The demand for energy-efficient and environmental-friendly power grid construction has made the exploitation of bio-based electrical epoxy resins with excellent properties increasingly important.This work developed th...The demand for energy-efficient and environmental-friendly power grid construction has made the exploitation of bio-based electrical epoxy resins with excellent properties increasingly important.This work developed the bio-based electrotechnical epoxy resins based on magnolol.High-performance epoxy resin(DGEMT)with a double crosslinked points and its composites(Al_(2)O_(3)/DGEMT)were obtained taking advantages of the two bifunctional groups(allyl and phenolic hydroxyl groups)of magnolol.Benefitting from the distinctive structure of DGEMT,the Al_(2)O_(3)/DGEMT composites exhibited the advantages of intrinsically high thermal conductivity,high insulation,and low dielectric loss.The AC breakdown strength and thermal conductivity of Al_(2)O_(3)/DGEMT composites were 35.5 kV/mm and 1.19 W·m-1·K-1,respectively,which were 15.6%and 52.6%higher than those of petroleum-based composites(Al_(2)O_(3)/DGEBA).And its dielectric loss tanδ=0.0046 was 20.7%lower than that of Al_(2)O_(3)/DGEBA.Furthermore,the mechanical,thermal and processing properties of Al_(2)O_(3)/DGEMT are fully comparable to those of Al_(2)O_(3)/DGEBA.This work confirms the feasibility of manufacturing environmentally friendly power equipment using bio-based epoxy resins,which has excellent engineering applications.展开更多
In the context of transitioning toward more sustainable construction materials,this study explores the impact of incorporating millet husks as an alternative to sand on the physical,mechanical,and thermal performance ...In the context of transitioning toward more sustainable construction materials,this study explores the impact of incorporating millet husks as an alternative to sand on the physical,mechanical,and thermal performance of lightweight concrete.Through a mixture design approach,five formulations were selected and thoroughly characterized.The analysis of iso-response curves enabled an in-depth assessment of the cross-effects between formulation parameters and their interactions on the final properties of the material.The results show that integrating millet husks leads to a significant reduction in density,reaching up to 21%,while maintaining notable mechanical performance.A balanced formulation of sand and fibers achieved a maximum compressive strength of 12.11 MPa,demonstrating that,under specific conditions,plant fibers actively contribute to the structural integrity of the composite.In tensile strength,the positive influence of fibers is even more pronounced,with a maximum resistance of 8.62 MPa,highlighting their role in enhancing material cohesion.From a thermal perspective,millet husks reduce both thermal conductivity and effusivity,thereby limiting heat transfer and accumulation within the composite.Iso-response curve analysis reveals that these effects are directly linked to the proportions of the constituents and that achieving an optimal balance between sand,fibers,and cement is key to maximizing performance.These findings demonstrate that the adopted approach allows moving beyond conventional substitution methods by identifying optimal configurations for the design of lightweight bio-based concretes that are both strong and insulating,thereby confirming the potential of millet husks in developing lightweight concretes suitable for sustainable construction applications.展开更多
The pressing demand for sustainable advancements in road infrastructure has catalyzed extensive research into environmentally conscious alternatives for the maintenance and restoration of asphalt concrete pavements.Th...The pressing demand for sustainable advancements in road infrastructure has catalyzed extensive research into environmentally conscious alternatives for the maintenance and restoration of asphalt concrete pavements.This paper offers a comprehensive review and analysis of bio-based rejuvenators as a promising avenue for enhancing the longevity and sustainability of asphalt.Through a multifaceted exploration,it delves into various aspects of this innovative approach.Providing a thorough overview of bio-based rejuvenators,the study highlights their renewable and environmentally friendly characteristics.It conducts an in-depth examination of a wide spectrum of bio-derived materials,including vegetable oils,waste-derived bio-products,and biopolymers,through a comprehensive survey.The paper evaluates how bio-based rejuvenators enhance aged asphalt binders and mixes,effectively mitigating the adverse impacts of aging.Furthermore,it investigates how these rejuvenators address environmental concerns by identifying compatibility issues,assessing long-term performance,and evaluating economic feasibility.Finally,the paper outlines potential advancements and research pathways aimed at optimizing the utilization of bio-based rejuvenators in asphalt concrete,thereby contributing to the sustainable evolution of road infrastructure.展开更多
An efficient and novel approach is proposed for oxidative arylation of bio-based furfuryl alcohol(FA)to aryl furans(AFs),a versatile monomer of photoelectric materials,in the presence of UiO-67-Pd(F)with phenanthrolin...An efficient and novel approach is proposed for oxidative arylation of bio-based furfuryl alcohol(FA)to aryl furans(AFs),a versatile monomer of photoelectric materials,in the presence of UiO-67-Pd(F)with phenanthroline/bipyridine,and poly-F substituted phenyl ligands as the mixture linkers.The results of control experiments and theoretical calculations reveal that the–F on the phenyl linkers efficiently tunes the electron-deficient nature of Pd through the Zr_(6) clusters bridges,which favors the adsorption and activation of the furan ring.Furthermore,the conjugation of different nitrogen-containing ligands facilitates Pd coordination for the Heck-type insertion and subsequent electrophilic palladation,respectively.As a result,the oxidative arylation of FA derivatives is substantially enhanced because of these electronic and steric synergistic effects.Under the optimized conditions,72.2%FA conversion and 74.8%mono aryl furan(MAF)selectivity are shown in the Heck-type insertion.Meanwhile,85.3%of MAF is converted,affording 74.8%selectivity of final product(AFs)in the subsequent electrophilic palladation reaction.This process efficiency is remarkably higher than that with homogeneous catalysts.In addition,furan-benzene polymer obtained from the halogen-free synthesis catalyzed by UiO-67-Pd(F)show significantly better properties than that from conventional Suzuki coupling method.Therefore,the present work provides a new insight for useful AFs synthesis by oxidative arylation of bio-furan via rational tunning the metal center micro-environment of heterogeneous catalyst.展开更多
By investigating the performance characteristics of the bio-based surfactant 8901A,a composite decontamination and injection system was developed using 8901A as the primary agent,tailored for application in low-permea...By investigating the performance characteristics of the bio-based surfactant 8901A,a composite decontamination and injection system was developed using 8901A as the primary agent,tailored for application in low-permeability and heavy oil reservoirs under varying temperature conditions.The results demonstrate that this system effectively reduces oil–water interfacial tension,achieving an ultra-low interfacial tension state.The static oil washing efficiency of oil sands exceeds 85%,the average pressure reduction rate reaches 21.55%,and the oil recovery rate improves by 13.54%.These enhancements significantly increase the system’s ability to dissolve oilbased blockages,thereby lowering water injection pressure caused by organic fouling,increasing the injection volume of injection wells,and ultimately improving oil recovery efficiency.展开更多
Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological proce...Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological process from lignocellulose.These novel nylons were obtained by the melt polymerization of 3-propyladipic acid derived from lignin and 1,5-pentenediamine/1,4-butanediamine derived from carbohydrate sugar.Central to the concept is a three-step noble metal free catalytic chemical funnelling sequence(Raney Ni mediated reductive catalytic fractionation-reductive funnelling-oxidative funnelling),which allowed for obtaining a single component 3-propyladipic acid from lignin with high efficiency.The structural and thermodynamic properties of the obtained nylons have been systematically investigated,and thus obtained transparent bio-based nylons exhibited higher Mw(>32,000)and excellent thermal stability(Td5%>265℃).Considering their moderate Tg and good melt strength,these transparent bio-based nylons could serve as promising functional additives or temperature-responsive materials.展开更多
Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,t...Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,three Pt-based catalysts supported on C,AlO(OH),and ZrO_(2)were investigated for the APR of hydroxyacetone solution in afixed bed reactor at 225℃and 35 bar.Among them,the Pt/C catalyst showed the highest turnover frequency for H_(2)production(TOF of 8.9 molH_(2)molPt^(-1)min^(-1))and the longest catalyst stability.Over the AlO(OH)and ZrO_(2)supported Pt catalysts,the side reactions consuming H_(2),formation of coke,and Pt sintering result in a low H_(2)production and the fast catalyst deactivation.The proposed reaction pathways suggest that a promising APR catalyst should reform all oxygenates in the aqueous phase,minimize the hydrogenation of the oxygenates,maximize the WGS reaction,and inhibit the condensation and coking reactions for maximizing the hydrogen yield and a stable catalytic performance.展开更多
Due to their extraordinary durability and thermal stability,Epoxy Resin Thermosets(ERTs)are essential in various industries.However,their poor recyclability leads to unacceptable environmental pollution.In this study,...Due to their extraordinary durability and thermal stability,Epoxy Resin Thermosets(ERTs)are essential in various industries.However,their poor recyclability leads to unacceptable environmental pollution.In this study,Wu et al.successfully synthesized a completely bio-based ERT using lignocellulose-derived building blocks which exhibit outstanding thermal and mechanical properties.Remarkably,these bio-materials degrade via methanolysis without the need of any catalyst,presenting a smart and cost-effective recycling strategy.Furthermore,this approach could be employed for fabricating reusable composites comprising glass fiber and plant fiber,thereby expanding its applications in sustainable transportation,coatings,paints or biomedical devices.展开更多
Toughening the petroleum-based epoxy resin blends with bio-based modifiers without compromising their modulus,mechanical strength,and other properties is still a big challenge in view of the sustainability.In this stu...Toughening the petroleum-based epoxy resin blends with bio-based modifiers without compromising their modulus,mechanical strength,and other properties is still a big challenge in view of the sustainability.In this study,a bio-based liquid crystal epoxy resin(THMT-E P)with an s-triazine ring structure was utilized to modify a petroleum-based bisphenol A epoxy resin(E51)with 4,4'-diaminodiphenylsulfone(DDS)as a curing agent,and the blended systems were evaluated for their thermal stability,mechanical properties,and flame retardancy.The results showed that the impact strength of the blended system initially increased and then decreased with the increase in THMT-EP content,and it reached the a maximum value of 26.5 kJ/m^(2)when the THMT-EP content was 5%,which was 31.2%higher than that of E51/DDS.Notably,the flexural strength,modulus,and glass transition tem perature of the blended system were all simultaneously improved with the addition of THMT-EP.At the same time,the addition of THMT-EP enhanced the flame retardancy of the system by increasing the char yield at 700℃and decreasing the peak heat release rate and total heat release rate.This work paves the way for a more sustainable improvement in the comprehensive performance of epoxy resin.展开更多
It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranc...It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranched toughener,carboxylic acid-functionalized tannic acid(CATA),was successfully prepared and applicated to the preparation of solvent-free epoxy resins.The mechanical performance,morphology,structural characterization,and thermal characterization of toughened epoxy resin system were studied.The toughened epoxy resin system with only 1.0wt%CATA reached the highest impact strength,111%higher than the neat epoxy resin system.Notably,the tensile strength and elongation at break of toughened epoxy resin systems increased moderately with increasing CATA loading.Nonphase-separated hybrids with significant toughening effect were obtained.Additionally,the thermal stabilities of toughened epoxy resin systems decreased with increasing CATA loading.This study provides an eco-friendly,cost-effective,and facile approach for the preparation of high-performance,solvent-free epoxy resins with potential for practical applications in sealing integrated circuits and electrical devices fields.展开更多
Many natural fibers are lightweight and display remarkable strength and toughness.These properties originate from the fibers’hierarchical structures,assembled from the molecular to macroscopic scale.The natural spinn...Many natural fibers are lightweight and display remarkable strength and toughness.These properties originate from the fibers’hierarchical structures,assembled from the molecular to macroscopic scale.The natural spinning systems that produce such fibers are highly energy efficient,inspiring researchers to mimic these processes to realize robust artificial spinning.Significant developments have been achieved in recent years toward the preparation of high-performance bio-based fibers.Beyond excellent mechanical properties,bio-based fibers can be functionalized with a series of new features,thus expanding their sophisticated applications in smart textiles,electronic sensors,and biomedical engineering.Here,recent progress in the construction of bio-based fibers is outlined.Various bioinspired spinning methods,strengthening strategies for mechanically strong fibers,and the diverse applications of these fibers are discussed.Moreover,challenges in reproducing the mechanical performance of natural systems and understanding their dynamic spinning process are presented.Finally,a perspective on the development of biological fibers is given.展开更多
In this work, a series of high performance bio-based polyurethanes(bio-PUs) were synthesized from polylactide(PLA)-based diols, different diisocyanates(TDI, MDI, HDI, IPDI) and chain extender 1,4-butanediol, in ...In this work, a series of high performance bio-based polyurethanes(bio-PUs) were synthesized from polylactide(PLA)-based diols, different diisocyanates(TDI, MDI, HDI, IPDI) and chain extender 1,4-butanediol, in which different soft and hard segments are used to adjust their transition temperatures and mechanical properties. Poly(lactide-co-caprolactone)copolymer diols(co-PLAols) instead of PLA diols as the soft segment improved the thermal stability and mechanical properties of the synthesized bio-PUs. Among them, MDI-based bio-PUs have the highest T_g(43.8 °C), tensile strength(23.5 MPa) and modulus(380.8 MPa), while HDI-based bio-PUs have the lowest T_g(21.4 °C) and highest elongation at break(580%). Especially, the bio-PUs synthesized from co-PLAols and MDI demonstrate better mechanical properties,closed to petroleum-based commodities. Furthermore, the obtained bio-PUs display good shape memory properties at body temperature and cytocompatibility. Therefore, these bio-PUs are promising for applications in biomedical fields.展开更多
In this study, monoglycidyl silyl etherated eugenol(GSE) was synthesized as reactive epoxy diluent, and the chemical structure of GSE, intermediates, and products were characterized by Fourier transform infrared spect...In this study, monoglycidyl silyl etherated eugenol(GSE) was synthesized as reactive epoxy diluent, and the chemical structure of GSE, intermediates, and products were characterized by Fourier transform infrared spectroscopy(FTIR) and nuclear magnetic resonance(~1 H-NMR). GSE existed as a potential bio-based reactive diluent for petroleum-based epoxy resin. The curing kinetics of EP/HHPA/GSE system was studied by non-isothermal DSC method. The kinetics parameters were calculated by using the Kissinger model, Crane model, Ozawa model, and β-T(temperature-heating rate) extrapolation, respectively. In addition, the effects of GSE on the thermo-mechanical properties and thermal stability of EP/HHPA/GSE systems were studied, indicating that GSE can effectively improve the toughness and thermal decomposition temperature of the epoxy system.展开更多
Bio-based polyurethane foam has attracted increasing attentions due to eco-friendliness and fossil feedstock issues.However,the inherent flammability limits its application in different fields.Herein,we demonstrate a ...Bio-based polyurethane foam has attracted increasing attentions due to eco-friendliness and fossil feedstock issues.However,the inherent flammability limits its application in different fields.Herein,we demonstrate a green bio-based flame-retardant system to fabricate polyurethane foam composite with durable flame retardancy,smoke suppression,and thermal insulation property.In this system,the green bio-based polyol(VED)with good reactivity and compatibility plays a role of flame retardant and EG acts as a synergistic filler.As a result,the LOI value of foam composite increased to 30.5 vol.%and it achieved a V-0 rating in the UL-94 vertical burning test.Additionally,the peak heat release rate(pHRR)and the total smoke production(TSP)decreased by 66.1%and 63.4%,respectively.Furthermore,the foam composite maintained durable flame retardancy after accelerated thermal aging test,whose thermal-insulating property was maintained even after being treated in high-humidity environment with 85%R.H.for a week.This work provides a facile strategy for durable flame retardancy and long-term thermal insulation performance,and creates opportunities for the practical applications of bio-based foam composites.展开更多
Polyvinyl alcohol (PVA) has been widely used in the fields of medical, food and packaging due to its excellentbiocompatibility, good fiber-forming and film-forming properties. However, the high flammability of PVA has...Polyvinyl alcohol (PVA) has been widely used in the fields of medical, food and packaging due to its excellentbiocompatibility, good fiber-forming and film-forming properties. However, the high flammability of PVA hasgreatly limited its wider applications. The flame-retardant PVA was prepared by melt blending of a bio-basedflame retardant (prepared from lignin, phosphoric acid and carbamide) with thermoplastic PVA (TPVA). Thechemical structure, morphology, thermal properties, mechanical properties, fire property and fluidity of thisflame retardant PVA were investigated by Fourier transform infrared spectrometer(FTIR), field emission scanning electron microscope(SEM), thermogravimetric analyzer(TGA), impact tester, universal testing machine,horizontal-vertical burning tester, limiting oxygen indexer(LOI) and melt flow rate meter(MFR). The resultsshowed that the prepared flame retardant had good compatibility with the PVA substrate;The impact strength,melt flow rate, fire property and char residue of this PVA material increased with the content of bio-based flameretardant. When the content of flame retardant was of 20%, the five indices including impact strength, meltflow rate, UL-94 level, LOI and char residual were 11.3 KJ/m^(2), 21.2 g/10 min, V-0 UL-94 level, 33.1%, and19.2%, respectively. This research can promote the high-value utilization of lignin and the application ofPVA in the fields of fire protection.展开更多
Elastic bio-based waterproof and breathable membranes(EBWBMs) allow the passage of water vapor effectively and resist the penetration of liquid water,making it ideal for use under extreme conditions.In this study,we u...Elastic bio-based waterproof and breathable membranes(EBWBMs) allow the passage of water vapor effectively and resist the penetration of liquid water,making it ideal for use under extreme conditions.In this study,we used a facile strategy to design the bio-based polyurethane(PU) nanofibrous membranes with the nanoscale porous structure to provide the membranes with high waterproof and breathable performances.The optimization of nanofibrous membrane formation was accomplished by controlling the relative ambient humidity to modulate the cooperating effects of charge dissipation and non-solvent-induced phase separation.The obtained EBWBMs showed multiple functional properties,with a hydrostatic pressure of 86.41 kPa and a water vapor transmission(WVT) rate of 10.1 kg·m^(-2)·d^(-1).After 1 000 cycles of stretching at 40% strain,the EBWBMs retained over 59% of the original maximum stress and exhibited an ideal elasticity recovery ratio of 85%.Besides,even after 80% deformation,the EBWBMs still maintained a hydrostatic pressure of 30.65 kPa and a WVT rate of 13.6 kg·m^(-2)·d^(-1),suggesting that bio-based PU nanofibrous membranes could be used for protection under extreme conditions.展开更多
A novel bioresin, epoxidized soybean oil was synthesized by in situ method and was characterized employing FTIR and NMR. The bioresin was blended with epoxy(DGEBA) at different ratios as reactive diluents for improv...A novel bioresin, epoxidized soybean oil was synthesized by in situ method and was characterized employing FTIR and NMR. The bioresin was blended with epoxy(DGEBA) at different ratios as reactive diluents for improved processibility and toughened nature. The composition with 20 wt% bioresin exhibited improved impact strength to the tune of 60% as compared to virgin epoxy. Fracture toughness parameters critical stress intensity factor(KIC) and critical strain energy release rate(GIC) were evaluated using single edge notch bending test and demonstrated superior enhancement in toughness. Dynamic mechanical, thermal, thermo mechanical and fracture morphological analyses have been studied for bio-based epoxy blends. Curing kinetics has been evaluated through DSC analysis to investigate the effect of bioresin on cross-linking reaction of neat epoxy with triethylenetetramine as curing agent.展开更多
Biomass phytic acid has potential flame retardant value as the main form of phosphorus in plant seeds.In this study,phytate-based flame retardants aluminum phytate(PA-Al)and iron phytate(PA-Fe)were synthesized and cha...Biomass phytic acid has potential flame retardant value as the main form of phosphorus in plant seeds.In this study,phytate-based flame retardants aluminum phytate(PA-Al)and iron phytate(PA-Fe)were synthesized and characterized.Subsequently,they were introduced into rigid polyurethane foam(RPUF)as flame retardants by one-step water-blown method.The results indicated that RPUF/PA-Fe30 exhibited the highest char residue of 22.1 wt%,significantly higher than 12.4 wt%of RPUF.Cone calorimetry analysis showed that the total heat release(THR)of RPUF/PA-Al30 decreased by 17.0%and total smoke release(TSR)decreased by 22.0%compared with pure RPUF,which were the lowest,demonstrating a low fire risk and good smoke suppression.Thermogravimetric analysis-Fourier transform infrared spectrometer(TG-FTIR)implied the release intensity of flammable gases(hydrocarbons,esters)and toxic gases(isocyanate,CO,aromatic compounds,HCN)of composites was significantly reduced after the addition of PA-Fe.The analysis of char residue indicated that the RPUF composites formed a dense char layer with a high degree of graphitization after the addition of PA-Al/PA-Fe,endowing RPUF composites with excellent mass&heat transmission inhibition effect and fire resistance in the combustion process.展开更多
Poly(L-lactic acid)(PLLA)is a thermoplastic material with complete degradability,high biocompatibility and excellent mechanical properties.It can replace petroleum-based polymers are currently being used in the fields...Poly(L-lactic acid)(PLLA)is a thermoplastic material with complete degradability,high biocompatibility and excellent mechanical properties.It can replace petroleum-based polymers are currently being used in the fields of packaging,agriculture,textiles,medical and so on.However,PLLA’s extremely flammability greatly limits its wider application.An bio-based flame retardant L-APP/PLLA composites was prepared by melt blending of the L-APP and PLLA.The morphology,impact properties,thermal properties and flame retardant properties of composites were investigated by field emission scanning electron microscope(SEM),impact tester,differential scanning calorimeter(DSC),thermogravimetric analyzer(TGA),limiting oxygen indexer(LOI)and horizontalvertical burning tester.The results showed that the degree of crystallization(X_(c))and LOI of L-APP/PLLA composites increased as increasing of L-APP content.What’s more,the impact strength first increased and then decreased,the glass transition temperature(T_(g))and melting temperature(T_(m))do not changed significantly.The impact strength of composites was 9.1 kJ/m^(2) at a 5 wt%loading for L-APP,which was the highest level.When the content of L-APP was 20%,the LOI was 30.8%,the Xc was 42.3%and the UL-94 level was V-0.This research can promote the value-added utilization of lignin and the application of PLLA in the fields of flame retardant materials.展开更多
Due to the increasing demand for modified polylactide(PLA)meeting“double green”criteria,the research on sustainable plasticizers for PLA has attracted broad attentions.This study reported an open-ring polymerization...Due to the increasing demand for modified polylactide(PLA)meeting“double green”criteria,the research on sustainable plasticizers for PLA has attracted broad attentions.This study reported an open-ring polymerization method to fabricate cellulose(MCC)-g-PCL(poly(ε-caprolactone))copolymers with a fully sustainable and biodegradable component.MCC-g-PCL copolymers were synthesized,characterized,and used as green plasticizers for the PLA toughening.The results indicated that the MCC-g-PCL derivatives play an important role in the compatibility,crystallization,and toughening of the PLA/MCC-g-PCL composites.The mechanical properties of the fully bio-based PLA/MCC-g-PCL composites were optimized by adding 15 wt%MCC-g-PCL,that is,the elongation at break was 22.6%(~376%higher than that of neat PLA),the tensile strength was 47.3 MPa(comparable to that of neat PLA),and the impact strength was 26 J/m(~130%higher than that of neat PLA).DSC results indicated that MCC-g-PCL reduced the Tg of the PLA blend.When the addition amount was 15 wt%,the Tg of the blend was 58.4°C.Compared with MCC,MCC-g-PCL polyester plasticizer has better thermal stability,T5%(°C)can still be maintained above 300°C.The rheological results showed that MCC-g-PCL acted as a plasticizer,the introduction of PCL flexible chain increased the mobility of PLA molecular chain,and decreased the complex viscosity,storage modulus and loss modulus of PLA blends.The MCC-g-PCL derivatives,as a new green plastic additive,have shown an interesting prospect to prepare fully bio-based composites.展开更多
基金supported by the China Postdoctoral Science Foundation(No.2023M743622)Natural Science Foundation of Ningbo City(No.2024J109)+2 种基金National Natural Science Foundation of China(Nos.E52307038 and U23A20589)Ningbo 2025 Key Scientific Research Programs(Nos.2022Z111,2022Z160 and 2022Z198)the Leading Innovativeand Entrepreneur Team Introduction Program of Zhejiang(No.2021R01005).
文摘The demand for energy-efficient and environmental-friendly power grid construction has made the exploitation of bio-based electrical epoxy resins with excellent properties increasingly important.This work developed the bio-based electrotechnical epoxy resins based on magnolol.High-performance epoxy resin(DGEMT)with a double crosslinked points and its composites(Al_(2)O_(3)/DGEMT)were obtained taking advantages of the two bifunctional groups(allyl and phenolic hydroxyl groups)of magnolol.Benefitting from the distinctive structure of DGEMT,the Al_(2)O_(3)/DGEMT composites exhibited the advantages of intrinsically high thermal conductivity,high insulation,and low dielectric loss.The AC breakdown strength and thermal conductivity of Al_(2)O_(3)/DGEMT composites were 35.5 kV/mm and 1.19 W·m-1·K-1,respectively,which were 15.6%and 52.6%higher than those of petroleum-based composites(Al_(2)O_(3)/DGEBA).And its dielectric loss tanδ=0.0046 was 20.7%lower than that of Al_(2)O_(3)/DGEBA.Furthermore,the mechanical,thermal and processing properties of Al_(2)O_(3)/DGEMT are fully comparable to those of Al_(2)O_(3)/DGEBA.This work confirms the feasibility of manufacturing environmentally friendly power equipment using bio-based epoxy resins,which has excellent engineering applications.
文摘In the context of transitioning toward more sustainable construction materials,this study explores the impact of incorporating millet husks as an alternative to sand on the physical,mechanical,and thermal performance of lightweight concrete.Through a mixture design approach,five formulations were selected and thoroughly characterized.The analysis of iso-response curves enabled an in-depth assessment of the cross-effects between formulation parameters and their interactions on the final properties of the material.The results show that integrating millet husks leads to a significant reduction in density,reaching up to 21%,while maintaining notable mechanical performance.A balanced formulation of sand and fibers achieved a maximum compressive strength of 12.11 MPa,demonstrating that,under specific conditions,plant fibers actively contribute to the structural integrity of the composite.In tensile strength,the positive influence of fibers is even more pronounced,with a maximum resistance of 8.62 MPa,highlighting their role in enhancing material cohesion.From a thermal perspective,millet husks reduce both thermal conductivity and effusivity,thereby limiting heat transfer and accumulation within the composite.Iso-response curve analysis reveals that these effects are directly linked to the proportions of the constituents and that achieving an optimal balance between sand,fibers,and cement is key to maximizing performance.These findings demonstrate that the adopted approach allows moving beyond conventional substitution methods by identifying optimal configurations for the design of lightweight bio-based concretes that are both strong and insulating,thereby confirming the potential of millet husks in developing lightweight concretes suitable for sustainable construction applications.
基金the Swedish Research Council for Sustainable Development FORMAS(grant 2021-00527)Wangjie Wu acknowledges the scholarship funding of the CSC-KTH program.
文摘The pressing demand for sustainable advancements in road infrastructure has catalyzed extensive research into environmentally conscious alternatives for the maintenance and restoration of asphalt concrete pavements.This paper offers a comprehensive review and analysis of bio-based rejuvenators as a promising avenue for enhancing the longevity and sustainability of asphalt.Through a multifaceted exploration,it delves into various aspects of this innovative approach.Providing a thorough overview of bio-based rejuvenators,the study highlights their renewable and environmentally friendly characteristics.It conducts an in-depth examination of a wide spectrum of bio-derived materials,including vegetable oils,waste-derived bio-products,and biopolymers,through a comprehensive survey.The paper evaluates how bio-based rejuvenators enhance aged asphalt binders and mixes,effectively mitigating the adverse impacts of aging.Furthermore,it investigates how these rejuvenators address environmental concerns by identifying compatibility issues,assessing long-term performance,and evaluating economic feasibility.Finally,the paper outlines potential advancements and research pathways aimed at optimizing the utilization of bio-based rejuvenators in asphalt concrete,thereby contributing to the sustainable evolution of road infrastructure.
文摘An efficient and novel approach is proposed for oxidative arylation of bio-based furfuryl alcohol(FA)to aryl furans(AFs),a versatile monomer of photoelectric materials,in the presence of UiO-67-Pd(F)with phenanthroline/bipyridine,and poly-F substituted phenyl ligands as the mixture linkers.The results of control experiments and theoretical calculations reveal that the–F on the phenyl linkers efficiently tunes the electron-deficient nature of Pd through the Zr_(6) clusters bridges,which favors the adsorption and activation of the furan ring.Furthermore,the conjugation of different nitrogen-containing ligands facilitates Pd coordination for the Heck-type insertion and subsequent electrophilic palladation,respectively.As a result,the oxidative arylation of FA derivatives is substantially enhanced because of these electronic and steric synergistic effects.Under the optimized conditions,72.2%FA conversion and 74.8%mono aryl furan(MAF)selectivity are shown in the Heck-type insertion.Meanwhile,85.3%of MAF is converted,affording 74.8%selectivity of final product(AFs)in the subsequent electrophilic palladation reaction.This process efficiency is remarkably higher than that with homogeneous catalysts.In addition,furan-benzene polymer obtained from the halogen-free synthesis catalyzed by UiO-67-Pd(F)show significantly better properties than that from conventional Suzuki coupling method.Therefore,the present work provides a new insight for useful AFs synthesis by oxidative arylation of bio-furan via rational tunning the metal center micro-environment of heterogeneous catalyst.
文摘By investigating the performance characteristics of the bio-based surfactant 8901A,a composite decontamination and injection system was developed using 8901A as the primary agent,tailored for application in low-permeability and heavy oil reservoirs under varying temperature conditions.The results demonstrate that this system effectively reduces oil–water interfacial tension,achieving an ultra-low interfacial tension state.The static oil washing efficiency of oil sands exceeds 85%,the average pressure reduction rate reaches 21.55%,and the oil recovery rate improves by 13.54%.These enhancements significantly increase the system’s ability to dissolve oilbased blockages,thereby lowering water injection pressure caused by organic fouling,increasing the injection volume of injection wells,and ultimately improving oil recovery efficiency.
基金support by National Key Research and Development Program of China(Grant No.:2023YFA0913604)Program of National Natural Science Foundation of China(Grant No.:22178170,22378195)+2 种基金Six talent peaks project in Jiangsu Province(SWYY-045)Program of National Natural Science Foundation of China(Grant No.22208155)Jiangsu Province Natural Science Foundation for Young Scholars(Grant No.BK20210552).
文摘Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological process from lignocellulose.These novel nylons were obtained by the melt polymerization of 3-propyladipic acid derived from lignin and 1,5-pentenediamine/1,4-butanediamine derived from carbohydrate sugar.Central to the concept is a three-step noble metal free catalytic chemical funnelling sequence(Raney Ni mediated reductive catalytic fractionation-reductive funnelling-oxidative funnelling),which allowed for obtaining a single component 3-propyladipic acid from lignin with high efficiency.The structural and thermodynamic properties of the obtained nylons have been systematically investigated,and thus obtained transparent bio-based nylons exhibited higher Mw(>32,000)and excellent thermal stability(Td5%>265℃).Considering their moderate Tg and good melt strength,these transparent bio-based nylons could serve as promising functional additives or temperature-responsive materials.
基金support from European Union Seventh Frame-work Programme(FP7/2007-2013 project SusFuelCat,grant No.310490)is acknowledged.
文摘Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,three Pt-based catalysts supported on C,AlO(OH),and ZrO_(2)were investigated for the APR of hydroxyacetone solution in afixed bed reactor at 225℃and 35 bar.Among them,the Pt/C catalyst showed the highest turnover frequency for H_(2)production(TOF of 8.9 molH_(2)molPt^(-1)min^(-1))and the longest catalyst stability.Over the AlO(OH)and ZrO_(2)supported Pt catalysts,the side reactions consuming H_(2),formation of coke,and Pt sintering result in a low H_(2)production and the fast catalyst deactivation.The proposed reaction pathways suggest that a promising APR catalyst should reform all oxygenates in the aqueous phase,minimize the hydrogenation of the oxygenates,maximize the WGS reaction,and inhibit the condensation and coking reactions for maximizing the hydrogen yield and a stable catalytic performance.
基金the foundational support by the Fundamental Research Funds for the Central Universities(BLX202132)the foundational support by the Beijing Youth Talent Funding Program-Visiting program for young foreign scholars(Q2023043)IIT(BHU)Varanasi.
文摘Due to their extraordinary durability and thermal stability,Epoxy Resin Thermosets(ERTs)are essential in various industries.However,their poor recyclability leads to unacceptable environmental pollution.In this study,Wu et al.successfully synthesized a completely bio-based ERT using lignocellulose-derived building blocks which exhibit outstanding thermal and mechanical properties.Remarkably,these bio-materials degrade via methanolysis without the need of any catalyst,presenting a smart and cost-effective recycling strategy.Furthermore,this approach could be employed for fabricating reusable composites comprising glass fiber and plant fiber,thereby expanding its applications in sustainable transportation,coatings,paints or biomedical devices.
基金financially supported by the National Natural Science Foundation of China(Nos.52073038 and 51873027)the Fundamental Research Funds for the Central Universities(No.DUT22LAB605)。
文摘Toughening the petroleum-based epoxy resin blends with bio-based modifiers without compromising their modulus,mechanical strength,and other properties is still a big challenge in view of the sustainability.In this study,a bio-based liquid crystal epoxy resin(THMT-E P)with an s-triazine ring structure was utilized to modify a petroleum-based bisphenol A epoxy resin(E51)with 4,4'-diaminodiphenylsulfone(DDS)as a curing agent,and the blended systems were evaluated for their thermal stability,mechanical properties,and flame retardancy.The results showed that the impact strength of the blended system initially increased and then decreased with the increase in THMT-EP content,and it reached the a maximum value of 26.5 kJ/m^(2)when the THMT-EP content was 5%,which was 31.2%higher than that of E51/DDS.Notably,the flexural strength,modulus,and glass transition tem perature of the blended system were all simultaneously improved with the addition of THMT-EP.At the same time,the addition of THMT-EP enhanced the flame retardancy of the system by increasing the char yield at 700℃and decreasing the peak heat release rate and total heat release rate.This work paves the way for a more sustainable improvement in the comprehensive performance of epoxy resin.
基金from the Special Fund for the Program for Zhejiang Provincial Natural Science Foundation of China(LZ16C160001)National Key Research and Development Program(2017YFD0601105),the National Natural Science Foundation of China(Grant No.21806142)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY20B070002).
文摘It is essential to design economic and efficient tougheners to prepare high-performance epoxy resin;however,this has remained a huge challenge.Herein,an eco-friendly,low-cost,and facile-fabricated bio-based hyperbranched toughener,carboxylic acid-functionalized tannic acid(CATA),was successfully prepared and applicated to the preparation of solvent-free epoxy resins.The mechanical performance,morphology,structural characterization,and thermal characterization of toughened epoxy resin system were studied.The toughened epoxy resin system with only 1.0wt%CATA reached the highest impact strength,111%higher than the neat epoxy resin system.Notably,the tensile strength and elongation at break of toughened epoxy resin systems increased moderately with increasing CATA loading.Nonphase-separated hybrids with significant toughening effect were obtained.Additionally,the thermal stabilities of toughened epoxy resin systems decreased with increasing CATA loading.This study provides an eco-friendly,cost-effective,and facile approach for the preparation of high-performance,solvent-free epoxy resins with potential for practical applications in sealing integrated circuits and electrical devices fields.
基金the National Key Research and Development Program of China(2017YFC1103900)the National Natural Science Foundation of China(22075244 and 51722306)+1 种基金Natural Science Foundation of Zhejiang Province(LZ22E030001)Shanxi-Zheda Institute of Advanced Materials and Chemical Engi-neering(2021SZ-TD009).
文摘Many natural fibers are lightweight and display remarkable strength and toughness.These properties originate from the fibers’hierarchical structures,assembled from the molecular to macroscopic scale.The natural spinning systems that produce such fibers are highly energy efficient,inspiring researchers to mimic these processes to realize robust artificial spinning.Significant developments have been achieved in recent years toward the preparation of high-performance bio-based fibers.Beyond excellent mechanical properties,bio-based fibers can be functionalized with a series of new features,thus expanding their sophisticated applications in smart textiles,electronic sensors,and biomedical engineering.Here,recent progress in the construction of bio-based fibers is outlined.Various bioinspired spinning methods,strengthening strategies for mechanically strong fibers,and the diverse applications of these fibers are discussed.Moreover,challenges in reproducing the mechanical performance of natural systems and understanding their dynamic spinning process are presented.Finally,a perspective on the development of biological fibers is given.
基金financially supported by the National Natural Science Foundation of China(No.21404112)Ningbo Key Scientific and Technological Project(No.2014B10023)+2 种基金Ningbo Natural Science Foundation(No.2015A610016)Open Project of Key Laboratory of Marine Materials and Related Technologies(No.2016K07)Ningbo Science and Technology Innovation Team(No.2015B11003)
文摘In this work, a series of high performance bio-based polyurethanes(bio-PUs) were synthesized from polylactide(PLA)-based diols, different diisocyanates(TDI, MDI, HDI, IPDI) and chain extender 1,4-butanediol, in which different soft and hard segments are used to adjust their transition temperatures and mechanical properties. Poly(lactide-co-caprolactone)copolymer diols(co-PLAols) instead of PLA diols as the soft segment improved the thermal stability and mechanical properties of the synthesized bio-PUs. Among them, MDI-based bio-PUs have the highest T_g(43.8 °C), tensile strength(23.5 MPa) and modulus(380.8 MPa), while HDI-based bio-PUs have the lowest T_g(21.4 °C) and highest elongation at break(580%). Especially, the bio-PUs synthesized from co-PLAols and MDI demonstrate better mechanical properties,closed to petroleum-based commodities. Furthermore, the obtained bio-PUs display good shape memory properties at body temperature and cytocompatibility. Therefore, these bio-PUs are promising for applications in biomedical fields.
基金the financial support provided by "One Hundred Talented People" of the Chinese Academy of Sciences–China (No. Y60707WR04)Natural Science Foundation of Zhejiang Province (No. Y16B040008)
文摘In this study, monoglycidyl silyl etherated eugenol(GSE) was synthesized as reactive epoxy diluent, and the chemical structure of GSE, intermediates, and products were characterized by Fourier transform infrared spectroscopy(FTIR) and nuclear magnetic resonance(~1 H-NMR). GSE existed as a potential bio-based reactive diluent for petroleum-based epoxy resin. The curing kinetics of EP/HHPA/GSE system was studied by non-isothermal DSC method. The kinetics parameters were calculated by using the Kissinger model, Crane model, Ozawa model, and β-T(temperature-heating rate) extrapolation, respectively. In addition, the effects of GSE on the thermo-mechanical properties and thermal stability of EP/HHPA/GSE systems were studied, indicating that GSE can effectively improve the toughness and thermal decomposition temperature of the epoxy system.
基金supported by the National Natural Science Foundation of China(Nos.22175123,52122302,and 51991351)the 111 Project(No.B20001)Fundamental Research Funds for the Central Universities,and Open and Innovative Fund of Hubei Three Gorges Laboratory(Nos.2022LF2021 and SC213011).
文摘Bio-based polyurethane foam has attracted increasing attentions due to eco-friendliness and fossil feedstock issues.However,the inherent flammability limits its application in different fields.Herein,we demonstrate a green bio-based flame-retardant system to fabricate polyurethane foam composite with durable flame retardancy,smoke suppression,and thermal insulation property.In this system,the green bio-based polyol(VED)with good reactivity and compatibility plays a role of flame retardant and EG acts as a synergistic filler.As a result,the LOI value of foam composite increased to 30.5 vol.%and it achieved a V-0 rating in the UL-94 vertical burning test.Additionally,the peak heat release rate(pHRR)and the total smoke production(TSP)decreased by 66.1%and 63.4%,respectively.Furthermore,the foam composite maintained durable flame retardancy after accelerated thermal aging test,whose thermal-insulating property was maintained even after being treated in high-humidity environment with 85%R.H.for a week.This work provides a facile strategy for durable flame retardancy and long-term thermal insulation performance,and creates opportunities for the practical applications of bio-based foam composites.
基金This work was financially supported by the following funds:National Natural Science Foundation of China(51803055)Hunan Provincial Natural Foundation of China(2019JJ50472)+5 种基金Scientific Research Fund of Hunan Provincial Education Department of China(18C0979,19A391)Opening Fund of National&Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources(KF201802)Hunan Province Key Field R&D Program Project(2019GK2246)Key Scientific Research Project of Huaihua University(HHUY2019-04)Hunan Provincial Key Research and Development Program(2018GK2062)Science and Technology Plan Project of Huaihua City(2020R3101).
文摘Polyvinyl alcohol (PVA) has been widely used in the fields of medical, food and packaging due to its excellentbiocompatibility, good fiber-forming and film-forming properties. However, the high flammability of PVA hasgreatly limited its wider applications. The flame-retardant PVA was prepared by melt blending of a bio-basedflame retardant (prepared from lignin, phosphoric acid and carbamide) with thermoplastic PVA (TPVA). Thechemical structure, morphology, thermal properties, mechanical properties, fire property and fluidity of thisflame retardant PVA were investigated by Fourier transform infrared spectrometer(FTIR), field emission scanning electron microscope(SEM), thermogravimetric analyzer(TGA), impact tester, universal testing machine,horizontal-vertical burning tester, limiting oxygen indexer(LOI) and melt flow rate meter(MFR). The resultsshowed that the prepared flame retardant had good compatibility with the PVA substrate;The impact strength,melt flow rate, fire property and char residue of this PVA material increased with the content of bio-based flameretardant. When the content of flame retardant was of 20%, the five indices including impact strength, meltflow rate, UL-94 level, LOI and char residual were 11.3 KJ/m^(2), 21.2 g/10 min, V-0 UL-94 level, 33.1%, and19.2%, respectively. This research can promote the high-value utilization of lignin and the application ofPVA in the fields of fire protection.
基金National Key R&D Program of China(No.2021YFE0105100)Fok Ying-Tung Education Foundation,China(No.171065)Shanghai Rising-Star Program,China(No.20QA1400500)。
文摘Elastic bio-based waterproof and breathable membranes(EBWBMs) allow the passage of water vapor effectively and resist the penetration of liquid water,making it ideal for use under extreme conditions.In this study,we used a facile strategy to design the bio-based polyurethane(PU) nanofibrous membranes with the nanoscale porous structure to provide the membranes with high waterproof and breathable performances.The optimization of nanofibrous membrane formation was accomplished by controlling the relative ambient humidity to modulate the cooperating effects of charge dissipation and non-solvent-induced phase separation.The obtained EBWBMs showed multiple functional properties,with a hydrostatic pressure of 86.41 kPa and a water vapor transmission(WVT) rate of 10.1 kg·m^(-2)·d^(-1).After 1 000 cycles of stretching at 40% strain,the EBWBMs retained over 59% of the original maximum stress and exhibited an ideal elasticity recovery ratio of 85%.Besides,even after 80% deformation,the EBWBMs still maintained a hydrostatic pressure of 30.65 kPa and a WVT rate of 13.6 kg·m^(-2)·d^(-1),suggesting that bio-based PU nanofibrous membranes could be used for protection under extreme conditions.
基金financially supported by the Department of Chemicals and Petrochemicals,Govt.of India
文摘A novel bioresin, epoxidized soybean oil was synthesized by in situ method and was characterized employing FTIR and NMR. The bioresin was blended with epoxy(DGEBA) at different ratios as reactive diluents for improved processibility and toughened nature. The composition with 20 wt% bioresin exhibited improved impact strength to the tune of 60% as compared to virgin epoxy. Fracture toughness parameters critical stress intensity factor(KIC) and critical strain energy release rate(GIC) were evaluated using single edge notch bending test and demonstrated superior enhancement in toughness. Dynamic mechanical, thermal, thermo mechanical and fracture morphological analyses have been studied for bio-based epoxy blends. Curing kinetics has been evaluated through DSC analysis to investigate the effect of bioresin on cross-linking reaction of neat epoxy with triethylenetetramine as curing agent.
基金This research was supported by National Key Research and Development Project(No.2017YFE0113200)National Natural Science Fund of China(Nos.51403004,U1833113).
文摘Biomass phytic acid has potential flame retardant value as the main form of phosphorus in plant seeds.In this study,phytate-based flame retardants aluminum phytate(PA-Al)and iron phytate(PA-Fe)were synthesized and characterized.Subsequently,they were introduced into rigid polyurethane foam(RPUF)as flame retardants by one-step water-blown method.The results indicated that RPUF/PA-Fe30 exhibited the highest char residue of 22.1 wt%,significantly higher than 12.4 wt%of RPUF.Cone calorimetry analysis showed that the total heat release(THR)of RPUF/PA-Al30 decreased by 17.0%and total smoke release(TSR)decreased by 22.0%compared with pure RPUF,which were the lowest,demonstrating a low fire risk and good smoke suppression.Thermogravimetric analysis-Fourier transform infrared spectrometer(TG-FTIR)implied the release intensity of flammable gases(hydrocarbons,esters)and toxic gases(isocyanate,CO,aromatic compounds,HCN)of composites was significantly reduced after the addition of PA-Fe.The analysis of char residue indicated that the RPUF composites formed a dense char layer with a high degree of graphitization after the addition of PA-Al/PA-Fe,endowing RPUF composites with excellent mass&heat transmission inhibition effect and fire resistance in the combustion process.
基金This work was financially supported by the following funds:Hunan Provincial Natural Foundation of China(2019JJ50472)Opening Fund of National&Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources(KF201802)+4 种基金Hunan Province Key Field R&D Program Project(2019GK2246)Education Department of Hunan Province Key Project(19A391)Key scientific research project of Huaihua University(HHUY2019-04)Special Project of Innovative Provincial Construction in Hunan Province(2020RC1013)Huaihua Key Laboratory for Preparation of Ceramic Materials and Devices and Science and Technology Plan Project of Huaihua City(2020R3101).
文摘Poly(L-lactic acid)(PLLA)is a thermoplastic material with complete degradability,high biocompatibility and excellent mechanical properties.It can replace petroleum-based polymers are currently being used in the fields of packaging,agriculture,textiles,medical and so on.However,PLLA’s extremely flammability greatly limits its wider application.An bio-based flame retardant L-APP/PLLA composites was prepared by melt blending of the L-APP and PLLA.The morphology,impact properties,thermal properties and flame retardant properties of composites were investigated by field emission scanning electron microscope(SEM),impact tester,differential scanning calorimeter(DSC),thermogravimetric analyzer(TGA),limiting oxygen indexer(LOI)and horizontalvertical burning tester.The results showed that the degree of crystallization(X_(c))and LOI of L-APP/PLLA composites increased as increasing of L-APP content.What’s more,the impact strength first increased and then decreased,the glass transition temperature(T_(g))and melting temperature(T_(m))do not changed significantly.The impact strength of composites was 9.1 kJ/m^(2) at a 5 wt%loading for L-APP,which was the highest level.When the content of L-APP was 20%,the LOI was 30.8%,the Xc was 42.3%and the UL-94 level was V-0.This research can promote the value-added utilization of lignin and the application of PLLA in the fields of flame retardant materials.
基金supported by the National Natural Science Foundation of China(21574030,52063007,51863004)Guizhou Province High-Level Innovative Talents Fund([2020]6024)+1 种基金Guizhou Provincial Science and Technology Projects(Grant No.[2022]024)and the Science and Technology Project of Baiyun District,Guiyang City(Grant No.[2020]26)the authors gratefully acknowledge the financial support from the National Engineering Research Center for Compounding and Modification of Polymeric Materials(Guizhou Material Industrial Technology Institute).
文摘Due to the increasing demand for modified polylactide(PLA)meeting“double green”criteria,the research on sustainable plasticizers for PLA has attracted broad attentions.This study reported an open-ring polymerization method to fabricate cellulose(MCC)-g-PCL(poly(ε-caprolactone))copolymers with a fully sustainable and biodegradable component.MCC-g-PCL copolymers were synthesized,characterized,and used as green plasticizers for the PLA toughening.The results indicated that the MCC-g-PCL derivatives play an important role in the compatibility,crystallization,and toughening of the PLA/MCC-g-PCL composites.The mechanical properties of the fully bio-based PLA/MCC-g-PCL composites were optimized by adding 15 wt%MCC-g-PCL,that is,the elongation at break was 22.6%(~376%higher than that of neat PLA),the tensile strength was 47.3 MPa(comparable to that of neat PLA),and the impact strength was 26 J/m(~130%higher than that of neat PLA).DSC results indicated that MCC-g-PCL reduced the Tg of the PLA blend.When the addition amount was 15 wt%,the Tg of the blend was 58.4°C.Compared with MCC,MCC-g-PCL polyester plasticizer has better thermal stability,T5%(°C)can still be maintained above 300°C.The rheological results showed that MCC-g-PCL acted as a plasticizer,the introduction of PCL flexible chain increased the mobility of PLA molecular chain,and decreased the complex viscosity,storage modulus and loss modulus of PLA blends.The MCC-g-PCL derivatives,as a new green plastic additive,have shown an interesting prospect to prepare fully bio-based composites.