期刊文献+
共找到251,338篇文章
< 1 2 250 >
每页显示 20 50 100
Research Status and Prospects of Bio-based Materials for Grease Barrier Coatings on Paper Food Packaging
1
作者 Qi Chen Ruijuan Zhang +3 位作者 Yanqun Su Tao Zhao Qi Du Jingang Liu 《Paper And Biomaterials》 CAS 2023年第4期44-54,共11页
Increased environmental and health concerns over the use of plastic packaging or fluorine-containing coatings,in combination with increased market demand for products with a longer shelf life,make bio-based materials ... Increased environmental and health concerns over the use of plastic packaging or fluorine-containing coatings,in combination with increased market demand for products with a longer shelf life,make bio-based materials one of the most important research candidates for alternative paper packaging materials for oil resistance.These bio-based materials have excellent oxygen and oil barriers,which are critical for food packaging.Moreover,they are biodegradable,naturally renewable,and safe.In this artical,two main groups of bio-based oil repellents for paper food packaging,including polysaccharide-based biopolymers and protein-based biopolymers,are enumerated,and the advantages and weaknesses of bio-based oil repellents are discussed,and effective solutions are proposed.Finally,research status and prospects on the development of bio-based oil-resistant coatings for the food packaging industry are presented. 展开更多
关键词 bio-based materials grease barrier properties paper food packaging
在线阅读 下载PDF
Leather for flexible multifunctional bio-based materials: a review 被引量:4
2
作者 Zhongxue Bai Xuechuan Wang +8 位作者 Manhui Zheng Ouyang Yue Long Xie Siyu Zha Shuyin Dong Tong Li Yanyan Song Mengchen Huang Xinhua Liu 《Journal of Leather Science and Engineering》 2022年第1期225-240,共16页
Nowadays, diverse leather usage conditions and increasing demands from consumers challenge the leather industry. Traditional leather manufacturing is facing long-term challenges, including low-value threshold, confine... Nowadays, diverse leather usage conditions and increasing demands from consumers challenge the leather industry. Traditional leather manufacturing is facing long-term challenges, including low-value threshold, confined applica-tion fields, and environmental issues. Leather inherits all the biomimetic properties of natural skin such as flexibility, sanitation, cold resistance, biocompatibility, biodegradability, and other cross-domain functions, achieving unre-mitting attention in multi-functional bio-based materials. Series of researches have been devoted to creating and developing leather-based flexible multi-functional bio-materials, including antibacterial leather, conductive leather, flame-retardant leather, self-cleaning leather, aromatic leather, and electromagnetic shielding leather. In this review, we provide a comprehensive overview of the commonly used leather-based functional materials. Furthermore, the possible challenges for the development of functional leathers are proposed, and expected development directions of leather-based functional materials are discussed. This review may promote and inspire the emerging preparation and applications of leather for flexible functional bio-based materials. 展开更多
关键词 bio-based materials Functional leather LEATHER-MAKING Leather chemicals
原文传递
Cement-Based Thermoelectric Materials, Devices and Applications
3
作者 Wanqiang Li Chunyu Du +1 位作者 Lirong Liang Guangming Chen 《Nano-Micro Letters》 2026年第1期750-781,共32页
Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement ... Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure. 展开更多
关键词 Functional cement Thermoelectric materials Device structure Smart building
在线阅读 下载PDF
Emerging Role of 2D Materials in Photovoltaics:Efficiency Enhancement and Future Perspectives
4
作者 Ghulam Dastgeer Muhammad Wajid Zulfiqar +7 位作者 Sobia Nisar Rimsha Zulfiqar Muhammad Imran Swagata Panchanan Subhajit Dutta Kamran Akbar Alberto Vomiero Zhiming Wang 《Nano-Micro Letters》 2026年第1期843-895,共53页
The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials off... The growing global energy demand and worsening climate change highlight the urgent need for clean,efficient and sustainable energy solutions.Among emerging technologies,atomically thin two-dimensional(2D)materials offer unique advantages in photovoltaics due to their tunable optoelectronic properties,high surface area and efficient charge transport capabilities.This review explores recent progress in photovoltaics incorporating 2D materials,focusing on their application as hole and electron transport layers to optimize bandgap alignment,enhance carrier mobility and improve chemical stability.A comprehensive analysis is presented on perovskite solar cells utilizing 2D materials,with a particular focus on strategies to enhance crystallization,passivate defects and improve overall cell efficiency.Additionally,the application of 2D materials in organic solar cells is examined,particularly for reducing recombination losses and enhancing charge extraction through work function modification.Their impact on dye-sensitized solar cells,including catalytic activity and counter electrode performance,is also explored.Finally,the review outlines key challenges,material limitations and performance metrics,offering insight into the future development of nextgeneration photovoltaic devices encouraged by 2D materials. 展开更多
关键词 2D materials Photovoltaics Interface engineering Work function tuning Energy harvesting
在线阅读 下载PDF
Cu/Ti-doped O3-type cathode materials for high cyclic stability of sodium-ion batteries
5
作者 Jingjing Dong Liu Pei +6 位作者 Yifei Wang Yan Liu Xingliang Liu Zhidan Diao Jianling Li Yejing Li Xindong Wang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期306-314,共9页
The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batte... The outstanding performance of O3-type NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)(NFM111)at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batteries.However,its poor cycling,owing to highpressure phase transitions,is one of its disadvantages.In this study,Cu/Ti was introduced into NFM111 cathode material using a solidphase method.Through both theoretically and experimentally,this study found that Cu doping provides a higher redox potential in NFM111,improving its reversible capacity and charge compensation process.The introduction of Ti would enhance the cycling stability of the material,smooth its charge and discharge curves,and suppress its high-voltage phase transitions.Accordingly,the NaNi_(0.27)Fe_(0.28)Mn_(0.33)Cu_(0.05)Ti_(0.06)O_(2)sample used in the study exhibited a remarkable rate performance of 142.97 mAh·g^(-1)at 0.1 C(2.0-4.2 V)and an excellent capacity retention of 72.81%after 300 cycles at 1C(1C=150 mA·g^(-1)). 展开更多
关键词 sodium-ion batteries Cu/Ti doping cyclic stability layered cathode material
在线阅读 下载PDF
High-Entropy Materials:A New Paradigm in the Design of Advanced Batteries
6
作者 Yangmei Xin Minmin Zhu +1 位作者 Haizhong Zhang Xinghui Wang 《Nano-Micro Letters》 2026年第1期1-52,共52页
High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical ... High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical strength,and outstanding catalytic activity.These distinctive characteristics render HEMs highly suitable for various battery components,such as electrodes,electrolytes,and catalysts.This review systematically examines recent advances in the application of HEMs for energy storage,beginning with fundamental concepts,historical development,and key definitions.Three principal categories of HEMs,namely high-entropy alloys,high-entropy oxides,and highentropy MXenes,are analyzed with a focus on electrochemical performance metrics such as specific capacity,energy density,cycling stability,and rate capability.The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion.Furthermore,the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted.The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies. 展开更多
关键词 High entropy alloys High entropy oxides High entropy MXenes High entropy battery materials Machine learning
在线阅读 下载PDF
Simulation of the Hygrothermal Behavior of a Building Envelope Based on Phase Change Materials and a Bio-Based Concrete 被引量:1
7
作者 Dongxia Wu Mourad Rahim +2 位作者 Wendong Li Mohammed El Ganaoui Rachid Bennacer 《Fluid Dynamics & Materials Processing》 EI 2022年第5期1483-1494,共12页
Phase Change Materials(PCMs)have high thermal inertia,and hemp concrete(HC),a bio-based concrete,has strong hygroscopic behavior.In previous studies,PCM has been extensively combined with many materials,however,most o... Phase Change Materials(PCMs)have high thermal inertia,and hemp concrete(HC),a bio-based concrete,has strong hygroscopic behavior.In previous studies,PCM has been extensively combined with many materials,however,most of these studies focused on thermal properties while neglecting hygroscopic aspects.In this study,the two materials have been combined into a building envelope and the related hygrothermal properties have been studied.In particular,numerical studies have been performed to investigate the temperature and relative humidity behavior inside the HC,and the effect of adding PCM on the hygrothermal behavior of the HC.The results show that there is a high coupling between temperature and relative humidity inside the HC,since the relative humidity changes on the second and third days are different,with values of 8%and 4%,respectively.Also,the variation of relative humidity with temperature indicates the dominant influence of temperature on relative humidity variation.With the presence of PCM,the temperature variation inside the HC is damped due to the high thermal inertia of the PCM,which also leads to suppression of moisture evaporation and thus damping of relative humidity variation.On the second and third days,the temperature changes at the central position are reduced by 4.6%and 5.1%,compared to the quarter position.For the relative humidity change,the reductions are 5.3%and 5.4%on the second and third days,respectively.Therefore,PCM,with high thermal inertia,acts as a temperature damper and has the potential to increase the moisture buffering capacity inside the HC.This makes it possible for such a combined envelope to have both thermal and hygric inertia. 展开更多
关键词 Phase change material(PCM) bio-based concrete passive building envelope heat and moisture transfer hygrothermal performance
在线阅读 下载PDF
Recycled, Bio-Based, and Blended Composite Materials for 3D Printing Filament: Pros and Cons—A Review 被引量:1
8
作者 Khanh Q. Nguyen Pascal Y. Vuillaume +4 位作者 Lei Hu Jorge López-Beceiro Patrice Cousin Saïd Elkoun Mathieu Robert 《Materials Sciences and Applications》 2023年第3期148-185,共38页
In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing... In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing is the most widely used technique in the field of AM, due to low operating and material costs. However, the materials commonly used for this technology are virgin thermoplastics. It is worth noting a considerable amount of waste exists due to failed print and disposable prototypes. In this regard, using green and sustainable materials is essential to limit the impact on the environment. The recycled, bio-based, and blended recycled materials are therefore a potential approach for 3D printing. In contrast, the lack of understanding of the mechanism of interlayer adhesion and the degradation of materials for FDM printing has posed a major challenge for these green materials. This paper provides an overview of the FDM technique and material requirements for 3D printing filaments. The main objective is to highlight the advantages and disadvantages of using recycled, bio-based, and blended materials based on thermoplastics for 3D printing filaments. In this work, solutions to improve the mechanical properties of 3D printing parts before, during, and after the printing process are pointed out. This paper provides an overview on choosing which materials and solutions depend on the specific application purposes. Moreover, research gaps and opportunities are mentioned in the discussion and conclusions sections of this study. 展开更多
关键词 Additive Manufacturing 3D Printing Fused Filament Deposition (FDM) Manufacturing Recycled bio-based Blended materials INTERLAYER
在线阅读 下载PDF
Bio-based polymeric materials synthesized from renewable resources: A mini-review 被引量:6
9
作者 Yitong Xie Shishuai Gao +2 位作者 Daihui Zhang Chunpeng Wang Fuxiang Chu 《Resources Chemicals and Materials》 2023年第3期223-230,共8页
In recent years,bio-based polymeric materials have attracted increased attention owing to their distinctive prop-erties,including richness,sustainability,environmental friendliness,and biodegradability.This article re... In recent years,bio-based polymeric materials have attracted increased attention owing to their distinctive prop-erties,including richness,sustainability,environmental friendliness,and biodegradability.This article reviews the recent developments and potential trends of research on bio-based polymers synthesized from various re-newable resources.It covers the resources and structures of bio-based monomers,the methods of synthesis and properties of bio-based thermoplastics and thermosets,the production of bio-based composites and the fabrica-tion of functional bio-based polymers.Finally,the technological and future challenges related to enabling these materials to apply in the industry have been discussed,together with the potential solutions or directions. 展开更多
关键词 Biobased polymers Renewable resources materials FUNCTIONALITY
在线阅读 下载PDF
Eco-friendly physical blowing agent mass loss of bio-based polyurethane rigid foam materials
10
作者 Haozhen Wang Lin Lin Yingshu Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期782-789,共8页
Through systematical experiment design, the physical blowing agent(PBA) mass loss of bio-based polyurethane rigid foam(PURF)in the foaming process was measured and calculated in this study, and different eco-friendly ... Through systematical experiment design, the physical blowing agent(PBA) mass loss of bio-based polyurethane rigid foam(PURF)in the foaming process was measured and calculated in this study, and different eco-friendly PBA mass losses were measured quantitatively for the first time. The core of the proposed method is to add water to replace the difference, and this method has a high fault tolerance rate for different foaming forms of foams. The method was proved to be stable and reliable through the standard deviations σ1and σ2for R1(ratio of the PBA mass loss to the material total mass except the PBA) and R2(ratio of the PBA mass loss to the PBA mass in the material total mass) in parallel experiments. It can be used to measure and calculate the actual PBA mass loss in the foaming process of both bio-based and petroleumbased PURF. The results show that the PBA mass loss in PURF with different PBA systems is controlled by its initial mass content of PBA in PU materials ω. The main way for PBA to dissipate into the air is evaporation/escape along the upper surface of foam. This study further reveals the mechanism of PBA mass loss: the evaporation/escape of PBA along the upper surface of foam is a typical diffusion behavior. Its spread power comes from the difference between the chemical potential of PBA in the interface layer and that in the outside air. For a certain PURF system, R1has approximately linear relationship with the initial mass content of PBA in PU materials ω, which can be expressed by the functional relationship R1= kω, where k is a variable related to PBA’s own attributes. 展开更多
关键词 POLYURETHANE bio-based polyol eco-friendly physical blowing agent mass loss
在线阅读 下载PDF
Influence of Millet Husks on the Physical, Mechanical and Thermal Performance of a Lightweight Bio-Based Concrete
11
作者 Soubérou Gbèdossou Saloufou Valéry KouandétéDoko +2 位作者 Edem Chabi Emmanuel Olodo Mohamed Gibigaye 《材料科学与工程(中英文A版)》 2025年第1期19-31,共13页
In the context of transitioning toward more sustainable construction materials,this study explores the impact of incorporating millet husks as an alternative to sand on the physical,mechanical,and thermal performance ... In the context of transitioning toward more sustainable construction materials,this study explores the impact of incorporating millet husks as an alternative to sand on the physical,mechanical,and thermal performance of lightweight concrete.Through a mixture design approach,five formulations were selected and thoroughly characterized.The analysis of iso-response curves enabled an in-depth assessment of the cross-effects between formulation parameters and their interactions on the final properties of the material.The results show that integrating millet husks leads to a significant reduction in density,reaching up to 21%,while maintaining notable mechanical performance.A balanced formulation of sand and fibers achieved a maximum compressive strength of 12.11 MPa,demonstrating that,under specific conditions,plant fibers actively contribute to the structural integrity of the composite.In tensile strength,the positive influence of fibers is even more pronounced,with a maximum resistance of 8.62 MPa,highlighting their role in enhancing material cohesion.From a thermal perspective,millet husks reduce both thermal conductivity and effusivity,thereby limiting heat transfer and accumulation within the composite.Iso-response curve analysis reveals that these effects are directly linked to the proportions of the constituents and that achieving an optimal balance between sand,fibers,and cement is key to maximizing performance.These findings demonstrate that the adopted approach allows moving beyond conventional substitution methods by identifying optimal configurations for the design of lightweight bio-based concretes that are both strong and insulating,thereby confirming the potential of millet husks in developing lightweight concretes suitable for sustainable construction applications. 展开更多
关键词 Lightweight bio-based materials plant fibers mixture design iso-response analysis formulation optimization mineral aggregate substitution.
在线阅读 下载PDF
Bio-based polyurethane for road engineering applications:A comprehensive review
12
作者 Qingxu Li Zengping Zhang +3 位作者 Zhongbao Shi Yekun Zhang Xiaoyi Ban Hao Liu 《Journal of Road Engineering》 2025年第4期513-530,共18页
With the escalating global emphasis on environmental conservation and sustainable development,enhancing the service quality and durability of road surfaces and facilitating the green development of highways have comma... With the escalating global emphasis on environmental conservation and sustainable development,enhancing the service quality and durability of road surfaces and facilitating the green development of highways have commanded considerable attention.Bio-based polyurethane,on account of its remarkable physical and chemical properties,green,sustainable and renewable capacity,as well as its structural design capabilities,has drawn widespread attention and numerous studies have been carried out.It has gradually started to substitute traditional petroleum-based polyurethane materials in road engineering.Nevertheless,the application of bio-based polyurethane materials in road engineering remains in the exploratory phase.To stimulate the application research of bio-based polyurethane materials in road engineering and offer additional research directions,this paper reviews the research advancements of bio-based polyurethane materials and their applications in road engineering.The fundamental classification of bio-based polyurethane is introduced.The characteristics and challenges associated with various preparation methods for bio-based polyurethane are described.The influence of bio-based polyurethane on road engineering materials are analyzed.The evaluation indicators of bio-based polyurethane within the life cycle of road engineering are investigated.Finally,the development tendency towards in road engineering applications are forecasted.This paper provides a reference for the study of bio-based polyurethane materials in road engineering applications. 展开更多
关键词 bio-based materials POLYURETHANE Life cycle assessment Environmentally friendly
在线阅读 下载PDF
A review of carbon-based hybrid materials for supercapacitors 被引量:4
13
作者 Theodore Azemtsop Manfo Hannu Laaksonen 《新型炭材料(中英文)》 北大核心 2025年第1期81-110,共30页
Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti... Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors. 展开更多
关键词 Carbon-based hybrid material Structure design Electrode material Specific capacitance SUPERCAPACITORS
在线阅读 下载PDF
High‑Entropy Electrode Materials:Synthesis,Properties and Outlook 被引量:1
14
作者 Dongxiao Li Chang Liu +7 位作者 Shusheng Tao Jieming Cai Biao Zhong Jie Li Wentao Deng Hongshuai Hou Guoqiang Zou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期472-506,共35页
High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has c... High-entropy materials represent a new category of high-performance materials,first proposed in 2004 and extensively investigated by researchers over the past two decades.The definition of high-entropy materials has continuously evolved.In the last ten years,the discovery of an increasing number of high-entropy materials has led to significant advancements in their utilization in energy storage,electrocatalysis,and related domains,accompanied by a rise in techniques for fabricating high-entropy electrode materials.Recently,the research emphasis has shifted from solely improving the performance of high-entropy materials toward exploring their reaction mechanisms and adopting cleaner preparation approaches.However,the current definition of high-entropy materials remains relatively vague,and the preparation method of high-entropy materials is based on the preparation method of single metal/low-or medium-entropy materials.It should be noted that not all methods applicable to single metal/low-or medium-entropy materials can be directly applied to high-entropy materials.In this review,the definition and development of high-entropy materials are briefly reviewed.Subsequently,the classification of high-entropy electrode materials is presented,followed by a discussion of their applications in energy storage and catalysis from the perspective of synthesis methods.Finally,an evaluation of the advantages and disadvantages of various synthesis methods in the production process of different high-entropy materials is provided,along with a proposal for potential future development directions for high-entropy materials. 展开更多
关键词 High-entropy Energy storage Electrode materials
在线阅读 下载PDF
Carbon-based porous materials for performance-enhanced composite phase change materials in thermal energy storage:Materials,fabrication and applications 被引量:5
15
作者 Lei Hu Li Zhang +4 位作者 Wei Cui Qinyou An Ting Ma Qiuwang Wang Liqiang Mai 《Journal of Materials Science & Technology》 2025年第7期204-226,共23页
Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductiv... Latent heat thermal energy storage(TES)effectively reduces the mismatch between energy supply and demand of renewable energy sources by the utilization of phase change materials(PCMs).However,the low thermal conductivity and poor shape stability are the main drawbacks in realizing the large-scale application of PCMs.Promisingly,developing composite PCM(CPCM)based on porous supporting mate-rial provides a desirable solution to obtain performance-enhanced PCMs with improved effective thermal conductivity and shape stability.Among all the porous matrixes as supports for PCM,three-dimensional carbon-based porous supporting material has attracted considerable attention ascribing to its high ther-mal conductivity,desirable loading capacity of PCMs,and excellent chemical compatibility with various PCMs.Therefore,this work systemically reviews the CPCMs with three-dimensional carbon-based porous supporting materials.First,a concise rule for the fabrication of CPCMs is illustrated in detail.Next,the experimental and computational research of carbon nanotube-based support,graphene-based support,graphite-based support and amorphous carbon-based support are reviewed.Then,the applications of the shape-stabilized CPCMs including thermal management and thermal conversion are illustrated.Last but not least,the challenges and prospects of the CPCMs are discussed.To conclude,introducing carbon-based porous materials can solve the liquid leakage issue and essentially improve the thermal conductivity of PCMs.However,there is still a long way to further develop a desirable CPCM with higher latent heat capacity,higher thermal conductivity,and more excellent shape stability. 展开更多
关键词 Thermal energy storage Phase change material Supporting material Carbon-based material Thermal conductivity Shape-stabilized composite
原文传递
Research progress of high-entropy cathode materials for sodium-ion batteries 被引量:2
16
作者 Fan Wu Shaoyang Wu +2 位作者 Xin Ye Yurong Ren Peng Wei 《Chinese Chemical Letters》 2025年第4期20-33,共14页
In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well... In recent years,sodium-ion batteries(SIBs)have become one of the hot discussions and have gradually moved toward industrialization.However,there are still some shortcomings in their performance that have not been well addressed,including phase transition,structural degradation,and voltage platform.High entropy materials have recently gained significant attention from researchers due to their effects on thermodynamics,dynamics,structure,and performance.Researchers have attempted to use these materials in sodium-ion batteries to overcome their problems,making it a modification method.This paper aims to discuss the research status of high-entropy cathode materials for sodium-ion batteries and summarize their effects on sodium-ion batteries from three perspectives:Layered oxide,polyanion,and Prussian blue.The infiuence on material structure,the inhibition of phase transition,and the improvement of ion diffusivity are described.Finally,the advantages and disadvantages of high-entropy cathode materials for sodium-ion batteries are summarized,and their future development has prospected. 展开更多
关键词 High-entropy material Sodium-ion battery Cathode materials Phase transition Structure
原文传递
Machine Learning-Based Methods for Materials Inverse Design: A Review 被引量:2
17
作者 Yingli Liu Yuting Cui +4 位作者 Haihe Zhou Sheng Lei Haibin Yuan Tao Shen Jiancheng Yin 《Computers, Materials & Continua》 2025年第2期1463-1492,共30页
Finding materials with specific properties is a hot topic in materials science.Traditional materials design relies on empirical and trial-and-error methods,requiring extensive experiments and time,resulting in high co... Finding materials with specific properties is a hot topic in materials science.Traditional materials design relies on empirical and trial-and-error methods,requiring extensive experiments and time,resulting in high costs.With the development of physics,statistics,computer science,and other fields,machine learning offers opportunities for systematically discovering new materials.Especially through machine learning-based inverse design,machine learning algorithms analyze the mapping relationships between materials and their properties to find materials with desired properties.This paper first outlines the basic concepts of materials inverse design and the challenges faced by machine learning-based approaches to materials inverse design.Then,three main inverse design methods—exploration-based,model-based,and optimization-based—are analyzed in the context of different application scenarios.Finally,the applications of inverse design methods in alloys,optical materials,and acoustic materials are elaborated on,and the prospects for materials inverse design are discussed.The authors hope to accelerate the discovery of new materials and provide new possibilities for advancing materials science and innovative design methods. 展开更多
关键词 materials inverse design machine learning target properties deep learning new materials discovery
在线阅读 下载PDF
Impact of pitch fraction oxidation on the structure and sodium storage properties of derived carbon materials 被引量:1
18
作者 QI Su-xia YANG Tao +6 位作者 SONG Yan ZHAO Ning LIU Jun-qing TIAN Xiao-dong WU Jin-ru LI Hui LIU Zhan-jun 《新型炭材料(中英文)》 北大核心 2025年第2期421-439,共19页
Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation ac... Pitch produced by the lique-faction of coal was divided into two frac-tions:soluble in toluene(TS)and insol-uble in toluene but soluble in pyridine(TI-PS),and their differences in molecu-lar structure and oxidation activity were studied.Several different carbon materi-als were produced from them by oxida-tion in air(350℃,300 mL/min)fol-lowed by carbonization(1000℃ in Ar),and the effect of the cross-linked structure on their structure and sodium storage properties was investigated.The results showed that the two pitch fractions were obviously different after the air oxidation.The TS fraction with a low degree of condensation and abundant side chains had a stronger oxidation activity and thus introduced more cross-linked oxygen-containing functional groups C(O)―O which prevented carbon layer rearrangement during the carbonization.As a result,a disordered hard carbon with more defects was formed,which improved the electrochemical performance.Therefore,the carbon materials derived from TS(O-TS-1000)had an obvious disordered structure and a larger layer spacing,giving them better sodium storage perform-ance than those derived from the TI-PS fraction(O-TI-PS-1000).The specific capacity of O-TS-1000 was about 250 mAh/g at 20 mA/g,which was 1.67 times higher than that of O-TI-PS-1000(150 mAh/g). 展开更多
关键词 Pitch fractions Air oxidation Derived carbon materials Na^(+)storage
在线阅读 下载PDF
Optimization of Mg-based hydrogen storage materials with multicomponent and high-entropy catalysts 被引量:1
19
作者 Yu Sun Jiayi Cheng +2 位作者 Yaru Jiang Yafei Liu Yijing Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2699-2712,共14页
Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated therma... Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems. 展开更多
关键词 magnesium hydride multicomponent materials high-entropy materials hydrogen storage catalyst doping kinetics
在线阅读 下载PDF
Adjustable corrosion and mechanical properties of Mg-Zn-Ca-Ni alloys for fracturing materials 被引量:2
20
作者 Dawei Wang Xiangshuang Jiang +7 位作者 Changxin Chen Xun Zhang Zhong-Zheng Jin Fuyong Cao Jia-Ning Zhu Cheng Wang Yinlong Ma Min Zha 《Journal of Magnesium and Alloys》 2025年第6期2618-2635,共18页
Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring... Two sets of alloys,Mg-Zn-Ca-xNi(0≤x≤5),have been developed with tunable corrosion and mechanical properties,optimized for fracturing materials.High-zinc artificial aged(T6)Mg-12Zn-0.5Ca-x Ni(0≤x≤5)series,featuring a straightforward preparation method and the potential for manufacturing large-scale components,exhibit notable corrosion rates up to 29 mg cm^(-2)h^(-1)at 25℃ and 643 mg cm^(-2)h^(-1)at 93℃.The high corrosion rate is primary due to the Ni–containing second phases,which intensify the galvanic corrosion that overwhelms their corrosion barrier effect.Low-zinc rolled Mg-1.5Zn-0.2Ca-x Ni(0≤x≤5)series,characterizing excellent deformability with an elongation to failure of~26%,present accelerated corrosion rates up to 34 mg cm^(-2)h^(-1)at 25℃ and 942 mg cm^(-2)h^(-1)at 93℃.The elimination of corrosion barrier effect via deformation contributes to the further increase of corrosion rate compared to the T6 series.Additionally,Mg-Zn-Ca-xNi(0≤x≤5)alloys exhibit tunable ultimate tensile strengths ranging from~190 to~237 MPa,depending on their specific composition.The adjustable corrosion rate and mechanical properties render the Mg-Zn-Ca-x Ni(0≤x≤5)alloys suitable for fracturing materials. 展开更多
关键词 Mg-Zn-Ca alloy Fracturing material Galvanic corrosion Corrosion barrier
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部