the most widely used materials for packaging because of their ease of processing,low cost,and low density.However,many of these materials are not easily recyclable and are difficult to degrade completely in nature,creating environmental problems.Thus,there is a tendency to substitute such polymers with natural polymers and copolymers that are easily bio-degraded and less likely to cause environmental pollution.There has been a greater interest in poly-lactic acid(PLA),poly-hydroxyalkanoates(PHAs),cellulose and starch based polymers and copolymers as the emerging biodegradable material candidates for the future.This paper reviews the present state-of-the-art biodegradable polymers made from renewable resources and discusses the main features of their properties and design. 展开更多
关键词 bio-based polymers environmental aspects packaging materials poly(lactic acid) CELLULOSE
在线阅读 下载PDF
Recent Progresses in Synthesis of Cyclic Polymers in Large-scale and Some Functionalized Composites
3
作者 QU Kairu GUO Lyuzhou +3 位作者 WANG Wenbin YAN Xuzhou CAO Xuezheng YANG Zhenzhong 《高等学校化学学报》 北大核心 2026年第1期42-57,共16页
Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynam... Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynamic size and slower degradation.It is key to develop facile methods to large-scale synthesis of polymer rings with tunable compositions and microstructures.Recent progresses in large-scale synthesis of polymer rings against single-chain dynamic nanoparticles,and the example applications in synchronous enhancing toughness and strength of polymer nanocomposites are summarized.Once there is the breakthrough in rational design and effective large-scale synthesis of polymer rings and their functional derivatives,a family of cyclic functional hybrids would be available,thus providing a new paradigm in developing polymer science and engineering. 展开更多
关键词 Cyclic polymer Large-scale synthesis Single-chain nanoparticle Performance Composite
在线阅读 下载PDF
Fully Bio-Based Composites of Poly(Lactic Acid)Reinforced with Cellulose-Graft-Poly-(ε-Caprolactone)Copolymers 被引量:1
4
作者 Chengtao Gao Yang Wu Haibo Xie 《Journal of Renewable Materials》 SCIE EI 2023年第3期1137-1152,共16页
Due to the increasing demand for modified polylactide(PLA)meeting“double green”criteria,the research on sustainable plasticizers for PLA has attracted broad attentions.This study reported an open-ring polymerization... Due to the increasing demand for modified polylactide(PLA)meeting“double green”criteria,the research on sustainable plasticizers for PLA has attracted broad attentions.This study reported an open-ring polymerization method to fabricate cellulose(MCC)-g-PCL(poly(ε-caprolactone))copolymers with a fully sustainable and biodegradable component.MCC-g-PCL copolymers were synthesized,characterized,and used as green plasticizers for the PLA toughening.The results indicated that the MCC-g-PCL derivatives play an important role in the compatibility,crystallization,and toughening of the PLA/MCC-g-PCL composites.The mechanical properties of the fully bio-based PLA/MCC-g-PCL composites were optimized by adding 15 wt%MCC-g-PCL,that is,the elongation at break was 22.6%(~376%higher than that of neat PLA),the tensile strength was 47.3 MPa(comparable to that of neat PLA),and the impact strength was 26 J/m(~130%higher than that of neat PLA).DSC results indicated that MCC-g-PCL reduced the Tg of the PLA blend.When the addition amount was 15 wt%,the Tg of the blend was 58.4°C.Compared with MCC,MCC-g-PCL polyester plasticizer has better thermal stability,T5%(°C)can still be maintained above 300°C.The rheological results showed that MCC-g-PCL acted as a plasticizer,the introduction of PCL flexible chain increased the mobility of PLA molecular chain,and decreased the complex viscosity,storage modulus and loss modulus of PLA blends.The MCC-g-PCL derivatives,as a new green plastic additive,have shown an interesting prospect to prepare fully bio-based composites. 展开更多
关键词 Green plasticizers PLA cellulose(MCC)-g-PCL fully bio-based composites
在线阅读 下载PDF
High Water Resistance and Enhanced Mechanical Properties of Bio-Based Waterborne Polyurethane Enabled by in-situ Construction of Interpenetrating Polymer Network 被引量:1
5
作者 Henghui Deng Jingyi Lu +5 位作者 Dunsheng Liang Xiaomin Wang Tongyao Wang Weihao Zhang Jing Wang Chaoqun Zhang 《Journal of Renewable Materials》 SCIE EI 2023年第3期1209-1222,共14页
In this study,acrylic acid was used as a neutralizer to prepare bio-based WPU with an interpenetrating polymer network structure by thermally induced free radical emulsion polymerization.The effects of the content of ... In this study,acrylic acid was used as a neutralizer to prepare bio-based WPU with an interpenetrating polymer network structure by thermally induced free radical emulsion polymerization.The effects of the content of acrylic acid on the properties of the resulting waterborne polyurethane-poly(acrylic acid)(WPU-PAA)dispersion and the films were systematically investigated.The results showed that the cross-linking density of the interpenetrating network polymers was increased and the interlocking structure of the soft and hard phase dislocations in the molecular segments of the double networks was tailored with increasing the content of acrylic acid,leading to enhancement of the mechanical properties and water resistance of WPU-PAA films.Notably,with the increase in content of acrylic acid,the tensile strength,Young’s modulus,and toughness of the WPU-PAA-110 film increased by 3 times,and 8 times,and 2.4 times compared with WPU-PAA-80,respectively.The WPU-PAA-100 film showed the best water resistance,and the water absorption rate at 96 h was only 3.27%.This work provided a new design scheme for constructing bio-based WPU materials with excellent properties. 展开更多
关键词 bio-based waterborne polyurethane interpenetrating polymer network highly water resistance superior mechanical performance
在线阅读 下载PDF
Iron-nitrogen-doped porous carbon absorbers constructed from hypercrosslinked ferrocene polymers for efficient electromagnetic wave absorption 被引量:1
6
作者 Yi Hu Yijia Zhou +4 位作者 Lijia Liu Qiang Wang Chunhong Zhang Hao Wei Yudan Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期578-590,共13页
Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of ni... Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research. 展开更多
关键词 hypercrosslinked polymers porous carbon iron-nitrogen doping annealing
在线阅读 下载PDF
Dynamic Structural Colors in Helical Superstructures:from Supramolecules to Polymers 被引量:1
7
作者 Bo Ji Lang Qin Yan-Lei Yu 《Chinese Journal of Polymer Science》 2025年第3期406-428,共23页
Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.... Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact. 展开更多
关键词 Structural colors Cholesteric liquid crystals Elastomers polymer network
原文传递
Convenient and highly efficient adsorption of diosmetin from lemon peel by magnetic surface molecularly imprinted polymers 被引量:1
8
作者 Dongliang Xie Yi Kuang +12 位作者 Bingnan Yuan Yunlong Zhang Chenyu Ye Yuyi Guo Hua Qiu Juanna Ren Saud O.Alshammari Qamar A.Alshammari Zeinhom M.El-Bahy Kui Zhao Zhanhu Guo Qingqing Rao Shengxiang Yang 《Journal of Materials Science & Technology》 2025年第8期159-170,共12页
As a typical bioflavonoid,diosmetin is desirable in the field of natural medicine,healthy food,and cosmetics by anti-cancer,antibacterial,antioxidant,estrogen-like and anti-inflammatory activities,and it comes from a ... As a typical bioflavonoid,diosmetin is desirable in the field of natural medicine,healthy food,and cosmetics by anti-cancer,antibacterial,antioxidant,estrogen-like and anti-inflammatory activities,and it comes from a wide range of sources in traditional Chinese medicine like spider fragrance,spearmint and chrysanthemum,as well as in Citrus fruit.However,traditional analytical methods such as silica gel column chromatography face multiple challenges in the selective extraction of diosmetin from biological materials and traditional Chinese medicinal materials.Therefore,it is urgent to develop a new type of absorbent with high efficiency,recyclability and good specificity to diosmetin.In this investigation,a magnetic surface molecularly imprinted polymer(labeled as Diosmetin/SMIPs)was synthesized employing magnetic nanoparticles as the carrier and 4-vinylpyridinyl(4-VP)as the functional monomer by surface imprinting technology.The functional monomer was screened by the binding energy(△E)between functional monomers and template molecules via computational simulation.The Diosmetin/SMIPs had a high level of specific recognition and adsorption capability towards diosmetin with a 20.25 mg g^(-1) adsorption capacity and an imprinting factor(IF)of 2.28.Additionally,it demonstrated excellent regeneration performance with 8 adsorption/desorption cycles.In addition,91.20%-94.16% of spiked diosmetin was recovered from the lemon peel samples.The strategy of constructing Diosmetin/SMIPs based on computational simulation can effectively enhance the specific adsorption performance of diosmetin.Meanwhile,Diosmetin/SMIPs synthesized by imprinting polymerization showed excellent anti-interference and reusability,and realized efficient targeted extraction of diosmetin from lemon peel samples.The results of this investigation provide a promising adsorbent for selective enrichment of diosmetin from Citrus fruit and complicated materials. 展开更多
关键词 Diosmetin Selective extraction Magnetic molecularly imprinted polymer Lemon peel
原文传递
Innovative Approaches in Water Decontamination: A Critical Analysis of Biomaterials, Nanocomposites, and Stimuli-Responsive Polymers for Effective Solutions 被引量:1
9
作者 Rakesh Namdeti Gaddala Babu Rao +5 位作者 Nageswara Rao Lakkimsetty Muayad Abdullah Ahmed Qatan Doaa Salim Musallam Samhan Al-Kathiri Lakhayar Amer Al Amri Noor Mohammed Said Qahoor Arlene Abuda Joaquin 《Journal of Environmental & Earth Sciences》 2025年第1期92-102,共11页
In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water cr... In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water crisis.This review explores the latest advancements in the application of smart materials—including biomaterials,nanocomposites,and stimuli-responsive polymers—specifically for water treatment.It examines their effectiveness in detecting and removing various types of pollutants,including organic contaminants,heavy metals,and microbial infections,while adapting to dynamic environmental conditions such as fluctuations in temperature,pH,and pressure.The review highlights the remarkable versatility of these materials,emphasizing their multifunctionality,which allows them to address a wide range of water quality issues with high efficiency and low environmental impact.Moreover,it explores the potential of smart materials to overcome significant challenges in water purification,such as the need for real-time pollutant detection and targeted removal processes.The research also discusses the scalability and future development of these materials,considering their cost-effectiveness and potential for large-scale application.By aligning with the principles of sustainable development,smart materials represent a promising direction for ensuring global water security,offering both innovative solutions for current water pollution issues and long-term benefits for the environment and public health. 展开更多
关键词 Smart Materials Water Purification NANOCOMPOSITES Stimuli-Responsive polymers Sustainable Water Treatment
在线阅读 下载PDF
Fluorescent coordination polymers based on anthracene-and pyrene-derivative ligands
10
作者 XI Jiming TENG Yukang +1 位作者 ZHANG Rui LU Zhenzhong 《无机化学学报》 北大核心 2025年第5期847-854,共8页
We report five coordination polymers(CPs)based on fluorescent ligands[1,6-di(1H-imidazol-1-yl)pyrene(dip),9,10-di(1H-imidazol-1-yl)anthracene(dia)]and anionic ligands[cyclohexane-1,4-dicarboxylic acid(H_(2)cda),campho... We report five coordination polymers(CPs)based on fluorescent ligands[1,6-di(1H-imidazol-1-yl)pyrene(dip),9,10-di(1H-imidazol-1-yl)anthracene(dia)]and anionic ligands[cyclohexane-1,4-dicarboxylic acid(H_(2)cda),camphoric acid(H_(2)cpa)].In[Cd(dip)(cda)]·4H_(2)O}_(n)(1),the Cd^(2+)ions,acting as tetrahedral nodes,are linked by dipand cda^(2-)ligands with four Cd^(2+)ions into five-fold interpenetrating network array of topology of dia.In{[Cd(dip)(cpa)]·4H_(2)O}_(n)(2),the Cd^(2+)ions,acting as a 4-connector,are linked by cpa^(2-)and dip ligands into a 3D framework ofcds topology.In{[Ni(dia)_(2)Cl_(2)]·DMF}_(n)(3),the Ni^(2+)ion is linked by four dia ligands into a layer structure,and 1Dchannels of a cross-section of 1.35 nm×0.96 nm are formed.In{[Cd(dia)_(2)(H_(2)O)_(2)](NO_(3))_(2)·2DMSO}n(4),the dia ligandsconnected Cd^(2+)ions into a 2D layer,and 1D channels are formed between adjacent layers with a cross-section of0.87 nm×0.43 nm.In[Zn(dip)Cl_(2)]_(n)(5),the Zn^(2+)ion is linked by dip ligands into an infinite 1D chain.The infrared,thermal gravimetric,and fluorescent emission data were collected and analyzed for these coordination polymers.CCDC:2356055,1;2440075,2;2356057,3;2356057,4;2356059,5. 展开更多
关键词 coordination polymer anthracene derivatives pyrene derivatives FLUORESCENCE
在线阅读 下载PDF
Bioinspired Passive Tactile Sensors Enabled by Reversible Polarization of Conjugated Polymers
11
作者 Feng He Sitong Chen +3 位作者 Ruili Zhou Hanyu Diao Yangyang Han Xiaodong Wu 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期361-377,共17页
Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors c... Tactile perception plays a vital role for the human body and is also highly desired for smart prosthesis and advanced robots.Compared to active sensing devices,passive piezoelectric and triboelectric tactile sensors consume less power,but lack the capability to resolve static stimuli.Here,we address this issue by utilizing the unique polarization chemistry of conjugated polymers for the first time and propose a new type of bioinspired,passive,and bio-friendly tactile sensors for resolving both static and dynamic stimuli.Specifically,to emulate the polarization process of natural sensory cells,conjugated polymers(including poly(3,4-ethylenedioxythiophen e):poly(styrenesulfonate),polyaniline,or polypyrrole)are controllably polarized into two opposite states to create artificial potential differences.The controllable and reversible polarization process of the conjugated polymers is fully in situ characterized.Then,a micro-structured ionic electrolyte is employed to imitate the natural ion channels and to encode external touch stimulations into the variation in potential difference outputs.Compared with the currently existing tactile sensing devices,the developed tactile sensors feature distinct characteristics including fully organic composition,high sensitivity(up to 773 mV N^(−1)),ultralow power consumption(nW),as well as superior bio-friendliness.As demonstrations,both single point tactile perception(surface texture perception and material property perception)and two-dimensional tactile recognitions(shape or profile perception)with high accuracy are successfully realized using self-defined machine learning algorithms.This tactile sensing concept innovation based on the polarization chemistry of conjugated polymers opens up a new path to create robotic tactile sensors and prosthetic electronic skins. 展开更多
关键词 Passive tactile sensors Reversible polarization of conjugated polymers Tactile perception Machine learning algorithm Object recognition
在线阅读 下载PDF
Structure and magnetic properties of Mn(Ⅱ)coordination polymers regulated by N-auxiliary ligands
12
作者 LIU Xiaxia MA Xiaofang +2 位作者 GUO Luxia HAN Xianda FENG Sisi 《无机化学学报》 北大核心 2025年第3期587-596,共10页
Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions an... Two new Mn(Ⅱ)coordination polymers,namely{[Mn_(2)(HL)(phen)_(3)(H_(2)O)_(2)]·7.5H_(2)O}_n(1)and[Mn_(4)(HL)_(2)(1,4-bib)_(3)(H_(2)O)_(2)]_n(2),were synthesized under hydrothermal conditions by using Mn(Ⅱ)ions and 6-(3',4'-dicarboxylphenoxy)-1,2,4-benzenetricarboxylic acid(H_(5)L)in the presence of N-auxiliary ligands 1,10-phenanthroline(phen)and1,4-bis(1H-imidazol-1-yl)benzene(1,4-bib).The structures of coordination polymers 1 and 2 were characterized by infrared spectroscopy,single-crystal X-ray diffraction,thermogravimetric analysis,and powder X-ray diffraction.Single-crystal X-ray diffraction reveals that 1 has a 1D chain structure based on binuclear Mn(Ⅱ)units,while 2 features a(3,8)-connected 3D network structure based on tetranuclear Mn(Ⅱ)units.Magnetic studies show that 1 and 2exhibit antiferromagnetic interactions between manganese ions.2 shows stronger antiferromagnetic interactions due to the shorter Mn…Mn distances within the tetranuclear manganese units.CCDC:2357601,1;2357602,2. 展开更多
关键词 coordination polymers crystal structures binuclear Mnunit tetranuclear Mnunit MAGNETISM
在线阅读 下载PDF
Coordination polymers based on anthracene-and pyrene-derived ligands:Crystal structure,fluorescent property,and framework isomerization
13
作者 HU Youbo LI Donggang +2 位作者 SUN Changhua LU Zhenzhong GU Songjun 《无机化学学报》 北大核心 2025年第8期1681-1688,共8页
Six coordination polymers based on 9,10-di(pyridine-4-yl)-anthracene(DPA)and 1,6-di(1H-imidazol-1-yl)pyrene(DIP)were obtained by solvothermal reactions.{[Zn(DPA)Cl_(2)]·DMF·2H_(2)O}n(1)and{[Zn_(1.5)(DPA)_(1.... Six coordination polymers based on 9,10-di(pyridine-4-yl)-anthracene(DPA)and 1,6-di(1H-imidazol-1-yl)pyrene(DIP)were obtained by solvothermal reactions.{[Zn(DPA)Cl_(2)]·DMF·2H_(2)O}n(1)and{[Zn_(1.5)(DPA)_(1.5)Cl_(3)]·5H_(2)O}n(2)are framework isomers,which both contain zigzag chains formed by DPA,Zn^(2+),and Cl-.The zigzag chains in 1 are further assembled by C—H…Cl interactions into layers,and these layers exhibit two different orientations,displaying a rare 2D to 3D interpenetration mode.The zigzag chains in 2 are parallelly arranged.{[Zn_(3)(DPA)_(3)Br_(6)]·2DMF·_(1.5)H_(2)O}n(3)is isostructural to 2.3 was obtained using ZnBr_(2)instead of ZnCl_(2).[M(DPA)(formate)_(2)(H_(2)O)_(2)]n[M=Co(4),Cu(5)]are isostructural,contain chain structures formed by DPA,Cu^(2+)/Co^(2+),and for-mate ions,which were formed in situ in the solvothermal reaction.{[Zn(DIP)_(2)Cl]ClO_(4)}n(6)contains a layer structure formed by DIP and Zn^(2+).Free DPA and DIP ligands exhibited high fluorescence at room temperature,and coordina-tion polymers 3 and 6 displayed enhanced fluorescent emissions. 展开更多
关键词 coordination polymer anthracene derivatives pyrene derivatives fluorescence framework isomerization
在线阅读 下载PDF
Merging polymers of intrinsic microporosity and porous carbon-based zinc oxide composites in novel mixed matrix membranes for efficient gas separation
14
作者 Muning Chen Jiemei Zhou +7 位作者 Jing Ma Weigang Zheng Guanying Dong Xin Li Zhihong Tian Yatao Zhang Jing Wang Yong Wang 《Green Energy & Environment》 SCIE EI CAS 2025年第1期203-213,共11页
Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a sim... Mixed matrix membranes(MMMs)have demonstrated significant promise in energy-intensive gas separations by amalgamating the unique properties of fillers with the facile processability of polymers.However,achieving a simultaneous enhancement of permeability and selectivity remains a formidable challenge,due to the difficulty of achieving an optimal match between polymers and fillers.In this study,we incorporate a porous carbon-based zinc oxide composite(C@ZnO)into high-permeability polymers of intrinsic microporosity(PIMs)to fabricate MMMs.The dipole–dipole interaction between C@ZnO and PIMs ensures their exceptional compatibility,mitigating the formation of non-selective voids in the resulting MMMs.Concurrently,C@ZnO with abundant interconnected pores can provide additional low-resistance pathways for gas transport in MMMs.As a result,the CO_(2) permeability of the optimized C@ZnO/PIM-1 MMMs is elevated to 13,215 barrer,while the CO_(2)/N_(2) and CO_(2)/CH_(4) selectivity reached 21.5 and 14.4,respectively,substantially surpassing the 2008 Robeson upper bound.Additionally,molecular simulation results further corroborate that the augmented membrane gas selectivity is attributed to the superior CO_(2) affinity of C@ZnO.In summary,we believe that this work not only expands the application of MMMs for gas separation but also heralds a paradigm shift in the application of porous carbon materials. 展开更多
关键词 Mixed matrix membranes polymers of intrinsic microporosity CO_(2)separation Porous carbon materials
在线阅读 下载PDF
Integrating Main-Chain and Side-Chain Engineering in Polymers for Enhanced Photocatalytic Hydrogen Production
15
作者 TIAN Changhao LIU Xueyan +4 位作者 YU Miaojie WU Yongzhen CHE Yu ZHANG Weiwei ZHU Weihong 《功能高分子学报》 北大核心 2025年第3期216-227,共12页
Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous s... Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous solutions,resulting in significant optical losses and exciton recombination.In this study,two series of six novel polymer photocatalysts(FLUSO,FLUSO-PEG10,FLUSO-PEG30;CPDTSO,CPDTSO-PEG10,CPDTSO-PEG30)are designed and synthesized by incorporating the hydrophilic,non-conjugated polyethylene glycol(PEG)chain,into both the main and side chains of polymers.By precisely optimizing the ratio of hydrophilic PEG segments,the water dispersibility is significantly improved while the light absorption capability of the polymer photocatalysts is well maintained.The experimental results confirm that the optimized FLUSO-PEG10 exhibits excellent photocatalytic hydrogen evolution rate,reaching up to 33.9 mmol/(g·h),which is nearly three times higher than that of fullyπ-conjugated counterparts.Water contact angles and particle size analyses reveal that incorporating non-conjugated segments into the main chains enhances the capacitance of the polymer/water interface and reduces particle aggregation,leading to improved photocatalyst dispersion and enhanced charge generation. 展开更多
关键词 organic semiconductor polymer photocatalyst main-chain engineering side-chain engineering photocatalytic hydrogen evolution
在线阅读 下载PDF
Bio-based polyurethane for road engineering applications:A comprehensive review
16
作者 Qingxu Li Zengping Zhang +3 位作者 Zhongbao Shi Yekun Zhang Xiaoyi Ban Hao Liu 《Journal of Road Engineering》 2025年第4期513-530,共18页
With the escalating global emphasis on environmental conservation and sustainable development,enhancing the service quality and durability of road surfaces and facilitating the green development of highways have comma... With the escalating global emphasis on environmental conservation and sustainable development,enhancing the service quality and durability of road surfaces and facilitating the green development of highways have commanded considerable attention.Bio-based polyurethane,on account of its remarkable physical and chemical properties,green,sustainable and renewable capacity,as well as its structural design capabilities,has drawn widespread attention and numerous studies have been carried out.It has gradually started to substitute traditional petroleum-based polyurethane materials in road engineering.Nevertheless,the application of bio-based polyurethane materials in road engineering remains in the exploratory phase.To stimulate the application research of bio-based polyurethane materials in road engineering and offer additional research directions,this paper reviews the research advancements of bio-based polyurethane materials and their applications in road engineering.The fundamental classification of bio-based polyurethane is introduced.The characteristics and challenges associated with various preparation methods for bio-based polyurethane are described.The influence of bio-based polyurethane on road engineering materials are analyzed.The evaluation indicators of bio-based polyurethane within the life cycle of road engineering are investigated.Finally,the development tendency towards in road engineering applications are forecasted.This paper provides a reference for the study of bio-based polyurethane materials in road engineering applications. 展开更多
关键词 bio-based materials POLYURETHANE Life cycle assessment Environmentally friendly
在线阅读 下载PDF
Bio-based polymeric materials synthesized from renewable resources: A mini-review 被引量:7
17
作者 Yitong Xie Shishuai Gao +2 位作者 Daihui Zhang Chunpeng Wang Fuxiang Chu 《Resources Chemicals and Materials》 2023年第3期223-230,共8页
In recent years,bio-based polymeric materials have attracted increased attention owing to their distinctive prop-erties,including richness,sustainability,environmental friendliness,and biodegradability.This article re... In recent years,bio-based polymeric materials have attracted increased attention owing to their distinctive prop-erties,including richness,sustainability,environmental friendliness,and biodegradability.This article reviews the recent developments and potential trends of research on bio-based polymers synthesized from various re-newable resources.It covers the resources and structures of bio-based monomers,the methods of synthesis and properties of bio-based thermoplastics and thermosets,the production of bio-based composites and the fabrica-tion of functional bio-based polymers.Finally,the technological and future challenges related to enabling these materials to apply in the industry have been discussed,together with the potential solutions or directions. 展开更多
关键词 Biobased polymers Renewable resources MATERIALS FUNCTIONALITY
在线阅读 下载PDF
An Excellent Biobased Copolymerization Monomer Module:Synthesis of Biobased Copolymers with Excellent Heat Resistance and Hydrophilic Properties
18
作者 Xiao-Jun Ma Xiao-Qing Hao +3 位作者 Hong-Ji Wang Han-Yu Yao Zi-Qing Wang Yin Lv 《Chinese Journal of Polymer Science》 2025年第11期2102-2109,I0013,共9页
The use of biomass feedstocks for the manufacture of high-performance polymers can help expand their range of applications and reduce their dependence on finite fossil resources.However,improving the heat resistance a... The use of biomass feedstocks for the manufacture of high-performance polymers can help expand their range of applications and reduce their dependence on finite fossil resources.However,improving the heat resistance and hydrophilicity of bio-based polyesters remains a significant challenge.Herein,we introduce N,N'-trans-1,4-cyclohexane-bis(pyrrolidone-4-methylcarboxylate)(CBPC),a novel bio-based tricyclic dibasic ester synthesized from renewable dimethyl itaconic acid and trans-1,4-cyclohexane diamine via an aza-Michael addition reaction.As a unique comonomer,CBPC features a rigid tricyclic backbone that significantly enhances chain packing and thermal stability,whereas its pyrrolidone side groups impart tunable polarity and improved hydrophilicity.Using CBPC,diphenyl carbonate,and 1,4-butylene glycol,a series of PBCC copolymers with 10 mol%-30 mol%CBPC was synthesized via ester-exchange and melt polycondensation methods.Incorporation of CBPC raised the melting temperature(Tm)from 56.8℃to 225.8℃and the initial decomposition temperature(Td5%)from 258.0℃to 306.7℃,positioning PBCC among the most heat-resistant bio-based polyesters reported.Additionally,the pyrrolidone units enabled transformation from hydrophobic to hydrophilic.This study demonstrates that CBPC is an effective and innovative building block for the design of bio-based polymers with enhanced thermal and surface properties,offering a promising strategy for the development of high-performance sustainable materials. 展开更多
关键词 bio-based polyesters Poly(butylene carbonates) Renewable resources Heat resistance HYDROPHILICITY
原文传递
Research Progress on Bio-Based Biodegradable Barrier Materials
19
作者 Kezheng Gao Shuaifei Li +1 位作者 Qingyuan Niu Xiaojing Zhang 《Journal of Renewable Materials》 2025年第12期2309-2353,共45页
The current global shortage of oil resources and the pollution problems caused by traditional barrier materials urgently require the search for new substitutes.Biodegradable bio-based barrier materials possess the cha... The current global shortage of oil resources and the pollution problems caused by traditional barrier materials urgently require the search for new substitutes.Biodegradable bio-based barrier materials possess the characteristics of being renewable,environmentally friendly,and having excellent barrier properties.They have become an important choice in fields such as food packaging,agricultural film covering,and medical protection.This review systematically analyzes the design and research of this type of material,classifying biobased and biodegradable barrier materials based on the sources of raw materials and synthesis pathways.It also provides a detailed introduction to the latest research progress of biobased and biodegradable barrier materials,discussing the synthesis methods and improvement measures of their barrier properties.Subsequently,it analyzes the related technologies for enhancing the barrier properties of biobased and biodegradable barrier materials,and finally looks forward to the directions that future research should focus on,promoting the transition of biobased and biodegradable barrier materials from the laboratory to industrial applications. 展开更多
关键词 bio-based materials BIODEGRADABLE barrier material barrier performance enhance barrier measures
在线阅读 下载PDF
Syntheses,crystal structures,and characterizations of two cadmium(Ⅱ)coordination polymers
20
作者 LI Xiumei LI Linlin +1 位作者 LIU Bo PAN Yaru 《无机化学学报》 北大核心 2025年第3期613-623,共11页
Two new transition-metal coordination polymers,{[Cd(oba)(L)_(2)]·H_(2)O}_n(1)and[Cd(4-nph)(L)_(2)]_n(2)(H_(2)oba=4,4'-oxydibenzoic acid,4-H_(2)nph=4-nitrophthalic acid,L=2,2'-biimidazole),were successfull... Two new transition-metal coordination polymers,{[Cd(oba)(L)_(2)]·H_(2)O}_n(1)and[Cd(4-nph)(L)_(2)]_n(2)(H_(2)oba=4,4'-oxydibenzoic acid,4-H_(2)nph=4-nitrophthalic acid,L=2,2'-biimidazole),were successfully synthesized under hydrothermal conditions and characterized structurally by IR spectroscopy,elemental analyses,single-crystal X-ray diffraction,powder X-ray diffraction,and thermogravimetric analysis.The results of single-crystal X-ray diffraction show that complex 1 presents a 1D zigzag chain structure and further extends to a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.Meanwhile,complex 2 has a zero-dimensional structure and also extends to form a 2D network through N—H…O hydrogen bonds andπ-πstacking interactions.In addition,both 1and 2 exhibited luminescent properties in the solid state.Furthermore,quantum chemical calculations were carried out on the"molecular fragments"extracted from the crystal structures of 1 and 2 using the PBE0/LANL2DZ method constructed by the Gaussian 16 program.The calculated values signify a significant covalent interaction between the coordination atoms and the Cd(Ⅱ)ions.CCDC:2332173,1;2332176,2. 展开更多
关键词 coordination polymer cadmium(Ⅱ)complex crystal structure quantum⁃chemical calculations
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部