期刊文献+
共找到128,925篇文章
< 1 2 250 >
每页显示 20 50 100
Spinning from Nature:Engineered Preparation and Application of High-Performance Bio-Based Fibers 被引量:8
1
作者 Zongpu Xu Mingrui Wu +3 位作者 Qi Ye Dong Chen Kai Liu Hao Bai 《Engineering》 SCIE EI CAS 2022年第7期100-112,共13页
Many natural fibers are lightweight and display remarkable strength and toughness.These properties originate from the fibers’hierarchical structures,assembled from the molecular to macroscopic scale.The natural spinn... Many natural fibers are lightweight and display remarkable strength and toughness.These properties originate from the fibers’hierarchical structures,assembled from the molecular to macroscopic scale.The natural spinning systems that produce such fibers are highly energy efficient,inspiring researchers to mimic these processes to realize robust artificial spinning.Significant developments have been achieved in recent years toward the preparation of high-performance bio-based fibers.Beyond excellent mechanical properties,bio-based fibers can be functionalized with a series of new features,thus expanding their sophisticated applications in smart textiles,electronic sensors,and biomedical engineering.Here,recent progress in the construction of bio-based fibers is outlined.Various bioinspired spinning methods,strengthening strategies for mechanically strong fibers,and the diverse applications of these fibers are discussed.Moreover,challenges in reproducing the mechanical performance of natural systems and understanding their dynamic spinning process are presented.Finally,a perspective on the development of biological fibers is given. 展开更多
关键词 bio-based fiber Hierarchical structure Bioinspired spinning Strengthening strategy fiber applications
在线阅读 下载PDF
A Comprehensive Review of Natural Fibers:Bio-Based Constituents for Advancing Sustainable Materials Technology
2
作者 Sachin Ghalme Mohammad Hayat Mahesh Harne 《Journal of Renewable Materials》 2025年第2期273-295,共23页
With growing concerns for global warming and environmental issues,the research community has contributed significantly to green technology in the area of material science through the development of natural fiber-reinf... With growing concerns for global warming and environmental issues,the research community has contributed significantly to green technology in the area of material science through the development of natural fiber-reinforced polymer composites(NFRPC).Polymers serve as the matrix in NFRPC,while natural fibers serve as the reinforcing materials.Demand for high-performing materials made with natural resources is growing continuously.Natural fiber-reinforced polymer composites are sustainable biocomposites fabricated with natural fibers embedded with a polymer matrix.They offer a wide range of advantages,including a low weight-to-strength ratio,high flexural strength,damping properties,and resistance to corrosion,wear,and impact.Understanding the basic properties,characteristics,and processing techniques for natural fibers is important to consider their use as raw materials for high-quality biocomposite.Natural fibers come with low density and a high strengthto-weight ratio,allowing them to be a potential reinforcement for low-weight composites.This article attempts to present a comprehensive review of the available natural fibers,their classification,types,structures,physical properties,characteristics,and mechanical properties.Natural fibers are hydrophilic in nature and require physical and chemical treatment prior to their application as reinforcing material.This review will also cover the required physical and chemical treatments of natural fibers for fabricating biocomposites. 展开更多
关键词 Natural fibers biopolymers natural fiber-reinforced polymer composites physical and mechanical properties
在线阅读 下载PDF
Influence of Millet Husks on the Physical, Mechanical and Thermal Performance of a Lightweight Bio-Based Concrete
3
作者 Soubérou Gbèdossou Saloufou Valéry KouandétéDoko +2 位作者 Edem Chabi Emmanuel Olodo Mohamed Gibigaye 《材料科学与工程(中英文A版)》 2025年第1期19-31,共13页
In the context of transitioning toward more sustainable construction materials,this study explores the impact of incorporating millet husks as an alternative to sand on the physical,mechanical,and thermal performance ... In the context of transitioning toward more sustainable construction materials,this study explores the impact of incorporating millet husks as an alternative to sand on the physical,mechanical,and thermal performance of lightweight concrete.Through a mixture design approach,five formulations were selected and thoroughly characterized.The analysis of iso-response curves enabled an in-depth assessment of the cross-effects between formulation parameters and their interactions on the final properties of the material.The results show that integrating millet husks leads to a significant reduction in density,reaching up to 21%,while maintaining notable mechanical performance.A balanced formulation of sand and fibers achieved a maximum compressive strength of 12.11 MPa,demonstrating that,under specific conditions,plant fibers actively contribute to the structural integrity of the composite.In tensile strength,the positive influence of fibers is even more pronounced,with a maximum resistance of 8.62 MPa,highlighting their role in enhancing material cohesion.From a thermal perspective,millet husks reduce both thermal conductivity and effusivity,thereby limiting heat transfer and accumulation within the composite.Iso-response curve analysis reveals that these effects are directly linked to the proportions of the constituents and that achieving an optimal balance between sand,fibers,and cement is key to maximizing performance.These findings demonstrate that the adopted approach allows moving beyond conventional substitution methods by identifying optimal configurations for the design of lightweight bio-based concretes that are both strong and insulating,thereby confirming the potential of millet husks in developing lightweight concretes suitable for sustainable construction applications. 展开更多
关键词 Lightweight bio-based materials plant fibers mixture design iso-response analysis formulation optimization mineral aggregate substitution.
在线阅读 下载PDF
Bio-based Epoxy Composites Demonstrating High Temperature Breakdown Strength and Thermal Conductivity for High Voltage Insulation
4
作者 Ke-Rong Yang Jin-Yue Dai +2 位作者 Shuai-Peng Wang Wei-Wei Zhao Xiao-Qing Liu 《Chinese Journal of Polymer Science》 2025年第1期40-52,I0006,共14页
The demand for energy-efficient and environmental-friendly power grid construction has made the exploitation of bio-based electrical epoxy resins with excellent properties increasingly important.This work developed th... The demand for energy-efficient and environmental-friendly power grid construction has made the exploitation of bio-based electrical epoxy resins with excellent properties increasingly important.This work developed the bio-based electrotechnical epoxy resins based on magnolol.High-performance epoxy resin(DGEMT)with a double crosslinked points and its composites(Al_(2)O_(3)/DGEMT)were obtained taking advantages of the two bifunctional groups(allyl and phenolic hydroxyl groups)of magnolol.Benefitting from the distinctive structure of DGEMT,the Al_(2)O_(3)/DGEMT composites exhibited the advantages of intrinsically high thermal conductivity,high insulation,and low dielectric loss.The AC breakdown strength and thermal conductivity of Al_(2)O_(3)/DGEMT composites were 35.5 kV/mm and 1.19 W·m-1·K-1,respectively,which were 15.6%and 52.6%higher than those of petroleum-based composites(Al_(2)O_(3)/DGEBA).And its dielectric loss tanδ=0.0046 was 20.7%lower than that of Al_(2)O_(3)/DGEBA.Furthermore,the mechanical,thermal and processing properties of Al_(2)O_(3)/DGEMT are fully comparable to those of Al_(2)O_(3)/DGEBA.This work confirms the feasibility of manufacturing environmentally friendly power equipment using bio-based epoxy resins,which has excellent engineering applications. 展开更多
关键词 bio-based epoxy composites MAGNOLOL Breakdown strength Thermal conductivity Dielectric loss
原文传递
Development of Oilfield Blockage Relief and Injection System Based on Bio-Based Surfactants
5
作者 Wang Fei Chen Zhaoxian +2 位作者 Liu Gang Zhang Huili Hu Meijuan 《China Detergent & Cosmetics》 2025年第3期40-46,共7页
By investigating the performance characteristics of the bio-based surfactant 8901A,a composite decontamination and injection system was developed using 8901A as the primary agent,tailored for application in low-permea... By investigating the performance characteristics of the bio-based surfactant 8901A,a composite decontamination and injection system was developed using 8901A as the primary agent,tailored for application in low-permeability and heavy oil reservoirs under varying temperature conditions.The results demonstrate that this system effectively reduces oil–water interfacial tension,achieving an ultra-low interfacial tension state.The static oil washing efficiency of oil sands exceeds 85%,the average pressure reduction rate reaches 21.55%,and the oil recovery rate improves by 13.54%.These enhancements significantly increase the system’s ability to dissolve oilbased blockages,thereby lowering water injection pressure caused by organic fouling,increasing the injection volume of injection wells,and ultimately improving oil recovery efficiency. 展开更多
关键词 bio-based surfactants oil extraction technology pressure reduction and blockage relief
在线阅读 下载PDF
Switching electronic effects of UiO-67-Pd using fluorinated ligands for catalytic oxidative arylation of bio-based furfuryl alcohol
6
作者 Dongwen Guo Guohui Zeng +1 位作者 Jinxing Long Biaolin Yin 《Chinese Journal of Catalysis》 2025年第2期230-240,共11页
An efficient and novel approach is proposed for oxidative arylation of bio-based furfuryl alcohol(FA)to aryl furans(AFs),a versatile monomer of photoelectric materials,in the presence of UiO-67-Pd(F)with phenanthrolin... An efficient and novel approach is proposed for oxidative arylation of bio-based furfuryl alcohol(FA)to aryl furans(AFs),a versatile monomer of photoelectric materials,in the presence of UiO-67-Pd(F)with phenanthroline/bipyridine,and poly-F substituted phenyl ligands as the mixture linkers.The results of control experiments and theoretical calculations reveal that the–F on the phenyl linkers efficiently tunes the electron-deficient nature of Pd through the Zr_(6) clusters bridges,which favors the adsorption and activation of the furan ring.Furthermore,the conjugation of different nitrogen-containing ligands facilitates Pd coordination for the Heck-type insertion and subsequent electrophilic palladation,respectively.As a result,the oxidative arylation of FA derivatives is substantially enhanced because of these electronic and steric synergistic effects.Under the optimized conditions,72.2%FA conversion and 74.8%mono aryl furan(MAF)selectivity are shown in the Heck-type insertion.Meanwhile,85.3%of MAF is converted,affording 74.8%selectivity of final product(AFs)in the subsequent electrophilic palladation reaction.This process efficiency is remarkably higher than that with homogeneous catalysts.In addition,furan-benzene polymer obtained from the halogen-free synthesis catalyzed by UiO-67-Pd(F)show significantly better properties than that from conventional Suzuki coupling method.Therefore,the present work provides a new insight for useful AFs synthesis by oxidative arylation of bio-furan via rational tunning the metal center micro-environment of heterogeneous catalyst. 展开更多
关键词 bio-based furan Catalytic oxidative arylation UiO-67-Pd(F)catalyst Ligand regulation Charge separation
在线阅读 下载PDF
A sustainable process to 100%bio-based nylons integrated chemical and biological conversion of lignocellulose 被引量:1
7
作者 Ruijia Hu Ming Li +9 位作者 Tao Shen Xin Wang Zhuohua Sun Xinning Bao Kequan Chen Kai Guo Lei Ji Hanjie Ying Pingkai Ouyang Chenjie Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期390-402,共13页
Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological proce... Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological process from lignocellulose.These novel nylons were obtained by the melt polymerization of 3-propyladipic acid derived from lignin and 1,5-pentenediamine/1,4-butanediamine derived from carbohydrate sugar.Central to the concept is a three-step noble metal free catalytic chemical funnelling sequence(Raney Ni mediated reductive catalytic fractionation-reductive funnelling-oxidative funnelling),which allowed for obtaining a single component 3-propyladipic acid from lignin with high efficiency.The structural and thermodynamic properties of the obtained nylons have been systematically investigated,and thus obtained transparent bio-based nylons exhibited higher Mw(>32,000)and excellent thermal stability(Td5%>265℃).Considering their moderate Tg and good melt strength,these transparent bio-based nylons could serve as promising functional additives or temperature-responsive materials. 展开更多
关键词 LIGNOCELLULOSE LIGNIN Reductive catalytic fractionation bio-based nylon
在线阅读 下载PDF
含有FAdV-4 Fiber 2 B细胞表位的IBV S1融合蛋白的表达及免疫原性
8
作者 高亚茹 王泱 +8 位作者 张瀚文 刘琳 曹晓阳 刘静瑞 李冰洁 常晶晶 宋亚鹏 高文明 李新生 《中国兽医学报》 北大核心 2025年第8期1616-1623,共8页
为验证禽腺病毒4(FAdV-4)WZ株Fiber 2 B细胞表位Pep1和Pep4可作为多价表位疫苗的候选表位,将表位与鸡传染性支气管炎病毒M41株S1蛋白基因以不同模式进行串联,构建重组融合质粒,并在大肠杆菌BL21(DE3)中表达。经Western blot和ELISA试验... 为验证禽腺病毒4(FAdV-4)WZ株Fiber 2 B细胞表位Pep1和Pep4可作为多价表位疫苗的候选表位,将表位与鸡传染性支气管炎病毒M41株S1蛋白基因以不同模式进行串联,构建重组融合质粒,并在大肠杆菌BL21(DE3)中表达。经Western blot和ELISA试验证实,表达获得的4个融合蛋白均能特异性地与抗M41全病毒血清和WZ株抗Fiber 2-knob蛋白血清发生反应。纯化后免疫BALB/c小鼠,在小鼠血清中可检测出抗肽表位的特异性抗体,其中Pep4表位比Pep1表位能诱导更强的免疫反应。当Pep1分别连接在融合蛋白的氨基端和羧基端时,均能使免疫动物产生相同水平的抗Pep1抗体,而将Pep4连接在融合蛋白羧基端时,免疫动物产生的抗Pep4特异性抗体水平更高。结果表明,具有反应原性的WZ株Fiber 2的B细胞表位Pep1和Pep4在与蛋白偶联时形成的融合蛋白可以使Pep1和Pep4获得免疫原性,且不影响载体蛋白的抗原性,这为FAdV-4多价表位疫苗的设计和研发提供了技术支撑和参考依据。 展开更多
关键词 B细胞表位 FAdV-4 fiber 2 传染性支气管炎 融合蛋白
原文传递
Bio-based and Biodegradable Electrospun Fibers Composed of Poly(L-lactide) and Polyamide 4 被引量:8
9
作者 Tao Chen Guo-Cheng Zhong +2 位作者 Yuan-Ting Zhang Li-Ming Zhao Yong-Jun Qiu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2020年第1期53-62,I0006,共11页
Novel bio-based and biodegradable block copolymers were synthesized by "click" reaction between poly(L-lactide)(PLLA) and polyamide 4(PA4). Upon tuning the molar mass of PLLA block, the properties of copolym... Novel bio-based and biodegradable block copolymers were synthesized by "click" reaction between poly(L-lactide)(PLLA) and polyamide 4(PA4). Upon tuning the molar mass of PLLA block, the properties of copolymers and electrospun ultrafine fibers were investigated and compared with those of PLLA and PA4 blends. PLLA and PA4 were found incompatible and formed individual crystalline regions, along with reciprocal inhibition in crystallization. Electrospun fibers were highly hydrophobic, even if hydrophilic PA4 was the rich component. The crystallinity of either PLLA or PA4 decreased after electrospinning and PLLA-rich as-spun fibers were almost amorphous. Immersion tests proved that fibers of block copolymers were relatively homogeneous with micro-phase separation between PLLA and PA4. The fibrous structures of copolymers were different from those of the fibers electrospun from blends, for which sheath-core structure induced by macro-phase separation between homopolymers of PLLA and PA4 was confirmed by TEM, EDS, and XPS. 展开更多
关键词 Poly(L-lactide) Polyamide 4 "Click"reaction ELECTROSPINNING fiber
原文传递
Recyclable bio-based epoxy resin thermoset polymer from wood for circular economy
10
作者 Bowen Zhang Saravanakumar Elangovan Zhuohua Sun 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第12期1781-1783,共3页
Due to their extraordinary durability and thermal stability,Epoxy Resin Thermosets(ERTs)are essential in various industries.However,their poor recyclability leads to unacceptable environmental pollution.In this study,... Due to their extraordinary durability and thermal stability,Epoxy Resin Thermosets(ERTs)are essential in various industries.However,their poor recyclability leads to unacceptable environmental pollution.In this study,Wu et al.successfully synthesized a completely bio-based ERT using lignocellulose-derived building blocks which exhibit outstanding thermal and mechanical properties.Remarkably,these bio-materials degrade via methanolysis without the need of any catalyst,presenting a smart and cost-effective recycling strategy.Furthermore,this approach could be employed for fabricating reusable composites comprising glass fiber and plant fiber,thereby expanding its applications in sustainable transportation,coatings,paints or biomedical devices. 展开更多
关键词 Epoxy resin thermosets LIGNOCELLULOSE METHANOLYSIS bio-based material
在线阅读 下载PDF
Unleashing the Power of Bio-based Thermotropic Liquid Crystal Modifiers:Toughening and Reinforcing Petroleum-based Epoxy Resin without Compromising Other Properties
11
作者 Qing-Yun Lu Hong-Wei Gu +5 位作者 Jia-Hui Li Qian-Qian Fan Bei-Tao Liu Yan Kou Xi-Gao Jian Zhi-Huan Weng 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第8期1093-1102,共10页
Toughening the petroleum-based epoxy resin blends with bio-based modifiers without compromising their modulus,mechanical strength,and other properties is still a big challenge in view of the sustainability.In this stu... Toughening the petroleum-based epoxy resin blends with bio-based modifiers without compromising their modulus,mechanical strength,and other properties is still a big challenge in view of the sustainability.In this study,a bio-based liquid crystal epoxy resin(THMT-E P)with an s-triazine ring structure was utilized to modify a petroleum-based bisphenol A epoxy resin(E51)with 4,4'-diaminodiphenylsulfone(DDS)as a curing agent,and the blended systems were evaluated for their thermal stability,mechanical properties,and flame retardancy.The results showed that the impact strength of the blended system initially increased and then decreased with the increase in THMT-EP content,and it reached the a maximum value of 26.5 kJ/m^(2)when the THMT-EP content was 5%,which was 31.2%higher than that of E51/DDS.Notably,the flexural strength,modulus,and glass transition tem perature of the blended system were all simultaneously improved with the addition of THMT-EP.At the same time,the addition of THMT-EP enhanced the flame retardancy of the system by increasing the char yield at 700℃and decreasing the peak heat release rate and total heat release rate.This work paves the way for a more sustainable improvement in the comprehensive performance of epoxy resin. 展开更多
关键词 Epoxy resin TOUGHENING bio-based Thermotropic liquid crystal
原文传递
Bio-based rejuvenators in asphalt pavements:A comprehensive review and analytical study
12
作者 Maria Chiara Cavalli Wangjie Wu Lily Poulikakos 《Journal of Road Engineering》 2024年第3期282-291,共10页
The pressing demand for sustainable advancements in road infrastructure has catalyzed extensive research into environmentally conscious alternatives for the maintenance and restoration of asphalt concrete pavements.Th... The pressing demand for sustainable advancements in road infrastructure has catalyzed extensive research into environmentally conscious alternatives for the maintenance and restoration of asphalt concrete pavements.This paper offers a comprehensive review and analysis of bio-based rejuvenators as a promising avenue for enhancing the longevity and sustainability of asphalt.Through a multifaceted exploration,it delves into various aspects of this innovative approach.Providing a thorough overview of bio-based rejuvenators,the study highlights their renewable and environmentally friendly characteristics.It conducts an in-depth examination of a wide spectrum of bio-derived materials,including vegetable oils,waste-derived bio-products,and biopolymers,through a comprehensive survey.The paper evaluates how bio-based rejuvenators enhance aged asphalt binders and mixes,effectively mitigating the adverse impacts of aging.Furthermore,it investigates how these rejuvenators address environmental concerns by identifying compatibility issues,assessing long-term performance,and evaluating economic feasibility.Finally,the paper outlines potential advancements and research pathways aimed at optimizing the utilization of bio-based rejuvenators in asphalt concrete,thereby contributing to the sustainable evolution of road infrastructure. 展开更多
关键词 bio-based rejuvenator bio-based asphalt concrete bio-based asphalt mechanical performance Environmental benefit Optimized utilization of bio-based rejuvenator
在线阅读 下载PDF
Aqueous-phase reforming of hydroxyacetone solution to bio-based H_(2)over supported Pt catalysts
13
作者 A.K.K.Vikla K.Koichumanova +1 位作者 Songbo He K.Seshan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期777-788,共12页
Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,t... Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,three Pt-based catalysts supported on C,AlO(OH),and ZrO_(2)were investigated for the APR of hydroxyacetone solution in afixed bed reactor at 225℃and 35 bar.Among them,the Pt/C catalyst showed the highest turnover frequency for H_(2)production(TOF of 8.9 molH_(2)molPt^(-1)min^(-1))and the longest catalyst stability.Over the AlO(OH)and ZrO_(2)supported Pt catalysts,the side reactions consuming H_(2),formation of coke,and Pt sintering result in a low H_(2)production and the fast catalyst deactivation.The proposed reaction pathways suggest that a promising APR catalyst should reform all oxygenates in the aqueous phase,minimize the hydrogenation of the oxygenates,maximize the WGS reaction,and inhibit the condensation and coking reactions for maximizing the hydrogen yield and a stable catalytic performance. 展开更多
关键词 APR HYDROXYACETONE TOF bio-based H_(2) Support effect
在线阅读 下载PDF
可表达禽腺病毒Fiber2基因的重组马立克病病毒疫苗株的构建
14
作者 张子博 陈运通 +12 位作者 范文瑞 吴龙波 李雨萌 郭茹 张艳萍 刘长军 祁小乐 刘永振 王素艳 崔红玉 段雨路 李留安 高玉龙 《中国兽医科学》 北大核心 2025年第7期884-890,共7页
为研制禽类肝炎-心包积液综合征(HHS)重组马立克病病毒(MDV)活载体疫苗,通过PCR扩增血清4型禽腺病毒(FAdV-4)强毒株Fiber2基因并克隆入pcDNA3.1载体,构建重组真核表达质粒pSV40-Fiber2,然后通过PCR扩增和同源重组构建表达黏粒pMS-Fiber2... 为研制禽类肝炎-心包积液综合征(HHS)重组马立克病病毒(MDV)活载体疫苗,通过PCR扩增血清4型禽腺病毒(FAdV-4)强毒株Fiber2基因并克隆入pcDNA3.1载体,构建重组真核表达质粒pSV40-Fiber2,然后通过PCR扩增和同源重组构建表达黏粒pMS-Fiber2,与其他4个相互重叠并覆盖MDV全基因组的黏粒共同转染至鸡胚成纤维细胞(CEF)拯救病毒rMDV-Fiber2,在CEF中传代后用PCR、间接免疫荧光试验和Western-blot进行鉴定,并绘制体外生长曲线,分析其体外复制特性。结果表明,rMDV-Fiber2能够稳定表达Fiber2蛋白,rMDV-Fiber2在CEF中的复制能力与亲本病毒rMSΔmeq无明显差异;攻毒保护试验结果表明,重组病毒rMDV-Fiber2免疫后鸡能够对FAdV-4强毒株感染有80%存活率。结论,构建成功的重组病毒rMDV-Fiber2与亲本株的复制力相似,为研制HHS重组MDV活载体疫苗奠定了基础。 展开更多
关键词 血清4型禽腺病毒 重组马立克病病毒活载体疫苗 fiber2
在线阅读 下载PDF
Distributed fiber optic sensing system for vibration monitoring of 3D printed bridges 被引量:1
15
作者 ZHAO Shuai ZHOU Ran +3 位作者 LUO Mingming LIU Jianfei LIU Xiongfei ZHOU Tao 《Optoelectronics Letters》 2025年第1期28-34,共7页
The fiber optic sensing technology provides data support in structural health monitoring of the macro facilities,including design,construction,and maintenance of bridges,tunnels,ports and other infrastructures.In this... The fiber optic sensing technology provides data support in structural health monitoring of the macro facilities,including design,construction,and maintenance of bridges,tunnels,ports and other infrastructures.In this paper,a distributed vibration sensing system is proved to be responsive to a single touch over a 1.8-m-long equivalent fiber segment,covering a vibration frequency from 5 Hz to 25 kHz.The sensing fiber was arranged as an S type layout on the bridge to recognize the standing state,windblown disturbance,and walking vibration.Moreover,the knocking and climbing events are recognized fiber laying spinning lines and hanging on the fences,respectively.The demonstration shows an accurate positioning and sensitive vibration monitoring applied on the automated three-dimensional(3D) printed bridge,which is applicable to all kinds of 3D printed facilities as intelligent sensory neuro-networks. 展开更多
关键词 fiber BRIDGES SPINNING
原文传递
IoT Empowered Early Warning of Transmission Line Galloping Based on Integrated Optical Fiber Sensing and Weather Forecast Time Series Data 被引量:1
16
作者 Zhe Li Yun Liang +1 位作者 Jinyu Wang Yang Gao 《Computers, Materials & Continua》 SCIE EI 2025年第1期1171-1192,共22页
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran... Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios. 展开更多
关键词 Optical fiber sensing multi-source data fusion early warning of galloping time series data IOT adaptive weighted learning irregular time series perception closed-loop attention mechanism
在线阅读 下载PDF
Variable stiffness design optimization of fiber-reinforced composite laminates with regular and irregular holes considering fiber continuity for additive manufacturing 被引量:1
17
作者 Yi LIU Zunyi DUAN +6 位作者 Chunping ZHOU Yuan SI Chenxi GUAN Yi XIONG Bin XU Jun YAN Jihong ZHU 《Chinese Journal of Aeronautics》 2025年第3期334-354,共21页
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o... Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper. 展开更多
关键词 Variable stiffness composite laminates Discrete material interpolation scheme Normal distribution fiber optimization Discrete fiber continuous filtering strategy Additive manufacturing of composite laminates
原文传递
Sustainable compression-molded bamboo fibers/poly(lactic acid)green composites with excellent UV shielding performance 被引量:1
18
作者 Binqi Fei Haiyan Yang +8 位作者 Jing Yang Dawei Wang Hua Guo Hua Hou Saad Melhi Ben Bin Xu Hamdy Khamees Thabet Zhanhu Guo Zhengjun Shi 《Journal of Materials Science & Technology》 2025年第2期247-257,共11页
The increasing deployment of electronics in everyday life has generated great concerns regarding the effective disposal of waste from these components.Here,we focused on a facile sustainable and economical strategy to... The increasing deployment of electronics in everyday life has generated great concerns regarding the effective disposal of waste from these components.Here,we focused on a facile sustainable and economical strategy to provide ideas for this issue.This strategy relied on using appropriate mechanical treatment and sodium lignosulfonate coating to improve the dispersion and interfacial compatibility of bamboo fibers in poly(lactic acid).By optimising the particle size and concentration of sodium lignosulphonate,high value-added and green composites were prepared using sectional pressurization with a venting procedure.The treated composite displayed an ultra-smooth surface(roughness of 0.592 nm),impressive transient properties(disintegration and degradation behaviour after 30 d),and outstanding ultraviolet(UV)shielding properties(100%).These properties hold the promise of being an excellent substrate for electronic devices,especially for high-precision processing,transient electronics,and UV damage prevention.The satisfactory interfacial compatibility of the composites was confirmed by detailed characterisation regarding the related physicochemical properties.This investigation offers a sustainable approach for producing high value-added green composites from biomass and biomass-derived materials. 展开更多
关键词 Bamboo fibers Poly(lactic acid) Interfacial compatibility Sodium lignosulfonate
原文传递
Preparation and sensing characteristics of long-period fiber gratings based on periodic microchannels
19
作者 SUN Cai LI Yuan-jun +6 位作者 YANG He-er PAN Xue-peng LIU Shan-ren WANG Bo GAO Meng-meng GUO Qi YU Yong-sen 《中国光学(中英文)》 北大核心 2025年第1期198-205,共8页
Long-period fiber gratings have the advantages of small size,corrosion resistance,anti-electro-magnetic interference,and high sensitivity,making them widely used in biomedicine,the power industry,and aerospace.This pa... Long-period fiber gratings have the advantages of small size,corrosion resistance,anti-electro-magnetic interference,and high sensitivity,making them widely used in biomedicine,the power industry,and aerospace.This paper develops a long-period fiber grating sensor based on periodic microchannels.First,a series of linear structures were etched in the cladding of a single-mode fiber by femtosecond laser microma-chining.Then,the laser-modified region was selectively eroded by selective chemical etching to obtain the periodic microchannel structure.Finally,the channels were filled with polydimethylsiloxane(PDMS)to im-prove the spectral quality.The experimental results show that the sensor has good sensitivity in the measure-ment of various parameters such as temperature,stress,refractive index(RI),and bending.It has a temperat-ure sensitivity of−55.19 pm/℃,a strain sensitivity of−3.19 pm/με,a maximum refractive index sensitivity of 540.28 nm/RIU,and a bending sensitivity of 2.65 dB/m^(-1).All of the measurement parameters show good lin-ear responses.The sensor has strong application prospects in the field of precision measurement and sensing. 展开更多
关键词 long-period fiber gratings femtosecond laser micromachining fiber sensors
在线阅读 下载PDF
Preparation and Mechanical Properties of Bionic Carbon Fiber/Epoxy Resin Composites Inspired by Owl Feather 被引量:1
20
作者 Zerun Yu Jiaan Liu +2 位作者 Tian Yang Linyang Zhang Chunhua Hu 《Journal of Bionic Engineering》 2025年第1期282-292,共11页
Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are kn... Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are known for their unique compact structure;they are not only lightweight but also strong.In this study,an in-depth look at owl feathers was made and it found that owl feathers not only have the macro branches structure between feather shafts and branches but also have fine feather structures on the branches.The presence of these fine feather structures increases the specific surface area of the plume branches and allows neighboring plume branches to hook up with each other,forming an effective mechanical interlocking structure.These structures bring owl feathers excellent mechanical properties.Inspired by the natural structure of owl feathers,a weaving technique and a sizing process were combined to prepare bionic Carbon Fiber(CF)fabrics and then to fabricate the bionic CFRP with structural characteristics similar to owl feathers.To evaluate the effect of the fine feather structure on the mechanical properties of CFRP,a mechanical property study on CFRP with and without the fine feather imitation structure were conducted.The experimental results show that the introduction of the fine feather branch structure enhance the mechanical properties of CFRP significantly.Specifically,the tensile strength of the composites increased by 6.42%and 13.06%and the flexural strength increased by 8.02%and 16.87%in the 0°and 90°sample directions,respectively.These results provide a new design idea for the improvement of the mechanical properties of the CFRP,promoting the application of CFRP in engineering fields,such as automotive transportation,rail transit,aerospace,and construction. 展开更多
关键词 Carbon fiber reinforced epoxy composites Owl feather Bionic feather structure Mechanical properties
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部