期刊文献+
共找到277篇文章
< 1 2 14 >
每页显示 20 50 100
In-feed provision of binding proteins sustains piglet gut health and mitigates ETEC-induced post-weaning diarrhea 被引量:1
1
作者 Jiajia Xu Melania Andrani +6 位作者 Rikke Brødsgaard Kjærup Tina Sørensen Dalgaard Carsten Eriksen Andreas Hougaard Laustsen Susanne Brix Sandra Wingaard Thrane Nuria Canibe 《Journal of Animal Science and Biotechnology》 2025年第4期1656-1676,共21页
Background Post-weaning diarrhea(PWD)in piglets,often caused by F4^(+)enterotoxigenic Escherichia coli(ETEC),poses significant challenges in pig production.Traditional solutions like antibiotics and zinc oxide face in... Background Post-weaning diarrhea(PWD)in piglets,often caused by F4^(+)enterotoxigenic Escherichia coli(ETEC),poses significant challenges in pig production.Traditional solutions like antibiotics and zinc oxide face increasing restrictions due to growing concerns over antibiotic resistance and environmental sustainability.This study investigates the application of bivalent heavy chain variable domain(V_(H)H)constructs(BL1.2 and BL2.2)targeting ETEC virulence factors,administered in feed to mitigate ETEC-induced PWD in weaned piglets.Results The supplementation of BL1.2 and BL2.2 in both mash and pelleted feed significantly reduced the diarrhea incidence and fecal shedding of F4^(+)ETEC in challenged piglets.Pelleted feed containing V_(H)H constructs helped to preserve gut barrier integrity by maintaining levels of the tight junction protein occludin in the small intestine.Additionally,the constructs maintained blood granulocyte counts at a similar level to the non-challenged control group,including neutrophils,and ameliorated the acute phase protein response after challenge.Notably,even at low feed intake immediately after weaning,V_(H)H constructs helped maintain piglet health by mitigating ETEC-induced inflammation and the resulting diarrhea.Conclusions Our findings demonstrated that using V_(H)H constructs as feed additives could serve as an effective strategy to help manage ETEC-associated PWD,by reducing F4^(+)ETEC gut colonization and supporting gut barrier function of weaned piglets.The high stability of these V_(H)H constructs supports their incorporation into industrial feed manufacturing processes,offering a more sustainable preventive strategy compared to traditional antimicrobial interventions,which could contribute to sustainable farming practices. 展开更多
关键词 Antimicrobial alternatives binding proteins Enterotoxigenic E.coli Feed additive Gut health PIGLETS Post-weaning diarrhea Single-domain antibodies
在线阅读 下载PDF
Maintaining cholesterol homeostasis: Sterol regulatory element-binding proteins 被引量:17
2
作者 LutzW.Weber MeinradBoll AndreasStampfl 《World Journal of Gastroenterology》 SCIE CAS CSCD 2004年第21期3081-3087,共7页
The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane pr... The molecular mechanism of how hepatocytes maintain cholesterol homeostasis has become much more transparent with the discovery of sterol regulatory element binding proteins (SREBPs) in recent years. These membrane proteins aremembers of the basic helix-loop-helix-leucine zipper (bHLHZip) family of transcription factors. They activate the expression of at least 30 genes involved in the synthesis of cholesterol and lipids. SREBPs are synthesized as precursor proteins in the endoplasmic reticulum (ER), where they form a complex with another protein, SREBP cleavage activating protein (SCAP). The SCAP molecule contains a sterol sensory domain. In the presence of high cellular sterol concentrations SCAP confines SREBP to the ER. With low cellular concentrations, SCAP escorts SREBP to activation in the Golgi. There, SREBP undergoes two proteolytic cleavage steps to release the mature, biologically active transcription factor, nuclear SREBP (nSREBP). nSREBP translocates to the nucleus and binds to sterol response elements (SRE) in the promoter/enhancer regions of target genes. Additional transcription factors are required to activate transcription of these genes. Three different SREBPs are known, SREBPs-1a, -1c and -2. SREBP-1a and -1c are isoforms produced from a single gene by alternate splicing. SREBP-2 is encoded by a different gene and does not display any isoforms. It appears that SREBPs alone, in the sequence described above, can exert complete control over cholesterol synthesis, whereas many additional factors (hormones, cytokines, etc.) are required for complete control of lipid metabolism. Medicinal manipulation of the SREBP/SCAP system is expected to prove highly beneficial in the management of cholesterol-related disease. 展开更多
关键词 ANIMALS CCAAT-Enhancer-binding proteins CHOLESTEROL DNA-binding proteins HOMEOSTASIS Humans Sterol Regulatory Element binding Protein 1 Sterol Regulatory Element binding Protein 2 Transcription Factors
暂未订购
Screening of Extracellular Binding Proteins of Rice Receptor-like Kinase CR4 by the Yeast Two-hybrid 被引量:1
3
作者 姚清国 李晓芹 +3 位作者 张文娜 周二鹏 王娟 王景翔 《Agricultural Science & Technology》 CAS 2010年第11期77-81,共5页
[Objective] The research aimed to find the extracellular binding proteins of CR4.[Method] The extracellular domain of OsCR4 was as the bait protein,and the yeast two-hybrid was used to screen cDNA library of seedling ... [Objective] The research aimed to find the extracellular binding proteins of CR4.[Method] The extracellular domain of OsCR4 was as the bait protein,and the yeast two-hybrid was used to screen cDNA library of seedling which was cultivated 14 d.[Result] A lot of proteins which included a peroxide B(D26484),a methionine thioredoxin reductase(ABF96078)and an unknown function protein were gained.[Conclusion] It provided the theory basis for studying the signal transduction mechanism of CR4. 展开更多
关键词 RICE Receptor-like kinase Extracellular binding protein Yeast two-hybrid
在线阅读 下载PDF
RNA binding proteins in spermatogenesis: an in depth focus on the Musashi family 被引量:5
4
作者 Jessie M Sutherland Nicole A Siddall +1 位作者 Gary R Hime Eileen A McLaughlin 《Asian Journal of Andrology》 SCIE CAS CSCD 2015年第4期529-536,共8页
Controlled gene regulation during gamete development is vital for maintaining reproductive potential. During the complex process of mammalian spermatogenesis, male germ cells experience extended periods of the inactiv... Controlled gene regulation during gamete development is vital for maintaining reproductive potential. During the complex process of mammalian spermatogenesis, male germ cells experience extended periods of the inactive transcription despite heavy translational requirements for continued growth and differentiation. Hence, spermatogenesis is highly reliant on mechanisms of posttranscriptional regulation of gene expression, facilitated by RNA binding proteins (RBPs), which remain abundantly expressed throughout this process. One such group of proteins is the Musashi family, previously identified as critical regulators of testis germ cell development and meiosis in Drosophila, and also shown to be vital to sperm development and reproductive potential in the mouse. This review describes the role and function of RBPs our recent knowledge of the Musashi proteins in spermatogenesis. within the scope of male germ cell development, focusing on The functional mechanisms utilized by RBPs within the cell are outlined in depth, and the significance of sub-cellular localization and stage-specific expression in relation to the mode and impact of posttranscriptional regulation is also highlighted. We emphasize the historical role of the Musashi family of RBPs in stem cell function and cell fate determination, as originally characterized in Drosophila and Xenopus, and conclude with our current understanding of the differential roles and functions of the mammalian Musashi proteins, Musashi-1 and Musashi-2, with a primary focus on our findings in spermatogenesis. This review highlights both the essential contribution of RBPs to posttranscriptional regulation and the importance of the Musashi family as master regulators of male gamete development. 展开更多
关键词 gene regulation Musashi MUSASHI-1 Musashi-2 posttranscriptional control RNA binding proteins SPERMATOGENESIS SPLICING TESTIS translation
原文传递
Advances on Plant Pathogenic Mycotoxin Binding Proteins
5
作者 WANG Chao-hua and DONG Jin-gao(Mycotoxin Laboratory , Hebei Agricultural University . Baoding 071001 ,P. R. China) 《Agricultural Sciences in China》 CAS CSCD 2002年第11期1216-1223,共8页
Toxin-binding protein is one of the key subjects in plant pathogenic mycotoxin research. In this paper, new advances in toxin-binding proteins of 10 kinds of plant pathogenic mycotoxins belonging to Hel-minthosporium,... Toxin-binding protein is one of the key subjects in plant pathogenic mycotoxin research. In this paper, new advances in toxin-binding proteins of 10 kinds of plant pathogenic mycotoxins belonging to Hel-minthosporium,Alternaria,Fusicoccum,Verticillium were reviewed, especially the techniques and methods of toxin-binding proteins of HS-toxin, HV-toxin, HMT-toxin, HC-toxin. It was proposed that the isotope-labeling technique and immunological chemistry technique should be combined together in research of toxin-binding protein, which will be significant to study the molecular recognition mechanism between host and pathogenic fungus. 展开更多
关键词 FUNGUS MYCOTOXIN binding proteins Action site
在线阅读 下载PDF
Identification of AOSC-binding proteins in neurons
6
作者 刘明 聂琴 +1 位作者 辛现良 耿美玉 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2008年第4期394-399,共6页
Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brownalgaepolysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer's Disease (AD) drug c... Acidic oligosaccharide sugar chain (AOSC), a D-mannuronic acid oligosaccharide, derived from brownalgaepolysaccharide, has been completed Phase I clinical trial in China as an anti-Alzheimer's Disease (AD) drug candidate. The identification of AOSC-binding protein(s) in neurons is very important for understanding its action mechanism. To determine the binding protein(s) of AOSC in neurons mediating its anti-AD activities, confocal microscopy, affinity chromatography, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used. Confocal microscopy analysis shows that AOSC binds to SH-SY5Y cells in concentration-, time-, and temperature-dependent fashions. The AOSC binding proteins were purified by affinity chromatography and identified by LC-MS/MS analysis. The results showed that there are 349 proteins binding AOSC, including clathrin, adaptor protein-2 (AP-2) and amyloid precursor protein (APP). These results suggest that the binding/entrance of AOSC to neurons is probably responsible for anti-AD activities. 展开更多
关键词 AOSC Alzheimer's disease marine oligosaccharide binding protein(s)
原文传递
Cysteine Residues in Receptor Proteins: Structural Insights from Two E. coil Periplasmic Binding Proteins
7
作者 Urmi Roy Linda A. Luck 《Journal of Chemistry and Chemical Engineering》 2011年第9期771-777,共7页
Cysteine residues found in proteins have various functions such as metal binding, nitrosylation, and stabilization of structure. We have done a comparative, computational structural analysis of the cysteine residues i... Cysteine residues found in proteins have various functions such as metal binding, nitrosylation, and stabilization of structure. We have done a comparative, computational structural analysis of the cysteine residues in two proteins from bacteria to get some insight into the differences between metal binding cysteine residues and those involved in structure stabilization. The two target proteins in this study are the periplasmic mercury binding protein (MerP) and the 1-1eucine binding protein (LBP). Both are periplasmic binding proteins from E. coli. We have shown key phenomenon that define cysteines as metal binding or structural in nature. 展开更多
关键词 Mercury binding protein (MerP) leucine binding protein (LBP) heavy metal MERCURY disulphide-bridge cysteine.
在线阅读 下载PDF
Novel Treatment Approach in Schizophrenia: Substitution of Glial Binding Proteins
8
作者 Bernhard J. Mitterauer 《Advances in Bioscience and Biotechnology》 2016年第10期392-402,共11页
In chronic schizophrenia, synaptic information processing is unbalanced, as shown in a model of glial-neuronal synaptic units, called tripartite synapses. The glial component of the synapse exerts a modifying function... In chronic schizophrenia, synaptic information processing is unbalanced, as shown in a model of glial-neuronal synaptic units, called tripartite synapses. The glial component of the synapse exerts a modifying function in neurotransmission since the astrocyte activated by neurotransmitters produces gliotransmitters that negatively feedback to the presynapse. It is hypothesized that in schizophrenia nonfunctional astrocytic receptors cannot be activated, thus losing their modulating function. This causes a generalization of information processing in the neuronal networks such that the brain is unable to distinguish between subjects and objects in the environment. Delusions, hallucinations and cognitive impairment occur on the behavioral level. In a model of a cholinergic tripartite synapse, it is shown that glial binding proteins modify neurotransmission by occupancy with cognate neurotransmitters temporarily turning off neurotransmission on the presynapse. Most recently, glial binding proteins have been engineered. It is proposed that the substitution of glial binding proteins may balance synaptic information processing in schizophrenia since these proteins exert a modulatory function comparable to functional astrocytic receptors. Rap- id technical developments may enable this novel treatment approach in schizophrenia. 展开更多
关键词 SCHIZOPHRENIA Synaptic unbalance Astrocytic Receptors Glial binding Protein TREATMENT
在线阅读 下载PDF
RNA-binding proteins:a novel target for modulating glucose and lipid metabolism
9
作者 Yongjian Hu Qian Sun 《Signal Transduction and Targeted Therapy》 2025年第6期3033-3034,共2页
In a recent study published in Science,Chen and colleagues unveiled the mechanism by which hepatic alkylation repair homolog protein 5(ALKBH5)regulates the glucagon receptor(GCGR)and mechanistic target of rapamycin co... In a recent study published in Science,Chen and colleagues unveiled the mechanism by which hepatic alkylation repair homolog protein 5(ALKBH5)regulates the glucagon receptor(GCGR)and mechanistic target of rapamycin complex 1(mTORC1)signaling pathways via two independent mechanisms,thereby integrating the modulation of glucose and lipid metabolism homeostasis.1 This research explores the regulation of metabolic homeostasis and the pathogenesis of metabolic diseases from the perspective of RNAbinding proteins,offering new drug targets for alleviating metabolicassociated fatty liver disease(MAFLD)and metabolic disorders. 展开更多
关键词 hepatic alkylation repair homolog protein hepatic alkylation repair mechanistic target rapamycin complex glucose metabolism rnabinding proteinso RNA binding proteins glucagon receptor pathogenesis metabolic diseases
暂未订购
Effect of glucocorticoid treatment on insulin like growth factor-Ⅰ and its binding proteins in children with nephrotic syndrome 被引量:1
10
作者 董峰 周湘 +1 位作者 庞宁 魏珉 《Chinese Medical Journal》 SCIE CAS CSCD 2002年第9期1383-1385,共3页
Objective To identify the changes in serum insulin like growth factor Ⅰ (IGF Ⅰ) and IGF binding proteins (IGFBPs) in children with nephrotic syndrome (NS) and the effect of glucocorticoid on serum IGF Ⅰ and IGF... Objective To identify the changes in serum insulin like growth factor Ⅰ (IGF Ⅰ) and IGF binding proteins (IGFBPs) in children with nephrotic syndrome (NS) and the effect of glucocorticoid on serum IGF Ⅰ and IGFBPs Methods We measured serum IGF Ⅰ and IGFBPs levels by radioimmune assay and immune radiomagnetic assay in 36 children with NS, consisting of an active stage group (ANS, n=12), a remission stage group (RE, n=12), an active stage group with glucocorticoid treatment (GNS, n=12), and a normal control group (NC, n=10) Results 1) Compared to NC, serum levels of IGF Ⅰ and IGFBP 3 were decreased ( P <0 01); serum levels of IGFBP 1 and IGFBP 2 were increased ( P <0 01) in the ANS group 2) Serum levels of IGF Ⅰ and IGFBP 3 were higher and IGFBP 1 and IGFBP 2 were lower in the RE Group than in theANS Group ( P <0 01) 3) Compared to the ANS group, serum levels of IGF Ⅰ and IGFBP 3 were increased ( P <0 01) and serum levels of IGFBP 1 and IGFBP 2 were decreased ( P <0 01) in the GNS group 4) A correlation was found between serum levels of IGFBP 3 and albumin in the active stage group ( r =0 76, P <0 01) There was also a correlation between serum levels of IGF Ⅰ and IGFBP 3 and an inverse correlation between the serum level of IGF Ⅰ and serum levels of IGFBP 1 and IGFBP 2 in the ANS group No other correlations were observed Conclusions The serum levels of IGF Ⅰ and IGFBPs are altered in children in the active stage of NS, but return to normal in the remission stage GC treatment may influence serum IGF Ⅰ and IGFBPs in children with NS Changes in IGF Ⅰ and IGFBPs levels may play a role in the growth retardation of NS children 展开更多
关键词 nephrotic syndrome ·glucocorticoid · insulin like growth factor · insulin like growth factor binding proteins
原文传递
Application of Cydia pomonella expressed sequence tags: Identification and expression of three general odorant binding proteins in codling moth 被引量:8
11
作者 Stephen F. Garczynski Brad S. Coates +4 位作者 Thomas R. Unruh Scott Schaeffer Derick Jiwan Tyson Koepke Amit Dhingra 《Insect Science》 SCIE CAS CSCD 2013年第5期559-574,共16页
The codling moth, Cydia pomonella, is one of the most important pests of pome fruits in the world, yet the molecular genetics and the physiology of this insect remain poorly understood. A combined assembly of 8?341 e... The codling moth, Cydia pomonella, is one of the most important pests of pome fruits in the world, yet the molecular genetics and the physiology of this insect remain poorly understood. A combined assembly of 8?341 expressed sequence tags was generated from Roche 454 GS-FLX sequencing of eight tissue-specific cDNA libraries. Putative chemosensory proteins (12) and odorant binding proteins (OBPs) (18) were annotated, which included three putative general OBP (GOBP), one more than typically reported for other Lepidoptera. To further characterize CpomGOBPs, we cloned cDNA copies of their transcripts and determined their expression patterns in various tissues. Cloning and sequencing of the 698?nt transcript for CpomGOBP1 resulted in the prediction of a 163 amino acid coding region, and subsequent RT-PCR indicated that the transcripts were mainly expressed in antennae and mouthparts. The 1?289 nt (160 amino acid) CpomGOBP2 and the novel 702 nt (169 amino acid) CpomGOBP3 transcripts are mainly expressed in antennae, mouthparts, and female abdomen tips. These results indicate that next generation sequencing is useful for the identification of novel transcripts of interest, and that codling moth expresses a transcript encoding for a new member of the GOBP subfamily. 展开更多
关键词 codling moth EST odorant binding proteins
原文传递
The RNA binding proteins TIA1 and TIAL1 promote Mcl1 mRNA translation to protect germinal center responses from apoptosis 被引量:1
12
作者 Ines COsma-Garcia Mailys Mouysset +3 位作者 Dunja Capitan-Sobrino Yann Aubert Martin Turner Manuel D.Diaz-Muñoz 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2023年第9期1063-1076,共14页
Germinal centers(GCs)are essential for the establishment of long-lasting antibody responses.GC B cells rely on post-transcriptional RNA mechanisms to translate activation-associated transcriptional programs into funct... Germinal centers(GCs)are essential for the establishment of long-lasting antibody responses.GC B cells rely on post-transcriptional RNA mechanisms to translate activation-associated transcriptional programs into functional changes in the cell proteome.However,the critical proteins driving these key mechanisms are still unknown.Here,we show that the RNA binding proteins TIA1 and TIAL1 are required for the generation of long-lasting GC responses.TIA1-and TIAL1-deficient GC B cells fail to undergo antigen-mediated positive selection,expansion and differentiation into B-cell clones producing high-affinity antibodies.Mechanistically,TIA1 and TIAL1 control the transcriptional identity of dark-and light-zone GC B cells and enable timely expression of the prosurvival molecule MCL1.Thus,we demonstrate here that TIA1 and TIAL1 are key players in the post-transcriptional program that selects high-affinity antigen-specific GC B cells. 展开更多
关键词 Adaptive immunity Germinal centers Post-transcriptional gene regulation RNA binding proteins Cell identity Apoptosis/10.1038/s41423-023-01063-4
暂未订购
Targeted Degradation of DNA/RNA Binding Proteins via Covalent Hydrophobic Tagging 被引量:1
13
作者 Yan Wang Jingzi Zhang +4 位作者 Jiafang Deng Chengzhi Wang Lei Fang Yan Zhang Jinbo Li 《CCS Chemistry》 CSCD 2023年第10期2207-2214,共8页
Targeted protein degradation(TPD)holds great promise for biological inquiry and therapeutic development.However,it still remains elusive to destruct DNA/RNA binding proteins(DBPs/RBPs)previously deemed undruggable.Her... Targeted protein degradation(TPD)holds great promise for biological inquiry and therapeutic development.However,it still remains elusive to destruct DNA/RNA binding proteins(DBPs/RBPs)previously deemed undruggable.Herein,we report ligandassisted covalent hydrophobic tagging(LACHT)as a modular strategy for TPD of these difficult-totarget proteins.Guided by a noncovalent protein ligand,LACHT leverages a reactive N-acyl-N-alkyl sulfonamide group to covalently label the protein target with a hydrophobic adamantane,which further engages the cellular quality control mechanism to induce proteolytic degradation.Using a smallmolecule ligand,we demonstrated that LACHT allowed TPD of a DBP,bromodomain-containing protein 4,in human leukemia cells with high efficiency.Mechanistic studies revealed that LACHT-mediated TPD dependent on ligand-directed irreversible tagging and the covalently labeled proteins underwent polyubiquitination before removal through both the proteasome and the lysosome.Furthermore,when an RNA ligand was employed,we showed that LACHT also enabled TPD of an RBP,Lin28a,leading to upregulation of its downstream let-7 miRNA.This study thus provides a generalizable platform to expand the TPD toolbox for biomedical applications. 展开更多
关键词 targeted protein degradation covalent labeling hydrophobic tagging DNA/RNA binding proteins miRNA
暂未订购
Salt Dependent Association of Novel Mutants of TATA-Binding Proteins to DNA:Predictions from Theory and Experiments
14
作者 Johan H.Bredenberg Marcia O.Fenley 《Communications in Computational Physics》 SCIE 2008年第5期1132-1153,共22页
The nonlinear Poisson-Boltzmann predictions of the salt-dependent association of proteins to DNA,SKpred,are fairly insensitive to the choice of atomic charges,radii,interior dielectric constant and treatment of the bo... The nonlinear Poisson-Boltzmann predictions of the salt-dependent association of proteins to DNA,SKpred,are fairly insensitive to the choice of atomic charges,radii,interior dielectric constant and treatment of the boundary between a biomolecule and the solvent.In this study we show that the SKpred is highly correlated with the conformational adaptability of the partners involved in the biomolecular binding process.This is demonstrated for the wild-type and mutant forms of the archaeon Pyrococcus woesi TATA-binding protein(PwTBP)in complex with DNA,on which we performed molecular mechanics energy minimizations with different protocols,and molecular dynamics simulations and then computed the SKpred on the resulting structures.It was found that the inter-molecular non bonded force field energy between the DNA and protein correlates linearly and significantly well with the SKpred.This correlation encompasses the wild-type and mutant variants of the PwTBP and provides us with a quick way to estimate the SKpred from a large ensemble of structures generated with Molecular Dynamics or Monte Carlo simulations.The corresponding experimental SKobs should also correlate with the inter-molecular non bonded force field energy between the protein and DNA,given that the underlying mechanisms in binding and salt-dependent effects are in fact the main contributors in the association of proteins/peptides to nucleic acids.We show that it is possible to fit experiments versus the inter-molecular non bonded force field energy between the protein and DNA,and use this relation to predict the SKobs in absolute numbers.Thus,we present two novel approaches to estimate both the SKpred and the SKobs for in silico modelled PwTBP novel mutants and even for TBPs from other organisms.This is a simple but powerful tool to suggest new experiments on the TBP-DNA type of macromolecular assemblies.We conclude by suggesting some mutants and a possible biological interpretation of how changes in solvent salinity affect the binding of proteins to DNA. 展开更多
关键词 Poisson-Boltzmann equation ELECTROSTATICS salt dependence binding molecular mechanics DNA TATA binding proteins.
原文传递
Insulin-like growth factor binding proteins 7 prevents dental pulp-derived mesenchymal stem cell senescence via metabolic downregulation of p21 被引量:4
15
作者 Xiaoyu Li Liang Feng +3 位作者 Chunmei Zhang Jinsong Wang Songlin Wang Lei Hu 《Science China(Life Sciences)》 SCIE CAS CSCD 2022年第11期2218-2232,共15页
Cellular senescence affects the efficacy of mesenchymal stem cells(MSCs)-mediated tissue regeneration.Insulin-like growth factor binding proteins-7(IGFBP7),as a member of the IGF family,is associated with osteogenic d... Cellular senescence affects the efficacy of mesenchymal stem cells(MSCs)-mediated tissue regeneration.Insulin-like growth factor binding proteins-7(IGFBP7),as a member of the IGF family,is associated with osteogenic differentiation and the senescence of MSCs,but its exact function and mechanism remain unclear.We found IGFBP7 promoted the osteogenic differentiation and prevented the senescence of dental pulp-derived MSCs(DPSCs),as observed in the gain-of-function and lossof-function analyses,the senescence-associated marker p21 showed the most pronounced expression changes.We demonstrated that IGFBP7 activated the biological activity of SIRT1 deacetylase via metabolism,resulting in a deacetylation of H3K36ac and a decrease of the binding affinity of H3K36ac to p21 promoter,thereby reducing the transcription of p21,which ultimately prevents DPSCs senescence and promotes tissue regeneration.The activation of the mitochondrial electron transport chain(ETC)by Coenzyme Q10 could rescue the promotion of DPSC senescence induced by the knockdown of IGFBP7,whereas the inhibition of ETC by rotenone attenuated the prevention of DPSC senescence induced by IGFBP7 overexpression.In conclusion,our present results reveal a novel function of IGFBP7 in preventing DPSC senescence via the metabolism-induced deacetylation of H3K36ac and reduction of p21 transcription,suggesting that IGFBP7 is a potential target for promoting tissue regeneration in an aging environment. 展开更多
关键词 dental pulp-derived mesenchymal stem cells insulin-like growth factor binding protein 7 SENESCENCE metabolism SIRT1 P21
暂未订购
Effects of different brush border membrane vesicle isolation protocols on proteomic analysis of Cry1Ac binding proteins from the midgut of Helicoverpa armigera 被引量:3
16
作者 Li-Zhen Chen Ge-Mei Liang +3 位作者 Brian G. Rector Jie Zhang Kong-Ming Wu Yu-Yuan Guo 《Insect Science》 SCIE CAS CSCD 2008年第6期497-503,共7页
Brush border membrane vesicles (BBMV) isolated from insect midguts have been widely used to study CrylA binding proteins. Sample preparation is important in two- dimensional electrophoresis (2-DE), so to determine... Brush border membrane vesicles (BBMV) isolated from insect midguts have been widely used to study CrylA binding proteins. Sample preparation is important in two- dimensional electrophoresis (2-DE), so to determine a suitable BBMV preparation method in Helicoverpa armigera for 2-DE, we compared three published BBMV preparation methods mostly used in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS- PAGE). All methods yielded similar types and numbers of binding proteins, but in different quantities. The Abdul-Rauf and Ellar protocol was the best of the three, but had limitations. Sufficient protein quantity is important for research involving limited numbers of insects, such as studies of insect resistance to Bacillus thuringiensis in the field. Consequently, we integrated the three BBMV isolation methods into a single protocol that yielded high quantities of BBMV proteins from H. armigera larval midguts, which proved suitable for 2- DE analysis. 展开更多
关键词 Bacillus thuringiensis binding protein brush border membrane vesicles Cry1Ac Helicoverpa armigera two-dimensional electrophoresis
原文传递
Large-scale analysis of the position-dependent binding and regulation of human RNA binding proteins
17
作者 Jianan Lin Zhengqing Ouyang 《Quantitative Biology》 CAS CSCD 2020年第2期119-129,共11页
Background:RNA binding proteins(RBPs)play essential roles in the regulation of RNA metabolism.Recent studies have disclosed that RBPs achieve their functions via binding to their targets in a position-dependent patter... Background:RNA binding proteins(RBPs)play essential roles in the regulation of RNA metabolism.Recent studies have disclosed that RBPs achieve their functions via binding to their targets in a position-dependent pattern on RNAs.However,few studies have systematially addressed the associations between the RBP's functions and their positional binding preferences.Methods:Here,we present large-scale analyses on the functional targets of human RBPs by integrating the enhanced cross-linking and immunoprecipitation followed by sequencing(eCLIP-seq)datasets and the shRNA knockdown followed by RNA-seq datasets that are deposited in the integrated ENCyclopedia of DNA Elements in the human genome(ENCODE)data portal.Results:We found that(1)binding to the translation termination site and the 3'untranslated region is important to most human RBP's in the RNA decay regulation;(2)RBPs’binding and regulation follow a cell-ty pe specific pattern.Conclusions:These analysis results show the strong relationship between the binding position and the functions of RBPs,which provides novel insights into the RBPs'regulation mechanisms. 展开更多
关键词 RNA binding protein CLIP-seq RNA-SEQ KNOCKDOWN RNA regulation
原文传递
Multifaced regulator: RNA binding proteins and their roles in hematopoiesis
18
作者 Yue Ren Yue Huo +2 位作者 Weiqian Li Fang Wang Jia Yu 《Blood Science》 2019年第1期69-72,共4页
Despite the conventional definition of RNA binding proteins(RBPs)as controlling the metabolism of their bound RNAs,more and more RBPs are found to function via distinct ways in complex biological processes.With the re... Despite the conventional definition of RNA binding proteins(RBPs)as controlling the metabolism of their bound RNAs,more and more RBPs are found to function via distinct ways in complex biological processes.With the recent discovery of transcriptional regulation activity of some RBPs,a hypothesis that RBPs could be multilayered regulators orchestrating gene expression has emerged.Hematopoiesis is a stepwise process that needs to be fine-tuned to keep the subtle balance between hematopoietic stem cell(HSC)stemness maintenance and downstream lineage commitment.Although the classic RBPs account for the posttranscriptional regulation in hematopoiesis,the importance and multiple regulatory capacities of RBPs have not been wellcharacterized.In this review,we summarize the recent findings of large-scale screening of novel RBPs and their novel transcriptional regulation potentials.In hematopoietic system,this kind of multifaced regulators account for nearly a half of functional RBPs.Therefore,further studies on identifying this new kind of multifaced RBPs and clarifying their regulatory mechanisms would help us better understand the precise and complex regulatory networks of gene expression in hematopoiesis. 展开更多
关键词 HEMATOPOIESIS RNA binding protein
原文传递
Magnolol inhibits appetite and causes visceral fat loss through Growth/differentiation factor-15(GDF-15)by activating transcription factor 4-CCAAT enhancer binding proteinγ-mediated endoplasmic reticulum stress responses 被引量:1
19
作者 Keru Cheng Yanyun Zhou +4 位作者 Yilong Hao Shengyun Wu Nanping Wang Peng Zhang Yinfang Wang 《Chinese Journal of Natural Medicines》 2025年第3期334-345,共12页
Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant... Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant,anticoagulant,and anti-diabetic effects.Growth/differentiation factor-15(GDF-15),a member of the transforming growth factorβsuperfamily,is considered a potential therapeutic target for metabolic disorders.This study investigated the impact of magnolol on GDF-15 production and its underlying mechanism.The research examined the pharmacological effect of magnolol on GDF-15 expression in vitro and in vivo,and determined the involvement of endoplasmic reticulum(ER)stress signaling in this process.Luciferase reporter assays,chromatin immunoprecipitation,and in vitro DNA binding assays were employed to examine the regulation of GDF-15 by activating transcription factor 4(ATF4),CCAAT enhancer binding proteinγ(CEBPG),and CCCTC-binding factor(CTCF).The study also investigated the effect of magnolol and ATF4 on the activity of a putative enhancer located in the intron of the GDF-15 gene,as well as the influence of single nucleotide polymorphisms(SNPs)on magnolol and ATF4-induced transcription activity.Results demonstrated that magnolol triggers GDF-15 production in endothelial cells(ECs),hepatoma cell line G2(HepG2)and hepatoma cell line 3B(Hep3B)cell lines,and primary mouse hepatocytes.The cooperative binding of ATF4 and CEBPG upstream of the GDF-15 gene or the E1944285 enhancer located in the intron led to full-power transcription of the GDF-15 gene.SNP alleles were found to impact the magnolol and ATF4-induced transcription activity of GDF-15.In high-fat diet ApoE^(-/-)mice,administration of magnolol induced GDF-15 production and partially suppressed appetite through GDF-15.These findings suggest that magnolol regulates GDF-15 expression through priming of promoter and enhancer activity,indicating its potential as a drug for the treatment of metabolic disorders. 展开更多
关键词 MAGNOLOL Growth/differentiation factor-15 Activating transcription factor 4 CCAAT enhancer binding proteinγ ENHANCER Metabolic disorder
原文传递
Identification of a Fusobacterial RNA-binding protein involved in host small RNA-mediated growth inhibition
20
作者 Pu-Ting Dong Mengdi Yang +6 位作者 Jie Hu Lujia Cen Peng Zhou Difei Xu Peng Xiong Jiahe Li Xuesong He 《International Journal of Oral Science》 2025年第5期654-666,共13页
Host-derived small RNAs are emerging as critical regulators in the dynamic interactions between host tissues and the microbiome,with implications for microbial pathogenesis and host defense.Among these,transfer RNA-de... Host-derived small RNAs are emerging as critical regulators in the dynamic interactions between host tissues and the microbiome,with implications for microbial pathogenesis and host defense.Among these,transfer RNA-derived small RNAs(tsRNAs)have garnered attention for their roles in modulating microbial behavior.However,the bacterial factors mediating tsRNA interaction and functionality remain poorly understood.In this study,using RNA affinity pull-down assay in combination with mass spectrometry,we identified a putative membrane-bound protein,annotated as P-type ATPase transporter(PtaT)in Fusobacterium nucleatum(Fn),which binds Fn-targeting tsRNAs in a sequence-specific manner.Through targeted mutagenesis and phenotypic characterization,we showed that in both the Fn type strain and a clinical tumor isolate,deletion of ptaT led to reduced tsRNA intake and enhanced resistance to tsRNA-induced growth inhibition.Global RNA sequencing and label-free Raman spectroscopy revealed the phenotypic differences between Fn wild type and PtaT-deficient mutant,highlighting the functional significance of PtaT in purine and pyrimidine metabolism.Furthermore,AlphaFold 3 prediction provides evidence supporting the specific binding between PtaT and Fn-targeting tsRNA.By uncovering the first RNA-binding protein in Fn implicated in growth modulation through interactions with host-derived small RNAs(sRNAs),our study offers new insights into sRNA-mediated host-pathogen interplay within the context of microbiome-host interactions. 展开更多
关键词 host tissues Fusobacterial RNA binding protein bacterial factors Mass spectrometry ATPase transporter RNA affinity pull down assay mass spectrometrywe modulating microbial
暂未订购
上一页 1 2 14 下一页 到第
使用帮助 返回顶部