In recent years,bio-based polymeric materials have attracted increased attention owing to their distinctive prop-erties,including richness,sustainability,environmental friendliness,and biodegradability.This article re...In recent years,bio-based polymeric materials have attracted increased attention owing to their distinctive prop-erties,including richness,sustainability,environmental friendliness,and biodegradability.This article reviews the recent developments and potential trends of research on bio-based polymers synthesized from various re-newable resources.It covers the resources and structures of bio-based monomers,the methods of synthesis and properties of bio-based thermoplastics and thermosets,the production of bio-based composites and the fabrica-tion of functional bio-based polymers.Finally,the technological and future challenges related to enabling these materials to apply in the industry have been discussed,together with the potential solutions or directions.展开更多
Triglyceride oil of plant seed cannot be used on its own without further modification. The fatty acids must be suitably functionalized in order to add polymerisable functionalities which will help in the curing proces...Triglyceride oil of plant seed cannot be used on its own without further modification. The fatty acids must be suitably functionalized in order to add polymerisable functionalities which will help in the curing process. The purpose of these modifications is to reach a higher level of molecular weight and cross-link density, and also to incorporate chemical functionalities known to impart stiffness in a polymer network. The modification can go through various path ways which were described in this study.展开更多
This work contributes to the use of alternative adhesives in the wood-based industry,where pine wood is commonly used.The investigation identifies the influence and the optimal content(8,12 and 15wt%)of a bio-based po...This work contributes to the use of alternative adhesives in the wood-based industry,where pine wood is commonly used.The investigation identifies the influence and the optimal content(8,12 and 15wt%)of a bio-based polyurethane adhesive in the production of medium density particleboards(MDP).A compaction pressure of 4 MPa at 100oC for 10 minutes is considered in the manufacture of panels based on pine wood residues and bio-based resin.The bulk density,flexural modulus(MOE)and strength(MOR)properties under static three-point bending are obtained according to the Brazilian standard NBR 14810.The results are compared with NBR 14810 and other standards to verify its performance based on the minimum requirements.Bulk density is not significantly affected by the investigated adhesive levels.MOE and MOR reach average values equivalent to 12wt%and 15wt%of the adhesive,and both meet the minimum requirements established in international normative documents.The adhesive level range responsible for maximizingρ,MOE and MOR is between 12.42wt%and 15.79wt%.展开更多
Due to their extraordinary durability and thermal stability,Epoxy Resin Thermosets(ERTs)are essential in various industries.However,their poor recyclability leads to unacceptable environmental pollution.In this study,...Due to their extraordinary durability and thermal stability,Epoxy Resin Thermosets(ERTs)are essential in various industries.However,their poor recyclability leads to unacceptable environmental pollution.In this study,Wu et al.successfully synthesized a completely bio-based ERT using lignocellulose-derived building blocks which exhibit outstanding thermal and mechanical properties.Remarkably,these bio-materials degrade via methanolysis without the need of any catalyst,presenting a smart and cost-effective recycling strategy.Furthermore,this approach could be employed for fabricating reusable composites comprising glass fiber and plant fiber,thereby expanding its applications in sustainable transportation,coatings,paints or biomedical devices.展开更多
With the increasing consumption of non renewable resources such as oil,the traditional polymer manufacturing industry that relies on fossil resources is facing unprecedented challenges.The design,synthesis,and recycli...With the increasing consumption of non renewable resources such as oil,the traditional polymer manufacturing industry that relies on fossil resources is facing unprecedented challenges.The design,synthesis,and recycling of renewable and environmentally friendly bio-based polymers as alternatives to petroleum based polymers have become hot topics in research and industrial fields.Biomass has been used as a raw material to design and synthesize closed-loop recyclable polymers,which is of great significance in addressing the waste of resources and negative impact on the environment in the traditional polymer preparation process.This review summarized recent advances in the design,synthesis,and properties of closed-loop recyclable bio-based polymers,focusing on the sustainability and recyclability of bio-based materials,followed by a brief discussion of the potential applications of closed-loop recyclable bio-based polymers in emerging applications such as 3D printing and friction electric nanogenerators.In addition,perspectives and recommendations for future research on closedloop recyclable bio-based polymers were presented.展开更多
Synthetic polymers are the most widely used materials for packaging because of their ease of processing,low cost,and low density.However,many of these materials are not easily recyclable and are difficult to degrade c...Synthetic polymers are the most widely used materials for packaging because of their ease of processing,low cost,and low density.However,many of these materials are not easily recyclable and are difficult to degrade completely in nature,creating environmental problems.Thus,there is a tendency to substitute such polymers with natural polymers and copolymers that are easily bio-degraded and less likely to cause environmental pollution.There has been a greater interest in poly-lactic acid(PLA),poly-hydroxyalkanoates(PHAs),cellulose and starch based polymers and copolymers as the emerging biodegradable material candidates for the future.This paper reviews the present state-of-the-art biodegradable polymers made from renewable resources and discusses the main features of their properties and design.展开更多
It is crucial to adapt the processing of forest bio-resources into biochemicals and bio-based ad-vanced materials in order to transform the current economic climate into a greener economy.Tall oil,as a by-product of t...It is crucial to adapt the processing of forest bio-resources into biochemicals and bio-based ad-vanced materials in order to transform the current economic climate into a greener economy.Tall oil,as a by-product of the Kraft process of wood pulp manufacture,is a promising resource for the extraction of various value-added products.Tall oil fatty acids-based multifunctional Michael acceptor acrylates were developed.The suitability of developed acrylates for polymerization with tall oil fatty acids-based Michael donor acetoacetates to form a highly cross-linked polymer ma-terial via the Michael addition was investigated.With this novel strategy,valuable chemicals and innovative polymer materials can be produced from tall oil in an entirely new way,making a significant contribution to the development of a forest-based bioeconomy.Two different tall oil-based acrylates were successfully synthesized and characterized.Synthesized acrylates were successfully used in the synthesis of bio-based thermoset polymers.Obtained polymers had a wide variety of mechanical and thermal properties(glass transition temperature from-12.1 to 29.6°C by dynamic mechanical analysis,Young’s modulus from 15 to 1760 MPa,and stress at break from 0.9 to 16.1 MPa).Gel permeation chromatography,Fourier-transform infrared(FT-IR)spectroscopy,matrix-assisted laser desorption/ionization-time of flight mass spectrometry,and nuclear magnetic resonance were used to analyse the chemical structure of synthesized acrylates.In addition,various titration methods and rheology tests were applied to characterize acrylates.The chemical composition and thermal and mechanical properties of the developed polymers were studied by using FT-IR,solid-state nuclear magnetic resonance,thermal gravimetric analy-sis,differential scanning calorimetry,dynamic mechanical analysis,and universal strength testing apparatus.展开更多
Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of ni...Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research.展开更多
Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors....Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact.展开更多
The fluorescence imaging (FLI) in the second near-infrared window (NIR-II, 1000–1700nm) has attracted considerable attention in the past decade. In contrast to conventional NIR-I window excitation (808nm/980nm), FLI ...The fluorescence imaging (FLI) in the second near-infrared window (NIR-II, 1000–1700nm) has attracted considerable attention in the past decade. In contrast to conventional NIR-I window excitation (808nm/980nm), FLI with NIR-II window excitation (1064nm/other wavelength beyond 1000nm) can afford deeper tissue penetration depth with high clarity due to the merits of suppressed photon scattering and diminished autofluorescence. In this review, we have summarized NIR-II window excitable/emissive organic/polymeric fluorophores recently developed. The characteristics of these fluorophores such as chemical structures and photophysical properties have also been critically discussed. Furthermore, the latest development of noninvasive in vivo FLI with NIR-II excitation was highlighted. The ideal imaging results emphasized the importance of NIR-II excitation of these fluorophores in enabling deep tissue penetration and high-resolution imaging. Finally, a perspective on the challenges and prospects of NIR-II excitable/emissive organic/polymeric fluorophores was also discussed. We expected this review will be served as a source of inspiration for researchers, stimulating the creation of novel NIR-II excitable fluorophores and fostering the development of bioimaging applications.展开更多
As a typical bioflavonoid,diosmetin is desirable in the field of natural medicine,healthy food,and cosmetics by anti-cancer,antibacterial,antioxidant,estrogen-like and anti-inflammatory activities,and it comes from a ...As a typical bioflavonoid,diosmetin is desirable in the field of natural medicine,healthy food,and cosmetics by anti-cancer,antibacterial,antioxidant,estrogen-like and anti-inflammatory activities,and it comes from a wide range of sources in traditional Chinese medicine like spider fragrance,spearmint and chrysanthemum,as well as in Citrus fruit.However,traditional analytical methods such as silica gel column chromatography face multiple challenges in the selective extraction of diosmetin from biological materials and traditional Chinese medicinal materials.Therefore,it is urgent to develop a new type of absorbent with high efficiency,recyclability and good specificity to diosmetin.In this investigation,a magnetic surface molecularly imprinted polymer(labeled as Diosmetin/SMIPs)was synthesized employing magnetic nanoparticles as the carrier and 4-vinylpyridinyl(4-VP)as the functional monomer by surface imprinting technology.The functional monomer was screened by the binding energy(△E)between functional monomers and template molecules via computational simulation.The Diosmetin/SMIPs had a high level of specific recognition and adsorption capability towards diosmetin with a 20.25 mg g^(-1) adsorption capacity and an imprinting factor(IF)of 2.28.Additionally,it demonstrated excellent regeneration performance with 8 adsorption/desorption cycles.In addition,91.20%-94.16% of spiked diosmetin was recovered from the lemon peel samples.The strategy of constructing Diosmetin/SMIPs based on computational simulation can effectively enhance the specific adsorption performance of diosmetin.Meanwhile,Diosmetin/SMIPs synthesized by imprinting polymerization showed excellent anti-interference and reusability,and realized efficient targeted extraction of diosmetin from lemon peel samples.The results of this investigation provide a promising adsorbent for selective enrichment of diosmetin from Citrus fruit and complicated materials.展开更多
To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoin...To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoinduced electron transfer reversible addition-fragmentation chain-transfer(PET-RAFT)polymerization is a precise methodology for constructing polymers with well-defined structures.However,conventional semiconductor-mediated PET-RAFT polymerization still has considerable limitations in terms of efficiency as well as the polymerization environment.Herein,sulfur-doped carbonized polymer dots(CPDs)were hydrothermally synthesized for catalysis of aqueous PET-RAFT polymerization at unprecedented efficiency with a highest propagation rate of 5.05 h-1.The resulting polymers have well-controlled molecular weight and narrow molecular weight dispersion(Ð<1.10).Based on the optoelectronic characterizations,we obtained insights into the photoinduced electron transfer process and proposed the mechanism for CPD-mediated PET-RAFT polymerization.In addition,as-synthesized CPDs for PET-RAFT polymerization were also demonstrated to be suitable for a wide range of light sources(blue/green/solar irradiation),numerous monomers,low catalyst loading(low as 0.01 mg mL^(-1)),and multiple polar solvent environments,all of which allowed to achieve efficiencies much higher than those of existing semiconductor-mediated methods.Finally,the CPDs were confirmed to be non-cytotoxic and catalyzed PET-RAFT polymerization successfully in cell culture media,indicating broad prospects in biomedical fields.展开更多
In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water cr...In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water crisis.This review explores the latest advancements in the application of smart materials—including biomaterials,nanocomposites,and stimuli-responsive polymers—specifically for water treatment.It examines their effectiveness in detecting and removing various types of pollutants,including organic contaminants,heavy metals,and microbial infections,while adapting to dynamic environmental conditions such as fluctuations in temperature,pH,and pressure.The review highlights the remarkable versatility of these materials,emphasizing their multifunctionality,which allows them to address a wide range of water quality issues with high efficiency and low environmental impact.Moreover,it explores the potential of smart materials to overcome significant challenges in water purification,such as the need for real-time pollutant detection and targeted removal processes.The research also discusses the scalability and future development of these materials,considering their cost-effectiveness and potential for large-scale application.By aligning with the principles of sustainable development,smart materials represent a promising direction for ensuring global water security,offering both innovative solutions for current water pollution issues and long-term benefits for the environment and public health.展开更多
The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers...The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers are the predominant choices and have been extensively investigated and reviewed.Beyond these vectors,polymeric nanocarriers also hold the promise in therapeutic gene delivery owing to their versatile functionalities,such as improving the stability,cellar uptake and endosomal escape of nucleic acid drugs,along with precise delivery to targeted tissues.This review presents a brief overview of the status quo of the emerging polymeric nanocarriers for therapeutic gene delivery,focusing on key cationic polymers,nanocarrier types,and preparation methods.It also highlights targeted diseases,strategies to improve delivery efficiency,and potential future directions in this research area.The review is hoped to inspire the development,optimization,and clinical translation of highly efficient polymeric nanocarriers for therapeutic gene delivery.展开更多
Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration eff...Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration efficiency,complex denitration system,and high investment and operating cost.Here we put forward a novel polymer non-catalytic reduction(PNCR)technology that utilized a new type of polymer agent to remove NO_(x),and the proposed PNCR technology was applied to the existing waste-to-energy plant to test the denitration performance.The PNCR technology demonstrated excellent denitration performance with a NO_(x) emission concentration of<100 mg/Nm^(3) and high denitration efficiency of>75%at the temperature range of 800-900℃,which showed the application feasibility even on the complex and unstable industrial operating conditions.In addition,PNCR and hybrid polymer/selective non-catalytic reduction(PNCR/SNCR)technology possessed remarkable economic advantages including low investment fee and low operating cost of<10 CNY per ton of municipal solid waste(MSW)compared with selective catalytic reduction(SCR)technology.The excellent denitration performance of PNCR technology forebodes a broad industrial application prospect in the field of flue gas cleaning for waste-to-energy plants.展开更多
Aqueous zinc-ion batteries are regarded as promising electrochemical energy-storage systems for various applications because of their high safety,low costs,and high capacities.However,dendrite formation and side react...Aqueous zinc-ion batteries are regarded as promising electrochemical energy-storage systems for various applications because of their high safety,low costs,and high capacities.However,dendrite formation and side reactions during zinc plating or stripping greatly reduce the capacity and cycle life of a battery and subsequently limit its practical application.To address these issues,we modified the surface of a zinc anode with a functional bilayer composed of zincophilic Cu and flexible polymer layers.The zincophilic Cu interfacial layer was prepared through CuSO_(4)solution pretreatment to serve as a nucleation site to facilitate uniform Zn deposition.Meanwhile,the polymer layer was coated onto the Cu interface layer to serve as a protective layer that would prevent side reactions between zinc and electrolytes.Benefiting from the synergistic effect of the zincophilic Cu and protective polymer layers,the symmetric battery exhibits an impressive cycle life,lasting over 2900 h at a current density of 1 m A·cm^(-2)with a capacity of 1 m A·h·cm^(-2).Moreover,a full battery paired with a vanadium oxide cathode achieves a remarkable capacity retention of 72%even after 500 cycles.展开更多
One Yb(Ⅲ)-based coordination polymer,{[Yb(H_(2)dhtp)1.5(H_(2)O)_(4)]·3H_(2)O}n(1)(H_(4)dhtp=2,5-dihydroxytere-phthalic acid),was fabricated and structurally characterized by single-crystal X-ray diffraction,IR,p...One Yb(Ⅲ)-based coordination polymer,{[Yb(H_(2)dhtp)1.5(H_(2)O)_(4)]·3H_(2)O}n(1)(H_(4)dhtp=2,5-dihydroxytere-phthalic acid),was fabricated and structurally characterized by single-crystal X-ray diffraction,IR,powder X-ray diffraction,X-ray diffraction,and elemental analysis.Complex 1 displays a 1D chain structure,and belongs to P1 group.The solid-state luminescent spectrum of 1 showed an emission band with the maximum at 508 nm(λex=408 nm).It exhibited the emission characteristic of the H_(4)dhtp ligand.The fluorescence of 1 in water displayed the stron-gest intensity.In detecting various metal ions,adding Zr^(4+)led to a blue shift in fluorescence,accompanied by an increase in intensity,whereas the presence of Fe^(3+)resulted in a decrease in luminescence.The changes observed in the IR spectrum indicate an interaction between Fe^(3+)/Zr^(4+)and complex 1,resulting in the variation of luminescence properties.展开更多
Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of h...Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of high-temperature treatments has introduced uncertainties regarding the compositions and microstructures of resulting derivatives.Additionally,complete carbonization has led to diminished yields of the produced carbon composites,significantly limiting their practical applications.Consequently,the exploration of pristine MOF-based EMW absorbers presents an intriguing yet challenging endeavor,primarily due to inherently low electrical conductivity.In this study,we showcase the utilization of structurally robust Zr-MOFs as scaffolds to build highly conductive Zr-MOF/PPy composites via an inner-outer dual-modification approach,which involves the production of conducting polypyrrole(PPy)both within the confined nanoporous channels and the external surface of Zr-MOFs via post-synthetic modification.The interconnection of confined PPy and surface-lined PPy together leads to a consecutive and extensive conducting network to the maximum extent.This therefore entails outstanding conductivity up to~14.3 S cm^(-1) in Zr-MOF/PPy composites,which is approximately 1-2 orders of magnitude higher than that for conductive MOF nanocomposites constructed from either inner or outer modification.Benefiting from the strong and tunable conduction loss,as well as the induced dielectric polarization originated from the porous structures and MOF-polymer interfaces,Zr-MOF/PPy exhibits excellent microwave attenuation capabilities and a tunable absorption frequency range.Specifically,with only 15 wt.%loading,the minimum reflection loss(RLmin)can reach up to-67.4 dB,accompanied by an effective absorption bandwidth(EAB)extending to 6.74 GHz.Furthermore,the microwave absorption characteristics can be tailored from the C-band to the Ku-band by adjusting the loading of PPy.This work provides valuable insights into the fabrication of conductive MOF composites by presenting a straightforward pathway to enhance and reg-ulate electrical conduction in MOF-based nanocomposites,thus paving a way to facilely fabricate pristine MOF-based microwave absorbers.展开更多
Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic...Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic coor-dination polymer[Cd(bcbpy)I_(2)]·2H_(2)O(1)was constructed.Complex 1 displays a 1D chain structure and exhibits thermochromic behavior.Under different temperature stimulation,the complex(ground)slowly changed from green to yellow-green,and with the increase of temperature,the color of complex 1 gradually deepened,and finally became orange-yellow.Therefore,complex 1 was prepared as a thermochromic film.In addition,we also performed electrochemical tests on complex 1,which showed that the complex is a semiconductor material.CCDC:2391802.展开更多
Facilitated transport membranes for post-combustion carbon capture are one of the technologies to achieve efficient and large-scale capture.The central principle is to utilize the affinity of CO_(2) for the carrier to...Facilitated transport membranes for post-combustion carbon capture are one of the technologies to achieve efficient and large-scale capture.The central principle is to utilize the affinity of CO_(2) for the carrier to achieve efficient separation and to break the Robson upper bound.This paper reviews the progress of facilitated transport membranes research regarding polymer materials,principles,and problems faced at this stage.Firstly,we briefly introduce the transport mechanism of the facilitated transport membranes.Then the research progress of several major polymers used for facilitated transport membranes for CO_(2)/N_(2) separation was presented in the past five years.Additionally,we analyze the primary challenges of facilitated transport membranes,including the influence of water,the effect of temperature,the saturation effect of the carrier,and the process configuration.Finally,we also delve into the challenges and competitiveness of facilitated transport membranes.展开更多
基金support from the National Natural Science Foundation of China(32271809,31890774)National Natural Science Foundation for Youth(32001283)Fundamental Research Funds for the Central Nonprofit Research Institution of Chinese Academy of Forestry(CAFYBB2021QB004).
文摘In recent years,bio-based polymeric materials have attracted increased attention owing to their distinctive prop-erties,including richness,sustainability,environmental friendliness,and biodegradability.This article reviews the recent developments and potential trends of research on bio-based polymers synthesized from various re-newable resources.It covers the resources and structures of bio-based monomers,the methods of synthesis and properties of bio-based thermoplastics and thermosets,the production of bio-based composites and the fabrica-tion of functional bio-based polymers.Finally,the technological and future challenges related to enabling these materials to apply in the industry have been discussed,together with the potential solutions or directions.
文摘Triglyceride oil of plant seed cannot be used on its own without further modification. The fatty acids must be suitably functionalized in order to add polymerisable functionalities which will help in the curing process. The purpose of these modifications is to reach a higher level of molecular weight and cross-link density, and also to incorporate chemical functionalities known to impart stiffness in a polymer network. The modification can go through various path ways which were described in this study.
文摘This work contributes to the use of alternative adhesives in the wood-based industry,where pine wood is commonly used.The investigation identifies the influence and the optimal content(8,12 and 15wt%)of a bio-based polyurethane adhesive in the production of medium density particleboards(MDP).A compaction pressure of 4 MPa at 100oC for 10 minutes is considered in the manufacture of panels based on pine wood residues and bio-based resin.The bulk density,flexural modulus(MOE)and strength(MOR)properties under static three-point bending are obtained according to the Brazilian standard NBR 14810.The results are compared with NBR 14810 and other standards to verify its performance based on the minimum requirements.Bulk density is not significantly affected by the investigated adhesive levels.MOE and MOR reach average values equivalent to 12wt%and 15wt%of the adhesive,and both meet the minimum requirements established in international normative documents.The adhesive level range responsible for maximizingρ,MOE and MOR is between 12.42wt%and 15.79wt%.
基金the foundational support by the Fundamental Research Funds for the Central Universities(BLX202132)the foundational support by the Beijing Youth Talent Funding Program-Visiting program for young foreign scholars(Q2023043)IIT(BHU)Varanasi.
文摘Due to their extraordinary durability and thermal stability,Epoxy Resin Thermosets(ERTs)are essential in various industries.However,their poor recyclability leads to unacceptable environmental pollution.In this study,Wu et al.successfully synthesized a completely bio-based ERT using lignocellulose-derived building blocks which exhibit outstanding thermal and mechanical properties.Remarkably,these bio-materials degrade via methanolysis without the need of any catalyst,presenting a smart and cost-effective recycling strategy.Furthermore,this approach could be employed for fabricating reusable composites comprising glass fiber and plant fiber,thereby expanding its applications in sustainable transportation,coatings,paints or biomedical devices.
基金Natural Science Foundation of China(Grant Nos.32471815 and 32401528)Natural Science Foundation of Jiangsu Province of China(Grant Nos.BK20241745 and BK20240294).
文摘With the increasing consumption of non renewable resources such as oil,the traditional polymer manufacturing industry that relies on fossil resources is facing unprecedented challenges.The design,synthesis,and recycling of renewable and environmentally friendly bio-based polymers as alternatives to petroleum based polymers have become hot topics in research and industrial fields.Biomass has been used as a raw material to design and synthesize closed-loop recyclable polymers,which is of great significance in addressing the waste of resources and negative impact on the environment in the traditional polymer preparation process.This review summarized recent advances in the design,synthesis,and properties of closed-loop recyclable bio-based polymers,focusing on the sustainability and recyclability of bio-based materials,followed by a brief discussion of the potential applications of closed-loop recyclable bio-based polymers in emerging applications such as 3D printing and friction electric nanogenerators.In addition,perspectives and recommendations for future research on closedloop recyclable bio-based polymers were presented.
基金support from the NSERC Strategic Network-Innovative Green Wood Fibre Product(Canada)Natural Science Foundation of China(Grant No.21466005)are gratefully acknowledged.
文摘Synthetic polymers are the most widely used materials for packaging because of their ease of processing,low cost,and low density.However,many of these materials are not easily recyclable and are difficult to degrade completely in nature,creating environmental problems.Thus,there is a tendency to substitute such polymers with natural polymers and copolymers that are easily bio-degraded and less likely to cause environmental pollution.There has been a greater interest in poly-lactic acid(PLA),poly-hydroxyalkanoates(PHAs),cellulose and starch based polymers and copolymers as the emerging biodegradable material candidates for the future.This paper reviews the present state-of-the-art biodegradable polymers made from renewable resources and discusses the main features of their properties and design.
基金funded by the Latvian Council of Science,project“High bio-based content thermoset polymer foam development from plant origin oils (Bio-Mer)” (No.lzp-2020/1-0385)supported by ESF within Project"Strengthening of PhD students and academic personnel of Riga Technical University and BA School of Business and Finance in the strategic fields of specialization" (No 8.2.2.0/20/I/008)of the Specific Objective 8.2.2"To Strengthen Academic Staffof Higher Education Institutions in Strategic Specialization Areas"of the Operational Programme"Growth and Employment”supported by Riga Technical University’s Doctoral Grant programme.
文摘It is crucial to adapt the processing of forest bio-resources into biochemicals and bio-based ad-vanced materials in order to transform the current economic climate into a greener economy.Tall oil,as a by-product of the Kraft process of wood pulp manufacture,is a promising resource for the extraction of various value-added products.Tall oil fatty acids-based multifunctional Michael acceptor acrylates were developed.The suitability of developed acrylates for polymerization with tall oil fatty acids-based Michael donor acetoacetates to form a highly cross-linked polymer ma-terial via the Michael addition was investigated.With this novel strategy,valuable chemicals and innovative polymer materials can be produced from tall oil in an entirely new way,making a significant contribution to the development of a forest-based bioeconomy.Two different tall oil-based acrylates were successfully synthesized and characterized.Synthesized acrylates were successfully used in the synthesis of bio-based thermoset polymers.Obtained polymers had a wide variety of mechanical and thermal properties(glass transition temperature from-12.1 to 29.6°C by dynamic mechanical analysis,Young’s modulus from 15 to 1760 MPa,and stress at break from 0.9 to 16.1 MPa).Gel permeation chromatography,Fourier-transform infrared(FT-IR)spectroscopy,matrix-assisted laser desorption/ionization-time of flight mass spectrometry,and nuclear magnetic resonance were used to analyse the chemical structure of synthesized acrylates.In addition,various titration methods and rheology tests were applied to characterize acrylates.The chemical composition and thermal and mechanical properties of the developed polymers were studied by using FT-IR,solid-state nuclear magnetic resonance,thermal gravimetric analy-sis,differential scanning calorimetry,dynamic mechanical analysis,and universal strength testing apparatus.
基金supported by the National Natural Science Foundation of China(No.51803041)the University and Local Integration Development Project of Yantai,China(No.2022 XDRHXMXK08).
文摘Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research.
基金financially supported by the National Natural Science Foundation of China(Nos.52233001,51927805,and 52173110)the Innovation Program of Shanghai Municipal Education Commission(No.2023ZKZD07)the Shanghai Rising-Star Program(No.22QA1401200)。
文摘Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact.
基金supported by the National Nature Science Foundation of China(Nos.62075079,62305127,61975200)the Natural Science Foundation of Jilin Province(20230508135RC)the Science and Technology Development Foundation of Changchun City(23GZZ15).
文摘The fluorescence imaging (FLI) in the second near-infrared window (NIR-II, 1000–1700nm) has attracted considerable attention in the past decade. In contrast to conventional NIR-I window excitation (808nm/980nm), FLI with NIR-II window excitation (1064nm/other wavelength beyond 1000nm) can afford deeper tissue penetration depth with high clarity due to the merits of suppressed photon scattering and diminished autofluorescence. In this review, we have summarized NIR-II window excitable/emissive organic/polymeric fluorophores recently developed. The characteristics of these fluorophores such as chemical structures and photophysical properties have also been critically discussed. Furthermore, the latest development of noninvasive in vivo FLI with NIR-II excitation was highlighted. The ideal imaging results emphasized the importance of NIR-II excitation of these fluorophores in enabling deep tissue penetration and high-resolution imaging. Finally, a perspective on the challenges and prospects of NIR-II excitable/emissive organic/polymeric fluorophores was also discussed. We expected this review will be served as a source of inspiration for researchers, stimulating the creation of novel NIR-II excitable fluorophores and fostering the development of bioimaging applications.
基金supported by the National Natural Science Foundation of China(Nos.32301259,32101228,32271527 and 32371536)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Nos.2022C02023 and 2023C02015)+1 种基金the Research Foundation of Talented Scholars of Zhejiang A&F University(No.2021LFR058)the Dean-ship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-177-01”.
文摘As a typical bioflavonoid,diosmetin is desirable in the field of natural medicine,healthy food,and cosmetics by anti-cancer,antibacterial,antioxidant,estrogen-like and anti-inflammatory activities,and it comes from a wide range of sources in traditional Chinese medicine like spider fragrance,spearmint and chrysanthemum,as well as in Citrus fruit.However,traditional analytical methods such as silica gel column chromatography face multiple challenges in the selective extraction of diosmetin from biological materials and traditional Chinese medicinal materials.Therefore,it is urgent to develop a new type of absorbent with high efficiency,recyclability and good specificity to diosmetin.In this investigation,a magnetic surface molecularly imprinted polymer(labeled as Diosmetin/SMIPs)was synthesized employing magnetic nanoparticles as the carrier and 4-vinylpyridinyl(4-VP)as the functional monomer by surface imprinting technology.The functional monomer was screened by the binding energy(△E)between functional monomers and template molecules via computational simulation.The Diosmetin/SMIPs had a high level of specific recognition and adsorption capability towards diosmetin with a 20.25 mg g^(-1) adsorption capacity and an imprinting factor(IF)of 2.28.Additionally,it demonstrated excellent regeneration performance with 8 adsorption/desorption cycles.In addition,91.20%-94.16% of spiked diosmetin was recovered from the lemon peel samples.The strategy of constructing Diosmetin/SMIPs based on computational simulation can effectively enhance the specific adsorption performance of diosmetin.Meanwhile,Diosmetin/SMIPs synthesized by imprinting polymerization showed excellent anti-interference and reusability,and realized efficient targeted extraction of diosmetin from lemon peel samples.The results of this investigation provide a promising adsorbent for selective enrichment of diosmetin from Citrus fruit and complicated materials.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.22035001 and No.52233005.
文摘To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoinduced electron transfer reversible addition-fragmentation chain-transfer(PET-RAFT)polymerization is a precise methodology for constructing polymers with well-defined structures.However,conventional semiconductor-mediated PET-RAFT polymerization still has considerable limitations in terms of efficiency as well as the polymerization environment.Herein,sulfur-doped carbonized polymer dots(CPDs)were hydrothermally synthesized for catalysis of aqueous PET-RAFT polymerization at unprecedented efficiency with a highest propagation rate of 5.05 h-1.The resulting polymers have well-controlled molecular weight and narrow molecular weight dispersion(Ð<1.10).Based on the optoelectronic characterizations,we obtained insights into the photoinduced electron transfer process and proposed the mechanism for CPD-mediated PET-RAFT polymerization.In addition,as-synthesized CPDs for PET-RAFT polymerization were also demonstrated to be suitable for a wide range of light sources(blue/green/solar irradiation),numerous monomers,low catalyst loading(low as 0.01 mg mL^(-1)),and multiple polar solvent environments,all of which allowed to achieve efficiencies much higher than those of existing semiconductor-mediated methods.Finally,the CPDs were confirmed to be non-cytotoxic and catalyzed PET-RAFT polymerization successfully in cell culture media,indicating broad prospects in biomedical fields.
文摘In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water crisis.This review explores the latest advancements in the application of smart materials—including biomaterials,nanocomposites,and stimuli-responsive polymers—specifically for water treatment.It examines their effectiveness in detecting and removing various types of pollutants,including organic contaminants,heavy metals,and microbial infections,while adapting to dynamic environmental conditions such as fluctuations in temperature,pH,and pressure.The review highlights the remarkable versatility of these materials,emphasizing their multifunctionality,which allows them to address a wide range of water quality issues with high efficiency and low environmental impact.Moreover,it explores the potential of smart materials to overcome significant challenges in water purification,such as the need for real-time pollutant detection and targeted removal processes.The research also discusses the scalability and future development of these materials,considering their cost-effectiveness and potential for large-scale application.By aligning with the principles of sustainable development,smart materials represent a promising direction for ensuring global water security,offering both innovative solutions for current water pollution issues and long-term benefits for the environment and public health.
基金supported by National Natural Science Foundation of China(82104082)Natural Science Foundation of Qinghai Province(2024-ZJ-911).
文摘The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers are the predominant choices and have been extensively investigated and reviewed.Beyond these vectors,polymeric nanocarriers also hold the promise in therapeutic gene delivery owing to their versatile functionalities,such as improving the stability,cellar uptake and endosomal escape of nucleic acid drugs,along with precise delivery to targeted tissues.This review presents a brief overview of the status quo of the emerging polymeric nanocarriers for therapeutic gene delivery,focusing on key cationic polymers,nanocarrier types,and preparation methods.It also highlights targeted diseases,strategies to improve delivery efficiency,and potential future directions in this research area.The review is hoped to inspire the development,optimization,and clinical translation of highly efficient polymeric nanocarriers for therapeutic gene delivery.
基金supported by the National Natural Science Foundation of China(No.92367107)。
文摘Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration efficiency,complex denitration system,and high investment and operating cost.Here we put forward a novel polymer non-catalytic reduction(PNCR)technology that utilized a new type of polymer agent to remove NO_(x),and the proposed PNCR technology was applied to the existing waste-to-energy plant to test the denitration performance.The PNCR technology demonstrated excellent denitration performance with a NO_(x) emission concentration of<100 mg/Nm^(3) and high denitration efficiency of>75%at the temperature range of 800-900℃,which showed the application feasibility even on the complex and unstable industrial operating conditions.In addition,PNCR and hybrid polymer/selective non-catalytic reduction(PNCR/SNCR)technology possessed remarkable economic advantages including low investment fee and low operating cost of<10 CNY per ton of municipal solid waste(MSW)compared with selective catalytic reduction(SCR)technology.The excellent denitration performance of PNCR technology forebodes a broad industrial application prospect in the field of flue gas cleaning for waste-to-energy plants.
基金financially supported by the Science and Technology Development Project of Henan Province,China(No.242102241042)the Joint Fund of Henan Province Science and Technology R&D Program(No.225200810093)+1 种基金the Startup Research of Henan Academy of Sciences(No.231817001)the Key Innovation Projects for Postgraduates of Henan Academy of Sciences(No.24331712)。
文摘Aqueous zinc-ion batteries are regarded as promising electrochemical energy-storage systems for various applications because of their high safety,low costs,and high capacities.However,dendrite formation and side reactions during zinc plating or stripping greatly reduce the capacity and cycle life of a battery and subsequently limit its practical application.To address these issues,we modified the surface of a zinc anode with a functional bilayer composed of zincophilic Cu and flexible polymer layers.The zincophilic Cu interfacial layer was prepared through CuSO_(4)solution pretreatment to serve as a nucleation site to facilitate uniform Zn deposition.Meanwhile,the polymer layer was coated onto the Cu interface layer to serve as a protective layer that would prevent side reactions between zinc and electrolytes.Benefiting from the synergistic effect of the zincophilic Cu and protective polymer layers,the symmetric battery exhibits an impressive cycle life,lasting over 2900 h at a current density of 1 m A·cm^(-2)with a capacity of 1 m A·h·cm^(-2).Moreover,a full battery paired with a vanadium oxide cathode achieves a remarkable capacity retention of 72%even after 500 cycles.
文摘One Yb(Ⅲ)-based coordination polymer,{[Yb(H_(2)dhtp)1.5(H_(2)O)_(4)]·3H_(2)O}n(1)(H_(4)dhtp=2,5-dihydroxytere-phthalic acid),was fabricated and structurally characterized by single-crystal X-ray diffraction,IR,powder X-ray diffraction,X-ray diffraction,and elemental analysis.Complex 1 displays a 1D chain structure,and belongs to P1 group.The solid-state luminescent spectrum of 1 showed an emission band with the maximum at 508 nm(λex=408 nm).It exhibited the emission characteristic of the H_(4)dhtp ligand.The fluorescence of 1 in water displayed the stron-gest intensity.In detecting various metal ions,adding Zr^(4+)led to a blue shift in fluorescence,accompanied by an increase in intensity,whereas the presence of Fe^(3+)resulted in a decrease in luminescence.The changes observed in the IR spectrum indicate an interaction between Fe^(3+)/Zr^(4+)and complex 1,resulting in the variation of luminescence properties.
基金supported by the Fundamental Research Funds for the Central Universities(Nos.2232023D-01 and 2232023D-07)the Shanghai Science&Technology Committee(No.22ZR1403300)the National Natural Science Foundation of China(No.52372040).
文摘Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of high-temperature treatments has introduced uncertainties regarding the compositions and microstructures of resulting derivatives.Additionally,complete carbonization has led to diminished yields of the produced carbon composites,significantly limiting their practical applications.Consequently,the exploration of pristine MOF-based EMW absorbers presents an intriguing yet challenging endeavor,primarily due to inherently low electrical conductivity.In this study,we showcase the utilization of structurally robust Zr-MOFs as scaffolds to build highly conductive Zr-MOF/PPy composites via an inner-outer dual-modification approach,which involves the production of conducting polypyrrole(PPy)both within the confined nanoporous channels and the external surface of Zr-MOFs via post-synthetic modification.The interconnection of confined PPy and surface-lined PPy together leads to a consecutive and extensive conducting network to the maximum extent.This therefore entails outstanding conductivity up to~14.3 S cm^(-1) in Zr-MOF/PPy composites,which is approximately 1-2 orders of magnitude higher than that for conductive MOF nanocomposites constructed from either inner or outer modification.Benefiting from the strong and tunable conduction loss,as well as the induced dielectric polarization originated from the porous structures and MOF-polymer interfaces,Zr-MOF/PPy exhibits excellent microwave attenuation capabilities and a tunable absorption frequency range.Specifically,with only 15 wt.%loading,the minimum reflection loss(RLmin)can reach up to-67.4 dB,accompanied by an effective absorption bandwidth(EAB)extending to 6.74 GHz.Furthermore,the microwave absorption characteristics can be tailored from the C-band to the Ku-band by adjusting the loading of PPy.This work provides valuable insights into the fabrication of conductive MOF composites by presenting a straightforward pathway to enhance and reg-ulate electrical conduction in MOF-based nanocomposites,thus paving a way to facilely fabricate pristine MOF-based microwave absorbers.
文摘Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic coor-dination polymer[Cd(bcbpy)I_(2)]·2H_(2)O(1)was constructed.Complex 1 displays a 1D chain structure and exhibits thermochromic behavior.Under different temperature stimulation,the complex(ground)slowly changed from green to yellow-green,and with the increase of temperature,the color of complex 1 gradually deepened,and finally became orange-yellow.Therefore,complex 1 was prepared as a thermochromic film.In addition,we also performed electrochemical tests on complex 1,which showed that the complex is a semiconductor material.CCDC:2391802.
文摘Facilitated transport membranes for post-combustion carbon capture are one of the technologies to achieve efficient and large-scale capture.The central principle is to utilize the affinity of CO_(2) for the carrier to achieve efficient separation and to break the Robson upper bound.This paper reviews the progress of facilitated transport membranes research regarding polymer materials,principles,and problems faced at this stage.Firstly,we briefly introduce the transport mechanism of the facilitated transport membranes.Then the research progress of several major polymers used for facilitated transport membranes for CO_(2)/N_(2) separation was presented in the past five years.Additionally,we analyze the primary challenges of facilitated transport membranes,including the influence of water,the effect of temperature,the saturation effect of the carrier,and the process configuration.Finally,we also delve into the challenges and competitiveness of facilitated transport membranes.