Artificial intelligence(AI)is reshaping financial systems and services,as intelligent AI agents increasingly form the foundation of autonomous,goal-driven systems capable of reasoning,learning,and action.This review s...Artificial intelligence(AI)is reshaping financial systems and services,as intelligent AI agents increasingly form the foundation of autonomous,goal-driven systems capable of reasoning,learning,and action.This review synthesizes recent research and developments in the application of AI agents across core financial domains.Specifically,it covers the deployment of agent-based AI in algorithmic trading,fraud detection,credit risk assessment,roboadvisory,and regulatory compliance(RegTech).The review focuses on advanced agent-based methodologies,including reinforcement learning,multi-agent systems,and autonomous decision-making frameworks,particularly those leveraging large language models(LLMs),contrasting these with traditional AI or purely statistical models.Our primary goals are to consolidate current knowledge,identify significant trends and architectural approaches,review the practical efficiency and impact of current applications,and delineate key challenges and promising future research directions.The increasing sophistication of AI agents offers unprecedented opportunities for innovation in finance,yet presents complex technical,ethical,and regulatory challenges that demand careful consideration and proactive strategies.This review aims to provide a comprehensive understanding of this rapidly evolving landscape,highlighting the role of agent-based AI in the ongoing transformation of the financial industry,and is intended to serve financial institutions,regulators,investors,analysts,researchers,and other key stakeholders in the financial ecosystem.展开更多
Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may po...Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may pose certain environmental risks.Snow-melting agents and snow samples were collected and analyzed from highways,arterial roads,footbridges,and other locations in Beijing after the snowstorm in December 2023.It was found that the main component of snow-melting agents was sodium chloride with high concentrations of Cu,Mn,and Zn,which are not regulated in the current policies,despite the recent promotion of environmentally friendly snow-melting agents.The Pb,Zn and Cr contents of some snow samples exceeded the limitation value of surface water quality standards,potentially affecting the soil and water environment near roadsides,although the snow-melting agents comply with relevant standards,which indicates the policy gap in the management of recycled industrial salts.We reviewed and analyzed the relevant standards for snow-melting agents and industrial waste salts proposed nationally and internationally over the past 30 years.Through comparative analysis,we proposed relevant policy recommendations to the existing quality standards of snow-melting agents and the management regulations of industrial waste salts,and the formulation of corresponding usage strategies,aimed at reducing the potential environmental release of heavy metals from the use of snow-melting agents,thereby promoting more sustainable green urban development and environmentally sound waste management.展开更多
Chemical warfare agents(CWAs)remain a persistent hazard in many parts of the world,necessitating a deeper exploration of their chemical and physical characteristics and reactions under diverse conditions.Diisopropyl m...Chemical warfare agents(CWAs)remain a persistent hazard in many parts of the world,necessitating a deeper exploration of their chemical and physical characteristics and reactions under diverse conditions.Diisopropyl methylphosphonate(DIMP),a commonly used CWA surrogate,is widely studied to enhance our understanding of CWA behavior.The prevailing thermal decomposition model for DIMP,developed approximately 25 years ago,is based on data collected in nitrogen atmospheres at temperatures ranging from 700 K to 800 K.Despite its limitations,this model continues to serve as a foundation for research across various thermal and reactive environments,including combustion studies.Our recent experiments have extended the scope of decomposition analysis by examining DIMP in both nitrogen and zero air across a lower temperature range of 175??C to 250??C.Infrared spectroscopy results under nitrogen align well with the established model;however,we observed that catalytic effects,stemming from decomposition byproducts and interactions with stainless steel surfaces,alter the reaction kinetics.In zero air environments,we observed a novel infrared absorption band.Spectral fitting suggests this band may represent a combination of propanal and acetone,while GCMS analysis points to vinyl formate and acetone as possible constituents.Although the precise identity of these new products remains unresolved,our findings clearly indicate that the existing decomposition model cannot be reliably extended to lower temperatures or non-nitrogen environments without further revisions.展开更多
BACKGROUND Ulcerative colitis(UC)is a chronic and debilitating inflammatory bowel disease.Cumulative evidence indicates that excess hydrogen peroxide,a potent neutrophilic chemotactic agent,produced by colonic epithel...BACKGROUND Ulcerative colitis(UC)is a chronic and debilitating inflammatory bowel disease.Cumulative evidence indicates that excess hydrogen peroxide,a potent neutrophilic chemotactic agent,produced by colonic epithelial cells has a causal role leading to infiltration of neutrophils into the colonic mucosa and subsequent development of UC.This evidence-based mechanism identifies hydrogen peroxide as a therapeutic target for reducing agents in the treatment of UC.CASE SUMMARY Presented is a 41-year-old female with a 26-year history of refractory UC.Having developed steroid dependence and never achieving complete remission on treatment by conventional and advanced therapies,she began treatment with oral R-dihydrolipoic acid(RDLA),a lipid-soluble reducing agent with intracellular site of action.Within a week,rectal bleeding ceased.She was asymptomatic for three years until a highly stressful experience,when she noticed blood in her stool.RDLA was discontinued,and she began treatment with oral sodium thiosulfate pentahydrate(STS),a reducing agent with extracellular site of action.After a week,rectal bleeding ceased,and she resumed oral RDLA and discontinued STS.To date,she remains asymptomatic with normal stool calprotectin while on RDLA.CONCLUSION STS and RDLA are reducing agents that serve as highly effective and safe therapy for the induction and maintenance of remission in UC,even in patients refractory or poorly controlled by conventional and advanced therapies.Should preliminary findings be validated by subsequent clinical trials,the use of reducing agents could potentially prevent thousands of colectomies and represent a paradigm shift in the treatment of UC.展开更多
TCM formulae are the important guidances for clinical application of traditional Chinese medicines,which follow the principles of diagnosis and treatment in TCM.Elucidating the bio-active components of TCM formulae is...TCM formulae are the important guidances for clinical application of traditional Chinese medicines,which follow the principles of diagnosis and treatment in TCM.Elucidating the bio-active components of TCM formulae is the key to the modernization and internationalization of traditional Chinese medicines.With the rapid development of modern instruments and technology,many new theories,methods and strategies are emerging,which upgrade the research of TCM formulae into a higher level.Only when the medicinal efficacy,bio-active components,function mechanism of TCM formulae are understood,we can guarantee TCM safety and quality control.In this paper,we summarized the latest modern research thoughts and methods on bio-active components of TCM formulae including formula decomposition study,serum pharmacology and serum pharmacochemistry,association analysis,biochro-matography,network pharmacology,metabolomics and proteomics,so as to provide reference for the research and development of TCM in the future.展开更多
Background:The active components of Horcha-6 were identified using liquid chromatography with tandem mass spectrometry.Also,we investigated the potential mechanisms that explain why Horcha-6 may be effective in treati...Background:The active components of Horcha-6 were identified using liquid chromatography with tandem mass spectrometry.Also,we investigated the potential mechanisms that explain why Horcha-6 may be effective in treating migraines through the use of network pharmacology and a rat migraine model.Methods:After identifying the active components of Horcha-6,the corresponding genes of the active components’target were obtained from the Universal Protein database,and a“compound-target-disease”network was constructed using Cytoscape 3.9.0 software.For the in vivo experiments,nitroglycerin was injected intraperitoneally into rats to create a migraine model.Pre-treatment with Horcha-6 was administered orally for 14 days,and rats were subjected to migraine-related behavior tests.RNA sequencing was performed to identify the gene expression regulated by Horcha-6 in the trigeminal nerve.Results:A total of 903 chemical components of Horcha-6 have been collected in the liquid chromatography with tandem mass spectrometry.We discovered 55 of the Horcha-6 bio-active components that were evaluated based on their Percent Human Oral Absorption(≥30%)and DL values(≥0.185)on the traditional Chinese medicine systems pharmacology database.The“compound-target-disease”network contained 163 intersection targets with the migraine state.Gene Ontology analysis indicated that these components significantly regulated the immune response,vascular function,oxidative stress,etc.When Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed,we observed that most of the target genes were significantly enriched in the inflammation and neuro-related signaling pathway,toll-like receptor signaling pathway,neuroactive ligand-receptor interaction,etc.These predictions were further demonstrated via in vivo animal model experiments.The RNA sequencing results showed that 41 genes were down-regulated(P<0.05)and 86 genes were up-regulated(P<0.05)in the Horcha-6 treated group compared with the untreated group.Those genes were mainly involved in neuromodulation,vascular function,and hormone metabolism.Conclusion:The 55 bio-active components in Horcha-6 regulate inflammation,hormone metabolism,and neurotransmitters and have potential as a therapy to treat migraines.展开更多
Melatonin(N-acetyl-5-methoxytryptamine)is known as the hormone of darkness because it is synthesized at night and involved in regulating the circadian clock.The hormone is primarily synthesized by the vertebrate pinea...Melatonin(N-acetyl-5-methoxytryptamine)is known as the hormone of darkness because it is synthesized at night and involved in regulating the circadian clock.The hormone is primarily synthesized by the vertebrate pineal gland,but is ubiquitous among invertebrates,unicellular organisms,plants,and even cyanobacteria(Hattori and Suzuki,2024).Melatonin is well-conserved evolutionarily and possesses several physiological functions,such as immune response,bone and glucose metabolism,and memory formation besides regulating the circadian rhythm.展开更多
基金supported by the Ministry of Education and Science of the Republic of North Macedonia through the project“Utilizing AI and National Large Language Models to Advance Macedonian Language Capabilties”。
文摘Artificial intelligence(AI)is reshaping financial systems and services,as intelligent AI agents increasingly form the foundation of autonomous,goal-driven systems capable of reasoning,learning,and action.This review synthesizes recent research and developments in the application of AI agents across core financial domains.Specifically,it covers the deployment of agent-based AI in algorithmic trading,fraud detection,credit risk assessment,roboadvisory,and regulatory compliance(RegTech).The review focuses on advanced agent-based methodologies,including reinforcement learning,multi-agent systems,and autonomous decision-making frameworks,particularly those leveraging large language models(LLMs),contrasting these with traditional AI or purely statistical models.Our primary goals are to consolidate current knowledge,identify significant trends and architectural approaches,review the practical efficiency and impact of current applications,and delineate key challenges and promising future research directions.The increasing sophistication of AI agents offers unprecedented opportunities for innovation in finance,yet presents complex technical,ethical,and regulatory challenges that demand careful consideration and proactive strategies.This review aims to provide a comprehensive understanding of this rapidly evolving landscape,highlighting the role of agent-based AI in the ongoing transformation of the financial industry,and is intended to serve financial institutions,regulators,investors,analysts,researchers,and other key stakeholders in the financial ecosystem.
基金supported by the National Natural Science Foundation of China(No.22176200)the Industrial Innovation Entrepreneurial Team Project of Ordos 2021.
文摘Industrial waste salts are commonly used to make value-added snow-melting agents to ensure traffic safety in northern China during winter and spring after snowfall.However,heavy metals in industrial waste salts may pose certain environmental risks.Snow-melting agents and snow samples were collected and analyzed from highways,arterial roads,footbridges,and other locations in Beijing after the snowstorm in December 2023.It was found that the main component of snow-melting agents was sodium chloride with high concentrations of Cu,Mn,and Zn,which are not regulated in the current policies,despite the recent promotion of environmentally friendly snow-melting agents.The Pb,Zn and Cr contents of some snow samples exceeded the limitation value of surface water quality standards,potentially affecting the soil and water environment near roadsides,although the snow-melting agents comply with relevant standards,which indicates the policy gap in the management of recycled industrial salts.We reviewed and analyzed the relevant standards for snow-melting agents and industrial waste salts proposed nationally and internationally over the past 30 years.Through comparative analysis,we proposed relevant policy recommendations to the existing quality standards of snow-melting agents and the management regulations of industrial waste salts,and the formulation of corresponding usage strategies,aimed at reducing the potential environmental release of heavy metals from the use of snow-melting agents,thereby promoting more sustainable green urban development and environmentally sound waste management.
基金sponsored by the Department of Defense,Defense Threat Reduction Agency under the Materials Science in Extreme Environments University Research Alliance,HDTRA1-20-2-0001。
文摘Chemical warfare agents(CWAs)remain a persistent hazard in many parts of the world,necessitating a deeper exploration of their chemical and physical characteristics and reactions under diverse conditions.Diisopropyl methylphosphonate(DIMP),a commonly used CWA surrogate,is widely studied to enhance our understanding of CWA behavior.The prevailing thermal decomposition model for DIMP,developed approximately 25 years ago,is based on data collected in nitrogen atmospheres at temperatures ranging from 700 K to 800 K.Despite its limitations,this model continues to serve as a foundation for research across various thermal and reactive environments,including combustion studies.Our recent experiments have extended the scope of decomposition analysis by examining DIMP in both nitrogen and zero air across a lower temperature range of 175??C to 250??C.Infrared spectroscopy results under nitrogen align well with the established model;however,we observed that catalytic effects,stemming from decomposition byproducts and interactions with stainless steel surfaces,alter the reaction kinetics.In zero air environments,we observed a novel infrared absorption band.Spectral fitting suggests this band may represent a combination of propanal and acetone,while GCMS analysis points to vinyl formate and acetone as possible constituents.Although the precise identity of these new products remains unresolved,our findings clearly indicate that the existing decomposition model cannot be reliably extended to lower temperatures or non-nitrogen environments without further revisions.
文摘BACKGROUND Ulcerative colitis(UC)is a chronic and debilitating inflammatory bowel disease.Cumulative evidence indicates that excess hydrogen peroxide,a potent neutrophilic chemotactic agent,produced by colonic epithelial cells has a causal role leading to infiltration of neutrophils into the colonic mucosa and subsequent development of UC.This evidence-based mechanism identifies hydrogen peroxide as a therapeutic target for reducing agents in the treatment of UC.CASE SUMMARY Presented is a 41-year-old female with a 26-year history of refractory UC.Having developed steroid dependence and never achieving complete remission on treatment by conventional and advanced therapies,she began treatment with oral R-dihydrolipoic acid(RDLA),a lipid-soluble reducing agent with intracellular site of action.Within a week,rectal bleeding ceased.She was asymptomatic for three years until a highly stressful experience,when she noticed blood in her stool.RDLA was discontinued,and she began treatment with oral sodium thiosulfate pentahydrate(STS),a reducing agent with extracellular site of action.After a week,rectal bleeding ceased,and she resumed oral RDLA and discontinued STS.To date,she remains asymptomatic with normal stool calprotectin while on RDLA.CONCLUSION STS and RDLA are reducing agents that serve as highly effective and safe therapy for the induction and maintenance of remission in UC,even in patients refractory or poorly controlled by conventional and advanced therapies.Should preliminary findings be validated by subsequent clinical trials,the use of reducing agents could potentially prevent thousands of colectomies and represent a paradigm shift in the treatment of UC.
基金supported by the Key Research and Development Program of Shaanxi(No.2019ZDLSF04-05)the National Natural Science Foundation of China(No.81974522),the Subject Innovation Team of Shaanxi University of Chinese Medi-cine(No.2019-YL10)the Youth Innovation Team of Shaanxi Universities(2020).
文摘TCM formulae are the important guidances for clinical application of traditional Chinese medicines,which follow the principles of diagnosis and treatment in TCM.Elucidating the bio-active components of TCM formulae is the key to the modernization and internationalization of traditional Chinese medicines.With the rapid development of modern instruments and technology,many new theories,methods and strategies are emerging,which upgrade the research of TCM formulae into a higher level.Only when the medicinal efficacy,bio-active components,function mechanism of TCM formulae are understood,we can guarantee TCM safety and quality control.In this paper,we summarized the latest modern research thoughts and methods on bio-active components of TCM formulae including formula decomposition study,serum pharmacology and serum pharmacochemistry,association analysis,biochro-matography,network pharmacology,metabolomics and proteomics,so as to provide reference for the research and development of TCM in the future.
基金supported by grants The Natural Science Foundation of Inner Mongolia(2019MS08104)The Natural Science Foundation of Inner Mongolia(2022ZD09)The Central Government Guiding Special Funds for Development of Local Science and Technology(2020ZY0020).
文摘Background:The active components of Horcha-6 were identified using liquid chromatography with tandem mass spectrometry.Also,we investigated the potential mechanisms that explain why Horcha-6 may be effective in treating migraines through the use of network pharmacology and a rat migraine model.Methods:After identifying the active components of Horcha-6,the corresponding genes of the active components’target were obtained from the Universal Protein database,and a“compound-target-disease”network was constructed using Cytoscape 3.9.0 software.For the in vivo experiments,nitroglycerin was injected intraperitoneally into rats to create a migraine model.Pre-treatment with Horcha-6 was administered orally for 14 days,and rats were subjected to migraine-related behavior tests.RNA sequencing was performed to identify the gene expression regulated by Horcha-6 in the trigeminal nerve.Results:A total of 903 chemical components of Horcha-6 have been collected in the liquid chromatography with tandem mass spectrometry.We discovered 55 of the Horcha-6 bio-active components that were evaluated based on their Percent Human Oral Absorption(≥30%)and DL values(≥0.185)on the traditional Chinese medicine systems pharmacology database.The“compound-target-disease”network contained 163 intersection targets with the migraine state.Gene Ontology analysis indicated that these components significantly regulated the immune response,vascular function,oxidative stress,etc.When Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed,we observed that most of the target genes were significantly enriched in the inflammation and neuro-related signaling pathway,toll-like receptor signaling pathway,neuroactive ligand-receptor interaction,etc.These predictions were further demonstrated via in vivo animal model experiments.The RNA sequencing results showed that 41 genes were down-regulated(P<0.05)and 86 genes were up-regulated(P<0.05)in the Horcha-6 treated group compared with the untreated group.Those genes were mainly involved in neuromodulation,vascular function,and hormone metabolism.Conclusion:The 55 bio-active components in Horcha-6 regulate inflammation,hormone metabolism,and neurotransmitters and have potential as a therapy to treat migraines.
基金supported by JSPS KAKENHI Grant Number JP22K11823 to AH and JP22J01508 to KW。
文摘Melatonin(N-acetyl-5-methoxytryptamine)is known as the hormone of darkness because it is synthesized at night and involved in regulating the circadian clock.The hormone is primarily synthesized by the vertebrate pineal gland,but is ubiquitous among invertebrates,unicellular organisms,plants,and even cyanobacteria(Hattori and Suzuki,2024).Melatonin is well-conserved evolutionarily and possesses several physiological functions,such as immune response,bone and glucose metabolism,and memory formation besides regulating the circadian rhythm.