期刊文献+
共找到53,947篇文章
< 1 2 250 >
每页显示 20 50 100
Bio-based polymeric materials synthesized from renewable resources: A mini-review 被引量:5
1
作者 Yitong Xie Shishuai Gao +2 位作者 Daihui Zhang Chunpeng Wang Fuxiang Chu 《Resources Chemicals and Materials》 2023年第3期223-230,共8页
In recent years,bio-based polymeric materials have attracted increased attention owing to their distinctive prop-erties,including richness,sustainability,environmental friendliness,and biodegradability.This article re... In recent years,bio-based polymeric materials have attracted increased attention owing to their distinctive prop-erties,including richness,sustainability,environmental friendliness,and biodegradability.This article reviews the recent developments and potential trends of research on bio-based polymers synthesized from various re-newable resources.It covers the resources and structures of bio-based monomers,the methods of synthesis and properties of bio-based thermoplastics and thermosets,the production of bio-based composites and the fabrica-tion of functional bio-based polymers.Finally,the technological and future challenges related to enabling these materials to apply in the industry have been discussed,together with the potential solutions or directions. 展开更多
关键词 Biobased polymers Renewable resources MATERIALS FUNCTIONALITY
在线阅读 下载PDF
Bio-Based Polymers for Technical Applications: A Review — Part 2
2
作者 Kayode Feyisetan Adekunle 《Open Journal of Polymer Chemistry》 2014年第4期95-101,共7页
Triglyceride oil of plant seed cannot be used on its own without further modification. The fatty acids must be suitably functionalized in order to add polymerisable functionalities which will help in the curing proces... Triglyceride oil of plant seed cannot be used on its own without further modification. The fatty acids must be suitably functionalized in order to add polymerisable functionalities which will help in the curing process. The purpose of these modifications is to reach a higher level of molecular weight and cross-link density, and also to incorporate chemical functionalities known to impart stiffness in a polymer network. The modification can go through various path ways which were described in this study. 展开更多
关键词 PLANT OILS THERMOSET Synthesis bio-based CURING
暂未订购
Determination of the Adhesive Content of Medium Density Particleboards Produced with Bio-based Polymer
3
作者 Vinícius Borges de Moura Aquino Edson Fernando Castanheira Rodrigues +3 位作者 Isabela Matias Pietrobon AndréLuis Christoforo Francisco Antonio Rocco Lahr Tulio Hallak Panzera 《Journal of Building Material Science》 2019年第2期20-24,共5页
This work contributes to the use of alternative adhesives in the wood-based industry,where pine wood is commonly used.The investigation identifies the influence and the optimal content(8,12 and 15wt%)of a bio-based po... This work contributes to the use of alternative adhesives in the wood-based industry,where pine wood is commonly used.The investigation identifies the influence and the optimal content(8,12 and 15wt%)of a bio-based polyurethane adhesive in the production of medium density particleboards(MDP).A compaction pressure of 4 MPa at 100oC for 10 minutes is considered in the manufacture of panels based on pine wood residues and bio-based resin.The bulk density,flexural modulus(MOE)and strength(MOR)properties under static three-point bending are obtained according to the Brazilian standard NBR 14810.The results are compared with NBR 14810 and other standards to verify its performance based on the minimum requirements.Bulk density is not significantly affected by the investigated adhesive levels.MOE and MOR reach average values equivalent to 12wt%and 15wt%of the adhesive,and both meet the minimum requirements established in international normative documents.The adhesive level range responsible for maximizingρ,MOE and MOR is between 12.42wt%and 15.79wt%. 展开更多
关键词 PARTICLEBOARD Pinus wood bio-based adhesive Tukey test Regression model
在线阅读 下载PDF
Recyclable bio-based epoxy resin thermoset polymer from wood for circular economy
4
作者 Bowen Zhang Saravanakumar Elangovan Zhuohua Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第12期1781-1783,共3页
Due to their extraordinary durability and thermal stability,Epoxy Resin Thermosets(ERTs)are essential in various industries.However,their poor recyclability leads to unacceptable environmental pollution.In this study,... Due to their extraordinary durability and thermal stability,Epoxy Resin Thermosets(ERTs)are essential in various industries.However,their poor recyclability leads to unacceptable environmental pollution.In this study,Wu et al.successfully synthesized a completely bio-based ERT using lignocellulose-derived building blocks which exhibit outstanding thermal and mechanical properties.Remarkably,these bio-materials degrade via methanolysis without the need of any catalyst,presenting a smart and cost-effective recycling strategy.Furthermore,this approach could be employed for fabricating reusable composites comprising glass fiber and plant fiber,thereby expanding its applications in sustainable transportation,coatings,paints or biomedical devices. 展开更多
关键词 Epoxy resin thermosets LIGNOCELLULOSE METHANOLYSIS bio-based material
在线阅读 下载PDF
Recent advances of sustainable and recyclable polymer materials from renewable resources
5
作者 Ting Luo Yun Hu +2 位作者 Meng Zhang Puyou Jia Yonghong Zhou 《Resources Chemicals and Materials》 2025年第2期13-23,共11页
With the increasing consumption of non renewable resources such as oil,the traditional polymer manufacturing industry that relies on fossil resources is facing unprecedented challenges.The design,synthesis,and recycli... With the increasing consumption of non renewable resources such as oil,the traditional polymer manufacturing industry that relies on fossil resources is facing unprecedented challenges.The design,synthesis,and recycling of renewable and environmentally friendly bio-based polymers as alternatives to petroleum based polymers have become hot topics in research and industrial fields.Biomass has been used as a raw material to design and synthesize closed-loop recyclable polymers,which is of great significance in addressing the waste of resources and negative impact on the environment in the traditional polymer preparation process.This review summarized recent advances in the design,synthesis,and properties of closed-loop recyclable bio-based polymers,focusing on the sustainability and recyclability of bio-based materials,followed by a brief discussion of the potential applications of closed-loop recyclable bio-based polymers in emerging applications such as 3D printing and friction electric nanogenerators.In addition,perspectives and recommendations for future research on closedloop recyclable bio-based polymers were presented. 展开更多
关键词 bio-based polymer Closed-loop recycling Dynamic crosslinking Chemical recycling
在线阅读 下载PDF
An overview of bio-based polymers for packaging materials 被引量:3
6
作者 Yuanfeng Pan Madjid Farmahini-Farahani +2 位作者 Perry O’Hearn Huining Xiao Helen Ocampo 《Journal of Bioresources and Bioproducts》 EI 2016年第3期106-113,共8页
Synthetic polymers are the most widely used materials for packaging because of their ease of processing,low cost,and low density.However,many of these materials are not easily recyclable and are difficult to degrade c... Synthetic polymers are the most widely used materials for packaging because of their ease of processing,low cost,and low density.However,many of these materials are not easily recyclable and are difficult to degrade completely in nature,creating environmental problems.Thus,there is a tendency to substitute such polymers with natural polymers and copolymers that are easily bio-degraded and less likely to cause environmental pollution.There has been a greater interest in poly-lactic acid(PLA),poly-hydroxyalkanoates(PHAs),cellulose and starch based polymers and copolymers as the emerging biodegradable material candidates for the future.This paper reviews the present state-of-the-art biodegradable polymers made from renewable resources and discusses the main features of their properties and design. 展开更多
关键词 bio-based polymers environmental aspects packaging materials poly(lactic acid) CELLULOSE
在线阅读 下载PDF
Wood pulp industry by-product valorization for acrylate synthesis and bio-based polymer development via Michael addition reaction
7
作者 Ralfs Pomilovskis Eliza Kaulina +4 位作者 Inese Mierina Arnis Abolins Olga Kockova Anda Fridrihsone Mikelis Kirpluks 《Journal of Bioresources and Bioproducts》 EI CSCD 2023年第3期265-279,共15页
It is crucial to adapt the processing of forest bio-resources into biochemicals and bio-based ad-vanced materials in order to transform the current economic climate into a greener economy.Tall oil,as a by-product of t... It is crucial to adapt the processing of forest bio-resources into biochemicals and bio-based ad-vanced materials in order to transform the current economic climate into a greener economy.Tall oil,as a by-product of the Kraft process of wood pulp manufacture,is a promising resource for the extraction of various value-added products.Tall oil fatty acids-based multifunctional Michael acceptor acrylates were developed.The suitability of developed acrylates for polymerization with tall oil fatty acids-based Michael donor acetoacetates to form a highly cross-linked polymer ma-terial via the Michael addition was investigated.With this novel strategy,valuable chemicals and innovative polymer materials can be produced from tall oil in an entirely new way,making a significant contribution to the development of a forest-based bioeconomy.Two different tall oil-based acrylates were successfully synthesized and characterized.Synthesized acrylates were successfully used in the synthesis of bio-based thermoset polymers.Obtained polymers had a wide variety of mechanical and thermal properties(glass transition temperature from-12.1 to 29.6°C by dynamic mechanical analysis,Young’s modulus from 15 to 1760 MPa,and stress at break from 0.9 to 16.1 MPa).Gel permeation chromatography,Fourier-transform infrared(FT-IR)spectroscopy,matrix-assisted laser desorption/ionization-time of flight mass spectrometry,and nuclear magnetic resonance were used to analyse the chemical structure of synthesized acrylates.In addition,various titration methods and rheology tests were applied to characterize acrylates.The chemical composition and thermal and mechanical properties of the developed polymers were studied by using FT-IR,solid-state nuclear magnetic resonance,thermal gravimetric analy-sis,differential scanning calorimetry,dynamic mechanical analysis,and universal strength testing apparatus. 展开更多
关键词 Tall oil fatty acid Fatty acids-based michael acceptor bio-based acrylate Michael addition bio-based polymer
在线阅读 下载PDF
Iron-nitrogen-doped porous carbon absorbers constructed from hypercrosslinked ferrocene polymers for efficient electromagnetic wave absorption 被引量:1
8
作者 Yi Hu Yijia Zhou +4 位作者 Lijia Liu Qiang Wang Chunhong Zhang Hao Wei Yudan Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期578-590,共13页
Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of ni... Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research. 展开更多
关键词 hypercrosslinked polymers porous carbon iron-nitrogen doping annealing
在线阅读 下载PDF
Dynamic Structural Colors in Helical Superstructures:from Supramolecules to Polymers 被引量:1
9
作者 Bo Ji Lang Qin Yan-Lei Yu 《Chinese Journal of Polymer Science》 2025年第3期406-428,共23页
Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.... Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact. 展开更多
关键词 Structural colors Cholesteric liquid crystals Elastomers polymer network
原文传递
The second near-infrared (NIR-II) window excitable/emissive organic/polymeric fluorescent molecules for bioimaging application 被引量:1
10
作者 Guannan Liu Chenguang Wang Geyu Lu 《Journal of Innovative Optical Health Sciences》 2025年第3期25-43,共19页
The fluorescence imaging (FLI) in the second near-infrared window (NIR-II, 1000–1700nm) has attracted considerable attention in the past decade. In contrast to conventional NIR-I window excitation (808nm/980nm), FLI ... The fluorescence imaging (FLI) in the second near-infrared window (NIR-II, 1000–1700nm) has attracted considerable attention in the past decade. In contrast to conventional NIR-I window excitation (808nm/980nm), FLI with NIR-II window excitation (1064nm/other wavelength beyond 1000nm) can afford deeper tissue penetration depth with high clarity due to the merits of suppressed photon scattering and diminished autofluorescence. In this review, we have summarized NIR-II window excitable/emissive organic/polymeric fluorophores recently developed. The characteristics of these fluorophores such as chemical structures and photophysical properties have also been critically discussed. Furthermore, the latest development of noninvasive in vivo FLI with NIR-II excitation was highlighted. The ideal imaging results emphasized the importance of NIR-II excitation of these fluorophores in enabling deep tissue penetration and high-resolution imaging. Finally, a perspective on the challenges and prospects of NIR-II excitable/emissive organic/polymeric fluorophores was also discussed. We expected this review will be served as a source of inspiration for researchers, stimulating the creation of novel NIR-II excitable fluorophores and fostering the development of bioimaging applications. 展开更多
关键词 Fluorescence imaging NEAR-INFRARED excitation wavelength organic fluorophores conjugated polymers
原文传递
Convenient and highly efficient adsorption of diosmetin from lemon peel by magnetic surface molecularly imprinted polymers 被引量:1
11
作者 Dongliang Xie Yi Kuang +12 位作者 Bingnan Yuan Yunlong Zhang Chenyu Ye Yuyi Guo Hua Qiu Juanna Ren Saud O.Alshammari Qamar A.Alshammari Zeinhom M.El-Bahy Kui Zhao Zhanhu Guo Qingqing Rao Shengxiang Yang 《Journal of Materials Science & Technology》 2025年第8期159-170,共12页
As a typical bioflavonoid,diosmetin is desirable in the field of natural medicine,healthy food,and cosmetics by anti-cancer,antibacterial,antioxidant,estrogen-like and anti-inflammatory activities,and it comes from a ... As a typical bioflavonoid,diosmetin is desirable in the field of natural medicine,healthy food,and cosmetics by anti-cancer,antibacterial,antioxidant,estrogen-like and anti-inflammatory activities,and it comes from a wide range of sources in traditional Chinese medicine like spider fragrance,spearmint and chrysanthemum,as well as in Citrus fruit.However,traditional analytical methods such as silica gel column chromatography face multiple challenges in the selective extraction of diosmetin from biological materials and traditional Chinese medicinal materials.Therefore,it is urgent to develop a new type of absorbent with high efficiency,recyclability and good specificity to diosmetin.In this investigation,a magnetic surface molecularly imprinted polymer(labeled as Diosmetin/SMIPs)was synthesized employing magnetic nanoparticles as the carrier and 4-vinylpyridinyl(4-VP)as the functional monomer by surface imprinting technology.The functional monomer was screened by the binding energy(△E)between functional monomers and template molecules via computational simulation.The Diosmetin/SMIPs had a high level of specific recognition and adsorption capability towards diosmetin with a 20.25 mg g^(-1) adsorption capacity and an imprinting factor(IF)of 2.28.Additionally,it demonstrated excellent regeneration performance with 8 adsorption/desorption cycles.In addition,91.20%-94.16% of spiked diosmetin was recovered from the lemon peel samples.The strategy of constructing Diosmetin/SMIPs based on computational simulation can effectively enhance the specific adsorption performance of diosmetin.Meanwhile,Diosmetin/SMIPs synthesized by imprinting polymerization showed excellent anti-interference and reusability,and realized efficient targeted extraction of diosmetin from lemon peel samples.The results of this investigation provide a promising adsorbent for selective enrichment of diosmetin from Citrus fruit and complicated materials. 展开更多
关键词 Diosmetin Selective extraction Magnetic molecularly imprinted polymer Lemon peel
原文传递
Sulfur-Doped Carbonized Polymer Dots:A Biocompatible Photocatalyst for Rapid Aqueous PET-RAFT Polymerization 被引量:1
12
作者 Yue Yu Songyuan Tao +3 位作者 Qingsen Zeng Zhihui Ma Kai Zhang Bai Yang 《Carbon Energy》 2025年第3期186-195,共10页
To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoin... To achieve the target of carbon neutrality,it is crucial to develop an efficient and green synthesis methodology with good atomic economy to achieve sufficient utilization of energy and sustainable development.Photoinduced electron transfer reversible addition-fragmentation chain-transfer(PET-RAFT)polymerization is a precise methodology for constructing polymers with well-defined structures.However,conventional semiconductor-mediated PET-RAFT polymerization still has considerable limitations in terms of efficiency as well as the polymerization environment.Herein,sulfur-doped carbonized polymer dots(CPDs)were hydrothermally synthesized for catalysis of aqueous PET-RAFT polymerization at unprecedented efficiency with a highest propagation rate of 5.05 h-1.The resulting polymers have well-controlled molecular weight and narrow molecular weight dispersion(Ð<1.10).Based on the optoelectronic characterizations,we obtained insights into the photoinduced electron transfer process and proposed the mechanism for CPD-mediated PET-RAFT polymerization.In addition,as-synthesized CPDs for PET-RAFT polymerization were also demonstrated to be suitable for a wide range of light sources(blue/green/solar irradiation),numerous monomers,low catalyst loading(low as 0.01 mg mL^(-1)),and multiple polar solvent environments,all of which allowed to achieve efficiencies much higher than those of existing semiconductor-mediated methods.Finally,the CPDs were confirmed to be non-cytotoxic and catalyzed PET-RAFT polymerization successfully in cell culture media,indicating broad prospects in biomedical fields. 展开更多
关键词 aqueous PET-RAFT polymerization carbonized polymer dots photocatalysis ultrahigh efficiency
在线阅读 下载PDF
Innovative Approaches in Water Decontamination: A Critical Analysis of Biomaterials, Nanocomposites, and Stimuli-Responsive Polymers for Effective Solutions 被引量:1
13
作者 Rakesh Namdeti Gaddala Babu Rao +5 位作者 Nageswara Rao Lakkimsetty Muayad Abdullah Ahmed Qatan Doaa Salim Musallam Samhan Al-Kathiri Lakhayar Amer Al Amri Noor Mohammed Said Qahoor Arlene Abuda Joaquin 《Journal of Environmental & Earth Sciences》 2025年第1期92-102,共11页
In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water cr... In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water crisis.This review explores the latest advancements in the application of smart materials—including biomaterials,nanocomposites,and stimuli-responsive polymers—specifically for water treatment.It examines their effectiveness in detecting and removing various types of pollutants,including organic contaminants,heavy metals,and microbial infections,while adapting to dynamic environmental conditions such as fluctuations in temperature,pH,and pressure.The review highlights the remarkable versatility of these materials,emphasizing their multifunctionality,which allows them to address a wide range of water quality issues with high efficiency and low environmental impact.Moreover,it explores the potential of smart materials to overcome significant challenges in water purification,such as the need for real-time pollutant detection and targeted removal processes.The research also discusses the scalability and future development of these materials,considering their cost-effectiveness and potential for large-scale application.By aligning with the principles of sustainable development,smart materials represent a promising direction for ensuring global water security,offering both innovative solutions for current water pollution issues and long-term benefits for the environment and public health. 展开更多
关键词 Smart Materials Water Purification NANOCOMPOSITES Stimuli-Responsive polymers Sustainable Water Treatment
在线阅读 下载PDF
Polymeric nanocarriers for therapeutic gene delivery 被引量:1
14
作者 Jiayuan Zhang Xinyu Yang +3 位作者 Zhichao Chang Wenwei Zhu Yuhua Ma Haisheng He 《Asian Journal of Pharmaceutical Sciences》 2025年第1期1-25,共25页
The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers... The recent commercialization of gene products has sparked significant interest in gene therapy,necessitating efficient and precise gene delivery via various vectors.Currently,viral vectors and lipid-based nanocarriers are the predominant choices and have been extensively investigated and reviewed.Beyond these vectors,polymeric nanocarriers also hold the promise in therapeutic gene delivery owing to their versatile functionalities,such as improving the stability,cellar uptake and endosomal escape of nucleic acid drugs,along with precise delivery to targeted tissues.This review presents a brief overview of the status quo of the emerging polymeric nanocarriers for therapeutic gene delivery,focusing on key cationic polymers,nanocarrier types,and preparation methods.It also highlights targeted diseases,strategies to improve delivery efficiency,and potential future directions in this research area.The review is hoped to inspire the development,optimization,and clinical translation of highly efficient polymeric nanocarriers for therapeutic gene delivery. 展开更多
关键词 polymeric nanocarriers Therapeutic gene delivery Cationic polymers DISEASES Transfection efficiency STRATEGIES
暂未订购
Application of a low-cost and high-efficiency polymer non-catalytic reduction technology for NO_(x) removal in waste-to-energy plant 被引量:1
15
作者 Shuai Xiao Congbo Li +4 位作者 Xueyan Zheng Liya Li Jingzhong Si Xiuqi Shu Xianqiong Zeng 《Journal of Environmental Sciences》 2025年第12期112-125,共14页
Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration eff... Ultra-low emission of nitrogen oxide(NO_(x))is an irreversible trend for the development of waste-to-energy industry.But traditional approaches to remove NO_(x) face significant challenge s,such as low denitration efficiency,complex denitration system,and high investment and operating cost.Here we put forward a novel polymer non-catalytic reduction(PNCR)technology that utilized a new type of polymer agent to remove NO_(x),and the proposed PNCR technology was applied to the existing waste-to-energy plant to test the denitration performance.The PNCR technology demonstrated excellent denitration performance with a NO_(x) emission concentration of<100 mg/Nm^(3) and high denitration efficiency of>75%at the temperature range of 800-900℃,which showed the application feasibility even on the complex and unstable industrial operating conditions.In addition,PNCR and hybrid polymer/selective non-catalytic reduction(PNCR/SNCR)technology possessed remarkable economic advantages including low investment fee and low operating cost of<10 CNY per ton of municipal solid waste(MSW)compared with selective catalytic reduction(SCR)technology.The excellent denitration performance of PNCR technology forebodes a broad industrial application prospect in the field of flue gas cleaning for waste-to-energy plants. 展开更多
关键词 polymer non-catalytic reduction High denitration efficiency Low operating cost Waste-to-energy plant
原文传递
Zincophilic Cu/flexible polymer heterogeneous interfaces ensuring the stability of zinc metal anodes 被引量:1
16
作者 Luyang Sun Wenjia Zhang +4 位作者 Qiongqiong Lu Pengfei Yue Guoshang Zhang Kexing Song Yanqing Su 《International Journal of Minerals,Metallurgy and Materials》 2025年第7期1719-1729,共11页
Aqueous zinc-ion batteries are regarded as promising electrochemical energy-storage systems for various applications because of their high safety,low costs,and high capacities.However,dendrite formation and side react... Aqueous zinc-ion batteries are regarded as promising electrochemical energy-storage systems for various applications because of their high safety,low costs,and high capacities.However,dendrite formation and side reactions during zinc plating or stripping greatly reduce the capacity and cycle life of a battery and subsequently limit its practical application.To address these issues,we modified the surface of a zinc anode with a functional bilayer composed of zincophilic Cu and flexible polymer layers.The zincophilic Cu interfacial layer was prepared through CuSO_(4)solution pretreatment to serve as a nucleation site to facilitate uniform Zn deposition.Meanwhile,the polymer layer was coated onto the Cu interface layer to serve as a protective layer that would prevent side reactions between zinc and electrolytes.Benefiting from the synergistic effect of the zincophilic Cu and protective polymer layers,the symmetric battery exhibits an impressive cycle life,lasting over 2900 h at a current density of 1 m A·cm^(-2)with a capacity of 1 m A·h·cm^(-2).Moreover,a full battery paired with a vanadium oxide cathode achieves a remarkable capacity retention of 72%even after 500 cycles. 展开更多
关键词 aqueous zinc-ion batteries zinc metal anode zincophilic Cu polymer protective layer DENDRITE
在线阅读 下载PDF
Syntheses,characterization,and luminescence properties of Yb(Ⅲ)-based one-dimensional chain coordination polymer
17
作者 CHEN Wanting MIAO Chufei +4 位作者 LIU Yan ZHENG Bobi ZHENG Xiaoyu XU Han TIAN Jumei 《无机化学学报》 北大核心 2025年第8期1672-1680,共9页
One Yb(Ⅲ)-based coordination polymer,{[Yb(H_(2)dhtp)1.5(H_(2)O)_(4)]·3H_(2)O}n(1)(H_(4)dhtp=2,5-dihydroxytere-phthalic acid),was fabricated and structurally characterized by single-crystal X-ray diffraction,IR,p... One Yb(Ⅲ)-based coordination polymer,{[Yb(H_(2)dhtp)1.5(H_(2)O)_(4)]·3H_(2)O}n(1)(H_(4)dhtp=2,5-dihydroxytere-phthalic acid),was fabricated and structurally characterized by single-crystal X-ray diffraction,IR,powder X-ray diffraction,X-ray diffraction,and elemental analysis.Complex 1 displays a 1D chain structure,and belongs to P1 group.The solid-state luminescent spectrum of 1 showed an emission band with the maximum at 508 nm(λex=408 nm).It exhibited the emission characteristic of the H_(4)dhtp ligand.The fluorescence of 1 in water displayed the stron-gest intensity.In detecting various metal ions,adding Zr^(4+)led to a blue shift in fluorescence,accompanied by an increase in intensity,whereas the presence of Fe^(3+)resulted in a decrease in luminescence.The changes observed in the IR spectrum indicate an interaction between Fe^(3+)/Zr^(4+)and complex 1,resulting in the variation of luminescence properties. 展开更多
关键词 coordination polymers STRUCTURE LUMINESCENCE
在线阅读 下载PDF
Highly electrically conductive MOF/conducting polymer nanocomposites toward tunable electromagnetic wave absorption 被引量:1
18
作者 Xin Wu Peiyuan Kang +5 位作者 Yinghan Zhang Haocheng Guo Shuoying Yang Qi Zheng Lianjun Wang Wan Jiang 《Journal of Materials Science & Technology》 2025年第2期258-269,共12页
Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of h... Metal-organic frameworks(MOFs)have attracted significant interest as self-templates and precursors for the synthesis of carbon-based composites aimed at electromagnetic wave(EMW)absorption.However,the utilization of high-temperature treatments has introduced uncertainties regarding the compositions and microstructures of resulting derivatives.Additionally,complete carbonization has led to diminished yields of the produced carbon composites,significantly limiting their practical applications.Consequently,the exploration of pristine MOF-based EMW absorbers presents an intriguing yet challenging endeavor,primarily due to inherently low electrical conductivity.In this study,we showcase the utilization of structurally robust Zr-MOFs as scaffolds to build highly conductive Zr-MOF/PPy composites via an inner-outer dual-modification approach,which involves the production of conducting polypyrrole(PPy)both within the confined nanoporous channels and the external surface of Zr-MOFs via post-synthetic modification.The interconnection of confined PPy and surface-lined PPy together leads to a consecutive and extensive conducting network to the maximum extent.This therefore entails outstanding conductivity up to~14.3 S cm^(-1) in Zr-MOF/PPy composites,which is approximately 1-2 orders of magnitude higher than that for conductive MOF nanocomposites constructed from either inner or outer modification.Benefiting from the strong and tunable conduction loss,as well as the induced dielectric polarization originated from the porous structures and MOF-polymer interfaces,Zr-MOF/PPy exhibits excellent microwave attenuation capabilities and a tunable absorption frequency range.Specifically,with only 15 wt.%loading,the minimum reflection loss(RLmin)can reach up to-67.4 dB,accompanied by an effective absorption bandwidth(EAB)extending to 6.74 GHz.Furthermore,the microwave absorption characteristics can be tailored from the C-band to the Ku-band by adjusting the loading of PPy.This work provides valuable insights into the fabrication of conductive MOF composites by presenting a straightforward pathway to enhance and reg-ulate electrical conduction in MOF-based nanocomposites,thus paving a way to facilely fabricate pristine MOF-based microwave absorbers. 展开更多
关键词 Conductive mof nanocomposites Electromagnetic wave absorption MOF/conducting polymer Electrical conductivity Zr-MOF/PPy
原文传递
A viologen-based Cd(Ⅱ)coordination polymer:Self-assembly,thermochromism,and electrochemical property
19
作者 LI Xiaonan HAN Hui +3 位作者 ZHANG Yihan XIONG Jing GUO Tingting YAN Juanzhi 《无机化学学报》 北大核心 2025年第7期1439-1444,共6页
Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic... Under the condition of solvothermal synthesis,the viologen ligand 1,1′-bis(3-carboxyphenyl)-(4,4′-bipyri-dine)dichloride(H_(2)bcbpy·2Cl)and KI are coordinated with the metal cadmium ions.A case of thermochromic coor-dination polymer[Cd(bcbpy)I_(2)]·2H_(2)O(1)was constructed.Complex 1 displays a 1D chain structure and exhibits thermochromic behavior.Under different temperature stimulation,the complex(ground)slowly changed from green to yellow-green,and with the increase of temperature,the color of complex 1 gradually deepened,and finally became orange-yellow.Therefore,complex 1 was prepared as a thermochromic film.In addition,we also performed electrochemical tests on complex 1,which showed that the complex is a semiconductor material.CCDC:2391802. 展开更多
关键词 coordination polymer VIOLOGEN THERMOCHROMISM electrochemical property
在线阅读 下载PDF
Facilitated transport membranes in post-combustion carbon capture:Recent advancements in polymer materials and challenges towards practical application 被引量:1
20
作者 Zihan Wang Zhien Zhang +1 位作者 Mohamad Reza Soltanian Ruizhi Pang 《Green Energy & Environment》 2025年第3期500-517,共18页
Facilitated transport membranes for post-combustion carbon capture are one of the technologies to achieve efficient and large-scale capture.The central principle is to utilize the affinity of CO_(2) for the carrier to... Facilitated transport membranes for post-combustion carbon capture are one of the technologies to achieve efficient and large-scale capture.The central principle is to utilize the affinity of CO_(2) for the carrier to achieve efficient separation and to break the Robson upper bound.This paper reviews the progress of facilitated transport membranes research regarding polymer materials,principles,and problems faced at this stage.Firstly,we briefly introduce the transport mechanism of the facilitated transport membranes.Then the research progress of several major polymers used for facilitated transport membranes for CO_(2)/N_(2) separation was presented in the past five years.Additionally,we analyze the primary challenges of facilitated transport membranes,including the influence of water,the effect of temperature,the saturation effect of the carrier,and the process configuration.Finally,we also delve into the challenges and competitiveness of facilitated transport membranes. 展开更多
关键词 Facilitated transport CO_(2)/N_(2)separation polymer materials Membrane stability
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部