期刊文献+
共找到5,217篇文章
< 1 2 250 >
每页显示 20 50 100
Interstitial-oxygen-inducedγ-phase precipitation and martensitic transformation behavior in Ni-Mn-Sn-Co alloy prepared through binder jetting and sintering 被引量:1
1
作者 Shijiang Zhong Mingfang Qian +5 位作者 Xinxin Shen Shuhe Gong Liangbo Sun Ping Shen Xuexi Zhang Lin Geng 《Journal of Materials Science & Technology》 2025年第11期272-277,共6页
1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7]... 1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7],that indicate their potential for use in actu-ators,sensors,micropumps,energy harvesters,and solid-state re-frigeration[8-10].Among the alloys,Ni-Mn-Sn-based alloys are environment-friendly and cost-effective[6,7,11],and hence,they have received widespread attention. 展开更多
关键词 phase precipitation martensitic transformation SINTERING Ni Mn Sn Co alloy shape memory effect superelastic ity magnetocaloric effect elastocaloric effect interstitial oxygen binder jetting multicaloric effect
原文传递
Effect of Nitrocellulose-modified HTPB Binder on the Thermal Decomposition Behavior of Ammonium Nitrate/Magnesium Solid Propellant
2
作者 Mohammed Jouini Amir Abdelaziz +4 位作者 Ahmed Fouzi Tarchoun Fateh Chalghoum Yash Pal Weiqiang Pang Djalal Trache 《火炸药学报》 北大核心 2025年第4期372-381,I0004,共11页
An energetic binder based on hydroxyl-terminated polybutadiene(HTPB),doped with different ratios of nitrocellulose(NC)(10%,20%,30%,and 50%),was developed to study the effect of NC doping on the thermal decomposition b... An energetic binder based on hydroxyl-terminated polybutadiene(HTPB),doped with different ratios of nitrocellulose(NC)(10%,20%,30%,and 50%),was developed to study the effect of NC doping on the thermal decomposition behavior of a composite propellant(CP)comprising ammonium nitrate(AN)as an oxidizer and magnesium(Mg)as a fuel.Optimization of the propellant formulation was conducted using Chemical Equilibrium with Applications-National Aeronautics and Space Administration(CEA-NASA)software,which demonstrated an increase in specific impulse by 12.09 s when the binder contained 50%NC.Fourier-transform infrared spectroscopy(FTIR)analysis confirmed the excellent compatibility between the components,and density measurements revealed an increase of 6.4%with a higher NC content.Morphological analysis using optical microscopy showed that NC doping improved the uniformity and compactness of the surface,reduced cavities,and achieved a more homogeneous particle distribution.Differential scanning calorimetry(DSC)analysis indicated a decrease in the decomposition temperature of the propellant as the NC content increased,while kinetic studies revealed a 48.68%reduction in the activation energy when 50%NC was incorporated into the binder.These findings suggest that the addition of NC enhances combustion efficiency and improves overall propellant performance.This study highlights the potential of the new HTPB-NC energetic binder as a promising approach for advancing solid propellant technology. 展开更多
关键词 physical chemistry composite propellant HTPB NITROCELLULOSE energetic binder thermal behavior
在线阅读 下载PDF
Strength Development of Alkali-activated Binders Prepared with Mechanically Ground Fly Ash During Microwave-curing
3
作者 ZHU Huimei LIU Yu LI Hui 《材料导报》 北大核心 2025年第20期108-114,共7页
Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by ... Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by synthesizing AAFA using original,medium-fine,and ultrafine fly ash as precursors,and then specimens were cured with a five-stage temperature-controlled microwave.The compressive strength results indicate that the original AAFA develops the highest strength initially during microwave-curing,reaching 28 MPa at stage 2.Medium-fine AAFA exhibits the highest strength of 60 MPa when cured to stage 4-I,which is 26%higher than the peak strength of original AAFA.It is attributed to the significant rise in their specific surface area,which accelerates the dissolution of Si and Al from the precursor and facilitates the subsequent formation of N-A-S-H gels.Additionally,nanoscale zeolite crystals formed as secondary products fill the tiny gaps between amorphous products,thereby significantly improving their microstructure.In contrast,ultrafine fly ash,primarily composed of fragmented particles,necessitated a substantial amount of water,which adversely affects the absorption efficiency for microwave of AAFA specimens.Thus,ultrafine AAFA specimens consistently exhibit the lowest compressive strength.Specifically,at the end of curing,the compressive strength of these three specimens with microwave-curing is approximately 32%,59%,and 172%higher than that of the steam-cured sample,respectively.These findings demonstrate the compatibility of microwave-curing and fly ash refinement in enhancing the early compressive strength development of AAFA. 展开更多
关键词 alkali-activated fly ash binder microwave-curing particle size compressive strength
在线阅读 下载PDF
Hydrogen generated from binders:An overlooked thermal runaway source in lithium-ion batteries
4
作者 Kai Chen Dian Zhang +12 位作者 Jia-Xin Guo Feng Jiang Nailu Shen Xiaohui Yan Wenjie Zhang Ning Zhu Lungang Chen Yang Zhou Zhiyang Lyu Guohui Xiao Xin Shen Xin-Bing Cheng Yuping Wu 《Journal of Energy Chemistry》 2025年第10期602-608,共7页
Anode binders undergo decomposition during thermal runaway,generating highly flammable and explosive hydrogen,which poses a significant threat to the safety of lithium-ion batteries.However,the binder due to its relat... Anode binders undergo decomposition during thermal runaway,generating highly flammable and explosive hydrogen,which poses a significant threat to the safety of lithium-ion batteries.However,the binder due to its relatively small proportion is often overlooked in terms of its importance.This study elucidates the universal mechanism of hydrogen generation from the decomposition of binders and identifies the hydrogen-containing chemical bonds within the molecular structure of binders as the fundamental sources of hydrogen.The Fourier transform infrared spectroscopy of six commonly used binders reveals that five of them possess hydrogen-containing chemical bonds,indicating a potential for hydrogen generation,whereas the polytetrafluoroethylene binder lacks such bonds and cannot generate hydrogen.Differential scanning calorimetry is employed to compare the decomposition of these binders and their reaction with lithiated graphite.The results demonstrate that cyclic molecular structures not only enhance thermal stability but also increase the difficulty of hydrogen generation.Moreover,binders devoid of hydrogen atoms exhibit superior thermal stability and completely eliminate the risk of hydrogen generation.These findings provide critical insights into the molecular design of binders,offering promising strategies to mitigate or prevent hydrogen generation from binder decomposition and thereby substantially improve the safety of lithium-ion batteries. 展开更多
关键词 Lithium-ion battery Thermal runaway binder HYDROGEN Safety
在线阅读 下载PDF
A Fluorine-free Polysulfone-Polyamide-Polyimide Copolymer Binder for LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)Cathode in Lithium-ion Battery
5
作者 Hao Peng Lin Liu +7 位作者 Qiao Zhang Shuhao Liu Man Lin Hao Li Yonghong Deng Chuanlai Jiao Chaoyang Wang Hongli Xu 《Chinese Journal of Polymer Science》 2025年第7期1146-1154,共9页
High-voltage LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathodes are critical for enhancing the energy density of lithium-ion batteries(LIBs).The development of binders compatible with high-voltage NCM811 cathode material... High-voltage LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathodes are critical for enhancing the energy density of lithium-ion batteries(LIBs).The development of binders compatible with high-voltage NCM811 cathode materials is crucial to enhance the electrochemical performance of LIBs.However,the traditional fluoropolymer binder,poly(vinylidene difluoride)(PVDF),can potentially leach components or break down into poly(fluoroalkyl substances)(PFAS)chemicals,thereby contributing to PFAS contamination.A novel fluorine-free polymer,polysulfone-polyamide-polyimide(SPIO),was designed and synthesized as a binder for NCM811 cathodes.The SPIO binder exhibits exceptional mechanical properties and superior electrochemical characteristics.The cathode film fabricated with SPIO demonstrated a remarkable delamination force of 8 N(390 N·m^(-1)),indicating robust adhesion.The Li‖NCM811 cell incorporating the SPIO binder retained 80%of its initial capacity after 300 cycles at a current density of 0.2 C.In comparison,the control cells assem bled with the PVDF binder retained only 52%of their capacities under the same cycling conditions.Furthermore,the SPIO binder exhibited improved compatibility with the electrolyte.Transmission electron microscopy analysis of the cathode films after 100 cycles revealed the formation of a unifo rm,dense,and continuous chemical-electrochemical interface(CEI)by the SPIO binder on the surface of the NCM811 particles,which significantly contributed to the enhancement of the electrochemical performance.These results highlight the potential of SPIO as an advanced binder material for high-perfo rmance lithium-ion batteries. 展开更多
关键词 NCM811 binder Polysulfone-polyamide-polyimide copolymer High-voltage Lithium-ion battery
原文传递
Cellulose Elementary Fibrils as Deagglomerated Binder for High-Mass-Loading Lithium Battery Electrodes
6
作者 Young-Kuk Hong Jung-Hui Kim +7 位作者 Nag-Young Kim Kyeong-Seok Oh Hong-I Kim Seokhyeon Ryu Yumi Ko Ji-Young Kim Kwon-Hyung Lee Sang-Young Lee 《Nano-Micro Letters》 2025年第5期281-296,共16页
Amidst the ever-growing interest in high-mass-loading Li battery electrodes,a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways.Here,we propose cellulose elementary fi... Amidst the ever-growing interest in high-mass-loading Li battery electrodes,a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways.Here,we propose cellulose elementary fibrils(CEFs)as a class of deagglomerated binder for high-mass-loading electrodes.Derived from natural wood,CEF represents the most fundamental unit of cellulose with nanoscale diameter.The preparation of the CEFs involves the modulation of intermolecular hydrogen bonding by the treatment with a proton acceptor and a hydrotropic agent.This elementary deagglomeration of the cellulose fibers increases surface area and anionic charge density,thus promoting uniform dispersion with carbon conductive additives and suppressing interfacial side reactions at electrodes.Consequently,a homogeneous redox reaction is achieved throughout the electrodes.The resulting CEF-based cathode(overlithiated layered oxide(OLO)is chosen as a benchmark electrode active material)exhibits a high areal-mass-loading(50 mg cm^(-2),equivalent to an areal capacity of 12.5 mAh cm^(-2))and a high specific energy density(445.4 Wh kg–1)of a cell,which far exceeds those of previously reported OLO cathodes.This study highlights the viability of the deagglomerated binder in enabling sustainable high-mass-loading electrodes that are difficult to achieve with conventional synthetic polymer binders. 展开更多
关键词 Cellulose elementary fibrils Deagglomeration Electrode binders Lithium batteries High-mass-loading
在线阅读 下载PDF
Rheological properties of coal-based colloidal composite binder for iron ore pelletization
7
作者 Jin Zhang Yong-kang Zhang +6 位作者 Xin Zhang Guang-hui Li Rui Song Cheng-zhi Wei Ming-jun Rao Jun Luo Tao Jiang 《Journal of Iron and Steel Research International》 2025年第10期3164-3175,共12页
The rheological properties of an innovative coal-based colloidal composite binder(3Co-Binder)prepared via alkaline–oxygen excitation and mechanochemical synthesis are revealed.Derived from low-rank coal,3Co–Binder i... The rheological properties of an innovative coal-based colloidal composite binder(3Co-Binder)prepared via alkaline–oxygen excitation and mechanochemical synthesis are revealed.Derived from low-rank coal,3Co–Binder is applied in iron ore pelletization as a replacement for traditional bentonite,with the aim of improving the iron grades of the pellets.Cryoscanning electron microscopy revealed that 3Co-Binder exhibits a densely populated,porous network structure.It was determined to be a pseudo-plastic fluid with yield stress and shear-thinning characteristics.The stability of 3Co-Binder was influenced by the humic acid extraction rate,temperature,and static placing time.An extraction rate of humic acids above 96%was found to prevent sedimentation of 3Co-Binder,while lower temperatures and prolonged static placing time increased its apparent viscosity.A storage duration of less than 2 weeks and a temperature range of 25–35℃ were found to be optimal for maintaining the stability of 3Co-Binder.The viscous flow activation energy of 3Co-Binder remained stable at approximately 60 kJ mol^(-1) as the shear rate increased from 0.5 to 5 s^(-1).However,at higher shear rates,up to 100 s^(-1),the viscous flow activation energy decreased to 46.48 kJ mol^(–1).To ensure stability and dispersibility during storage,the rheological parameters of 3Co-Binder must meet the following criteria:yield stress below 10 Pa,consistency coefficient below 1.5 Pa s,non-Newtonian index below 1,and apparent viscosity below 10,000 mPa s at a shear rate of 1 s^(–1). 展开更多
关键词 binder Humic acid Low-rank coal Colloidal solution Rheological property PELLETIZATION
原文传递
Enhancing micro-scale SiO_(x)anode durability:Electro-mechanical strengthening of binder networks via anchoring carbon nanotubes with carboxymethyl cellulose
8
作者 Chaeyeon Ha Jin Kyo Koo +1 位作者 Jun Myoung Sheem Young-Jun Kim 《Journal of Energy Chemistry》 2025年第2期23-33,I0002,共12页
With the increasing prevalence of lithium-ion batteries(LIBs)applications,the demand for high-capacity next-generation materials has also increased.SiO_(x)is currently considered a promising anode material due to its ... With the increasing prevalence of lithium-ion batteries(LIBs)applications,the demand for high-capacity next-generation materials has also increased.SiO_(x)is currently considered a promising anode material due to its exceptionally high capacity for LIBs.However,the significant volumetric changes of SiO_(x)during cycling and its initial Coulombic efficiency(ICE)complicate its use,whether alone or in combination with graphite materials.In this study,a three-dimensional conductive binder network with high electronic conductivity and robust elasticity for graphite/SiO_(x)blended anodes was proposed by chemically anchoring carbon nanotubes and carboxymethyl cellulose binders using tannic acid as a chemical cross-linker.In addition,a dehydrogenation-based prelithiation strategy employing lithium hydride was utilized to enhance the ICE of SiO_(x).The combination of these two strategies increased the CE of SiO_(x)from 74%to87%and effectively mitigated its volume expansion in the graphite/SiO_(x)blended electrode,resulting in an efficient electron-conductive binder network.This led to a remarkable capacity retention of 94%after30 cycles,even under challenging conditions,with a high capacity of 550 mA h g^(-1)and a current density of 4 mA cm^(-2).Furthermore,to validate the feasibility of utilizing prelithiated SiO_(x)anode materials and the conductive binder network in LIBs,a full cell incorporating these materials and a single-crystalline Ni-rich cathode was used.This cell demonstrated a~27.3%increase in discharge capacity of the first cycle(~185.7 mA h g^(-1))and exhibited a cycling stability of 300 cycles.Thus,this study reports a simple,feasible,and insightful method for designing high-performance LIB electrodes. 展开更多
关键词 LITHIUM-IONBATTERIES Siox anode Blended anode Carbon nanotubes Carboxymethyl cellulose Conductive binder network
在线阅读 下载PDF
Root-inspired self-healing binder enabling robust micron-sized SiO electrodes with durable lithium storage stability
9
作者 Weihua Wang Sha Li +9 位作者 Wenyi Li Siyi Jing Yudai Huang Huiqun Wang Huiping Yang Xuan Wang Ling Huang Yuxiang Mao Shiyu Luo Li Zhang 《Journal of Energy Chemistry》 2025年第7期151-160,共10页
Silicon monoxide(SiO)is highly attractive as an anode material for high-energy lithium-ion batteries(LIBs)due to its significantly higher specific capacity.However,its practical application is hindered by substantial ... Silicon monoxide(SiO)is highly attractive as an anode material for high-energy lithium-ion batteries(LIBs)due to its significantly higher specific capacity.However,its practical application is hindered by substantial volume expansion during cycling,which leads to material pulverization and an unstable solid electrolyte interphase(SEI)layer.Inspired by the natural root fixation in soil,we designed a root-like topological structure binder,cassava starch-citric acid(CS-CA),based on the synergistic action of covalent and hydrogen bonds.The abundant-OH and-COOH groups in CS-CA molecules effectively form hydrogen bonds with the-OH groups on the SiO surface,significantly enhancing the interfacial interaction between CS-CA and SiO.The root-like topological structure of CS-CA with a high tolerance alleviates the mechanical stress generated by the volume changes of SiO.More encouragingly,the hydrogen bond action among CS-CA molecules produces a self-healing effect,which is advantageous for repairing damaged electrodes and preserving their structural integrity.As such,the CS-CA/SiO electrode exhibits exceptional cycling performance(963.1 mA h g^(-1)after 400 cycles at 2 A g^(-1))and rate capability(558.9 mA h g^(-1)at 5 A g^(-1)).This innovative,topologically interconnected,root-inspired binder will greatly advance the practical application of long-lasting micron-sized SiO anodes. 展开更多
关键词 Root-like binder SiO electrode Cassava starch-citric acid Topological structure SELF-HEALING
在线阅读 下载PDF
Spider web-inspired structural design for an energy-dissipating polymer binder enabling stabilized silicon anodes
10
作者 Xiangyu Lin Danna Ma +4 位作者 Ziming Zhu Shanshan Wang He Liu Xu Xu Zhaoshuang Li 《Journal of Energy Chemistry》 2025年第10期870-878,共9页
Silicon(Si)is considered one of the most promising anode materials for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,its application is significantly limited by severe volume ... Silicon(Si)is considered one of the most promising anode materials for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,its application is significantly limited by severe volume expansion,leading to structural degradation and poor cycling stability.Polymer binders play a critical role in addressing these issues by providing mechanical stabilization.Inspired by the mechanically adaptive architecture of spider webs,where stiff radial threads and extensible spiral threads act in synergy,a dual-thread architecture polymer binder(PALT)with energy dissipation ability enabled by integrating rigid and flexible domains is designed.The rigid poly(acrylic acid lithium)(PAALi)segments offer structural reinforcement,while the soft segments(poly(lipoic acid-tannic acid),LT)introduce dynamic covalent bonds and multiple hydrogen bonds that function as reversible sacrificial bonds,enhancing energy dissipation during cycling.Comprehensive experimental and computational analyses demonstrate effectively reduced stress concentration,improved structural integrity,and stable electrochemical performance over prolonged cycling.The silicon anode incorporating the PALT binder exhibits a satisfying capacity loss per cycle of 0.042% during 350 charge/discharge cycles at 3580 m A g^(-1).This work highlights a bioinspired binder design strategy that combines intrinsic rigidity with dynamic stress adaptability to advance the mechanical and electrochemical stability of silicon anodes. 展开更多
关键词 Polymer binder Lithium-ion batteries Silicon anodes Tannic acid
在线阅读 下载PDF
Tackling Challenges and Exploring Opportunities in Cathode Binder Innovation
11
作者 Tingrun Lai Li Wang +3 位作者 Zhibei Liu Adnan Murad Bhayo Yude Wang Xiangming He 《Nano-Micro Letters》 2026年第1期198-228,共31页
Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further ex... Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further extend the life span of LIBs,it is essential to intensify investments in battery design,manufacturing processes,and the advancement of ancillary materials.The pursuit of long durability introduces new challenges for battery energy density.The advent of electrode material offers effective support in enhancing the battery’s long-duration performance.Often underestimated as part of the cathode composition,the binder plays a pivotal role in the longevity and electrochemical performance of the electrode.Maintaining the mechanical integrity of the electrode through judicious binder design is a fundamental requirement for achieving consistent long-life cycles and high energy density.This paper primarily concentrates on the commonly employed cathode systems in lithium-ion batteries,elucidates the significance of binders for both,discusses the application status,strengths,and weaknesses of novel binders,and ultimately puts forth corresponding optimization strategies.It underscores the critical function of binders in enhancing battery performance and advancing the sustainable development of lithium-ion batteries,aiming to offer fresh insights and perspectives for the design of high-performance LIBs. 展开更多
关键词 Cathode binder Lithium-Ion Battery Performance Optimization Sustainable Development Innovative Design
在线阅读 下载PDF
Exploring the optimal molecular weight of polyacrylic acid binder for silicon nanoparticle anodes in lithium-ion batteries
12
作者 Zhengwei Wan Siying Li +7 位作者 Weiting Tang Chengjun Dai Jingting Yang Zheng Lin Juncheng Qiu Min Ling Zhan Lin Zeheng Li 《Journal of Energy Chemistry》 2025年第6期76-86,I0003,共12页
Polyacrylic acid(PAA)-based binders have been demonstrated to significantly enhance the cycling stability of pure silicon(Si)anodes compared to other binder types.However,there is a notable lack of systematic and in-d... Polyacrylic acid(PAA)-based binders have been demonstrated to significantly enhance the cycling stability of pure silicon(Si)anodes compared to other binder types.However,there is a notable lack of systematic and in-depth investigation into the relationship between the molecular weight(MW)of PAA and its performance in pure Si anodes,leading to an absence of reliable theoretical guidance for designing and optimizing of PAA-based binders for these anodes.Herein,we select a series of PAA with varying MWs as binders for Si nanoparticle(SiNP)anodes to systematically identify the optimal MW of PAA for enhancing the electrochemical performance of SiNP anodes.The actual MWs of the various PAA were confirmed by gel permeation chromatography to accurately establish the relationship between MW and binder performance.Within an ultrawide weight average molecular weight(M_(w))range of 35.9-4850 kDa,we identify that the PAA binder with a M_(w)of 1250 kDa(PAA125)exhibits the strongest mechanical strength and the highest adhesion strength,attributed to its favorable molecular chain orientation and robust interchain interactions.These characteristics enable the SiNP anodes utilizing PAA125 to maintain the best interfacial chemistry and bulk mechanical structure stability,leading to optimal electrochemical performance.Notably,the enhancement in cycling stability of SiNP anode by PAA125 under practical application conditions is further validated by the 1.1 Ah LLNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/SiNP@PAA125 pouch cell. 展开更多
关键词 Silicon anodes Polyacrylic acid binder Average molecular weight Pouch cells
在线阅读 下载PDF
Aqueous dual ionic/electronic conducting binder enabling water-scarce,Zn^(2+)-enriched interface for aqueous zinc metal batteries
13
作者 Zhiying Meng Rongfu Xu +7 位作者 Yinglin Yan Ningxin Chen Sida Xie Jie Deng Ying Zhang Yiming Zou Rong Yang Zhaohui Wang 《Journal of Energy Chemistry》 2025年第7期194-204,共11页
The development of aqueous zinc-ion batteries is crucial for advancing sustainable energy storage technologies.However,their widespread application is hindered by Zn corrosion and uncontrolled Zn dendrite growth.One p... The development of aqueous zinc-ion batteries is crucial for advancing sustainable energy storage technologies.However,their widespread application is hindered by Zn corrosion and uncontrolled Zn dendrite growth.One promising approach involves creating a functional organic-inorganic interface on the Zn surface.Traditional binders,such as polyvinylidene fluoride(PVDF),fail to regulate water activity and ion migration,limiting the effectiveness of the interface.Herein,we introduce an aqueous dual ionic/electronic conducting binder,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS),to build a water-scarce,Zn^(2+)-enriched interface.Our findings demonstrate that PEDOT:PSS not only facilitates uniform distribution of inorganic fillers,forming a cohesive and compact interface,but also significantly enhances mechanical integrity.Additionally,the sulfonate groups within the binder matrix disrupt the hydrogen bond network of water molecules,reducing water activity and lowering the desolvation energy barrier of Zn(H_(2)O)_(6)^(2+)clusters.Therefore,the transference number of Zn^(2+)is elevated to 0.81(compared to 0.61 with PVDF),mitigating undesirable side reactions and enabling dendrite-less Zn deposition.Consequently,symmetrical Zn||Zn cells with PEDOT:PSS binder demonstrate a lifetime with 4.2 times longer than those with PVDF.This work underscores the critical role of binder chemistry in stabilizing metal anodes for aqueous batteries. 展开更多
关键词 Aqueous batteries Aqueous binder PEDOT:PSS DESOLVATION
在线阅读 下载PDF
Application of nanomaterials on the performance of SBS modified asphalt binders and mixtures: A comprehensive review
14
作者 Zakir Ullah Zengping Zhang +4 位作者 Hao Liu Jiajun Ji Qingxu Li Simon Pierre Rukundo Muhammad Bilal 《Journal of Road Engineering》 2025年第3期323-342,共20页
Presently,many asphalts and modified asphalts fail to satisfy long-term serviceability and durability criteria.Researchers are utilizing several asphalt modifiers to enhance the overall performance of flexible pavemen... Presently,many asphalts and modified asphalts fail to satisfy long-term serviceability and durability criteria.Researchers are utilizing several asphalt modifiers to enhance the overall performance of flexible pavements.This study consolidated findings from multiple research efforts on using nanomaterials for modifying SBS modified asphalt(SBS MA)and conducted a comprehensive literature review.Initially,it discussed the importance of SBS MA within asphalt modification systems and identified the key nanomaterials utilized in SBS modified asphalt.After this,it reviewed their preparation methods,dispersion and characterization techniques,and their impact on the key performance parameters of SBS MA binder and its mixture such as viscosity,rutting resistance,fatigue resistance,ageing and moisture damage etc.Additionally,it highlighted the advantages of nanomaterials over other modifiers.This study also addressed the challenges and limitations of incorporating nanomaterials in SBS MA.The findings indicated that when properly integrated,nanomaterials could significantly improve the performance of SBS MA,making them a promising addition to future road construction and maintenance projects.However,using nanomaterials for SBS MA modifications and mixtures has been challenged by limited practical applications,insufficient life cycle cost analyses,a lack of standardized guidelines,cost-effective nanomaterials and insufficient mixing procedures.Those areas require additional research to realise the potential application of nanomaterials in SBS modified asphalt modifications full. 展开更多
关键词 NANOMATERIALS SBS POLYMER Modified asphalt binder and mixes
在线阅读 下载PDF
Machine Learning and Explainable AI-Guided Design and Optimization of High-Entropy Alloys as Binder Phases for WC-Based Cemented Carbides
15
作者 Jianping Li Wan Xiong +7 位作者 Tenghang Zhang Hao Cheng Kun Shen Miaojin He Yu Zhang Junxin Song Ying Deng Qiaowang Chen 《Computers, Materials & Continua》 2025年第8期2189-2216,共28页
Tungsten carbide-based(WC-based)cemented carbides are widely recognized as high-performance tool materials.Traditionally,single metals such as cobalt(Co)or nickel(Ni)serve as the binder phase,providing toughness and s... Tungsten carbide-based(WC-based)cemented carbides are widely recognized as high-performance tool materials.Traditionally,single metals such as cobalt(Co)or nickel(Ni)serve as the binder phase,providing toughness and structural integrity.Replacing this phase with high-entropy alloys(HEAs)offers a promising approach to enhancing mechanical properties and addressing sustainability challenges.However,the complex multi-element composition of HEAs complicates conventional experimental design,making it difficult to explore the vast compositional space efficiently.Traditional trial-and-error methods are time-consuming,resource-intensive,and often ineffective in identifying optimal compositions.In contrast,artificial intelligence(AI)-driven approaches enable rapid screening and optimization of alloy compositions,significantly improving predictive accuracy and interpretability.Feature selection techniques were employed to identify key alloying elements influencing hardness,toughness,and wear resistance.To enhance model interpretability,explainable artificial intelligence(XAI)techniques—SHapley Additive exPlanations(SHAP)and Local Interpretable Model-agnostic Explanations(LIME)—were applied to quantify the contributions of individual elements and uncover complex elemental interactions.Furthermore,a high-throughput machine learning(ML)–driven screening approach was implemented to optimize the binder phase composition,facilitating the discovery of HEAs with superiormechanical properties.Experimental validation demonstrated strong agreement between model predictions and measured performance,confirming the reliability of the ML framework.This study underscores the potential of integrating ML and XAI for data-driven materials design,providing a novel strategy for optimizing high-entropy cemented carbides. 展开更多
关键词 Cemented carbide high-entropy binder phase machine learning HARDNESS interpretable AI composition-property modeling
在线阅读 下载PDF
Tailoring Binder Molecular Weight to Enhance Slurry-Cast NMC Cathodes for Sulfide Solid-State Batteries
16
作者 Yuanshun Li Chanho Kim +3 位作者 Ella Williams YiFeng Su Jagjit Nanda Guang Yang 《Energy & Environmental Materials》 2025年第3期38-48,共11页
We demonstrate for the first time the critical influence of binder molecular weight on the performance of slurry-cast lithium nickel manganese cobalt oxide(NMC)cathodes in sulfide-based all-solid-state batteries(SSBs)... We demonstrate for the first time the critical influence of binder molecular weight on the performance of slurry-cast lithium nickel manganese cobalt oxide(NMC)cathodes in sulfide-based all-solid-state batteries(SSBs).SSBs are increasingly recognized as a safer and potentially more efficient alternative to traditional Li-ion batteries,owing to the superior ionic conductivities and inherent safety features of sulfide solid electrolytes.However,the integration of high-voltage NMC cathodes with sheet-type sulfide solid electrolytes presents significant fabrication challenges.Our findings reveal that higher molecular weight binders not only enhance the discharge capacity and cycle life of these cathodes but also ensure robust adhesion and structural integrity.By optimizing binder molecular weights,we effectively shield the active materials from degradation and mechanical stress,significantly boosting the functionality and longevity of SSBs.These results underscore the paramount importance of binder properties in advancing the practical application of high-performance all-solid-state batteries. 展开更多
关键词 binders NMC cathode sheet-type sulfide solid electrolyte slurry cast solidstate battery
在线阅读 下载PDF
Effect of coal-based composite binders on isothermal oxidation kinetics of vanadium–titanium magnetite pellets
17
作者 Yong-kang Zhang Guang-hui Li +4 位作者 Ye-sheng Cheng Jin Zhang Cheng-zhi Wei Xin Zhang Tao Jiang 《Journal of Iron and Steel Research International》 2025年第10期3190-3201,共12页
The isothermal oxidation kinetics of vanadium–titanium magnetite(VTM)pellets prepared with 3Co-binder(coal-based colloidal composite binder)and F-binder(pulverized Funa binder)are compared.The oxidation process was a... The isothermal oxidation kinetics of vanadium–titanium magnetite(VTM)pellets prepared with 3Co-binder(coal-based colloidal composite binder)and F-binder(pulverized Funa binder)are compared.The oxidation process was analyzed using the first-order irreversible reaction,following the shrinking unreacted nucleus model.The results demonstrate that VTM pellets prepared with 3Co-binder exhibit a faster oxidation rate than those with F-binder across the temperatures ranging from 1073 to 1473 K.In both cases,the oxidation process was controlled by an interfacial chemical reaction during the pre-oxidation stage and by internal diffusion during the mid-oxidation stage.The type of binder did not influence the primary oxidation control mechanism of the VTM pellets.However,the apparent rate constants in the pre-oxidation stage and the internal diffusion coefficients in the mid-oxidation stage were higher for pellets with 3Co-binder compared to those with F-binder.The apparent activation energies for the 3Co-binder pellets were similar to those of bentonite,indicating favorable kinetic conditions without negative impacts on the oxidation process.Nonetheless,it is important to note that pellets with F-binder required a longer oxidation time than those with 3Co-binder. 展开更多
关键词 Coal-based composite binder Vanadium-titanium magnetite PELLET Isothermal oxidation kinetics
原文传递
Effect of binders on electrochemical properties of AgO cathode material for aqueous AgO−Al batteries
18
作者 Xue-hua HE Sheng-gui WANG +9 位作者 Yuan-kui WANG Wan-li XU Jue-min SONG Zheng LI Hai-tao ZHANG Guang-zhou YANG Xin-yi WANG Qian ZHANG Hong-xu LI Kun YU 《Transactions of Nonferrous Metals Society of China》 2025年第5期1648-1661,共14页
To improve the slow kinetics and poor mechanical strength of aqueous silver peroxide−aluminum(AgO−Al)battery cathode materials,the effects of different binders including polytetrafluoroethylene(PTFE)and polyvinylpyrro... To improve the slow kinetics and poor mechanical strength of aqueous silver peroxide−aluminum(AgO−Al)battery cathode materials,the effects of different binders including polytetrafluoroethylene(PTFE)and polyvinylpyrrolidone(PVP)on the AgO cathode material were investigated.The samples were characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),cyclic voltammetry(CV),electrochemical impedance spectrum(EIS),and galvanostatic discharge.In contrast to the pure AgO and AgO−PTFE electrodes,the results demonstrated that the PVP effectively bound the electrode materials together.The prepared AgO−PVP as the cathode material of AgO−Al batteries could improve the battery capacity,exhibiting a high specific capacity(389.95 mA·h/g at 500 mA/cm^(2)),a high operating voltage(1.75 V at 500 mA/cm^(2)),a maximum energy density(665.65 W·h/kg),and a maximum power density(5236 W/kg).Furthermore,the electrochemical mechanism of the AgO−PVP cathode material was examined,revealing that the electrode exhibited rapid ion diffusion and effective interfacial ion/electron transport. 展开更多
关键词 AGO cathode material high specific capacity binder aqueous AgO−Al batteries
在线阅读 下载PDF
Recent Developments in Bioadhesives and Binders
19
作者 Hong Lei Xiaojian Zhou +2 位作者 Antonio Pizzi Guanben Du Xuedong Xi 《Journal of Renewable Materials》 2025年第2期199-249,共51页
This review is composed of three main parts each of which is written by well-known top specialists that have been,in a way or other,also the main participants of the majority of the developments reported.Thus,after a ... This review is composed of three main parts each of which is written by well-known top specialists that have been,in a way or other,also the main participants of the majority of the developments reported.Thus,after a general part covering the grand lines and more in-depth views of more recent tannin,lignin,carbohydrate and soy bioadhesives,somemix of the other bio raw materials with soy protein and soy flour and some other differently sourced bioadhesives for wood,this review presents a more in-depth part on starch-based wood adhesives and a more indepth part covering plant protein-based adhesives.It must be kept in mind that the review is focused on completely or almost completely biosourced adhesives,the fashionable adhesives derived from mixes of biosourced materials with synthetic resins having been intentionally excluded.This choice was made as the latter constitute only an intermediate interval,possibly temporary if even for a somewhat long times,towards a final full bioeconomy of scale in this field.This review also focuses on more recent results,mainly obtained in the last 10–20 years,thus on adhesive formulations really innovative and sometimes even non-traditional.In all these fields there is still a lot of possibility of innovation for relevant formulation as this field is still in rapid growth. 展开更多
关键词 Adhesives WOOD wood bioadhesives binders oxidized renewable materials carbohydrates starch cellulose lignin TANNIN vegetal proteins non-isocyanate polyurethanes(NIPU)
在线阅读 下载PDF
Volumetric Stress Managements on Silicon Anode of Lithium-Ion Batteries by a Self-Adaptable Binder
20
作者 Shuai Wu Lanying He +8 位作者 Yue Lu Jingang Zheng Lixiang Li Xin Geng Chengguo Sun Hongwei Zhao Guangshen Jiang Fang Di Baigang An 《Energy & Environmental Materials》 2025年第3期58-67,共10页
The intrinsic volume changes(about 300%)of Si anode during the lithiation/delithiation leads to the serious degradation of battery performance despite of theoretical capacity of 3579 mAh g^(-1) of Si.Herein,a three-di... The intrinsic volume changes(about 300%)of Si anode during the lithiation/delithiation leads to the serious degradation of battery performance despite of theoretical capacity of 3579 mAh g^(-1) of Si.Herein,a three-dimensional(3D)conductive polymer binder with adjustable crosslinking density has been designed by employing citric acid(CA)as a crosslinker between the carboxymethyl cellulose(CMC)and the poly(3,4-ethylenedioxythiophene)poly-(styrene-4-sulfonate)(PEDOT:PSS)to stabilize Si anode.By adjusting the crosslinking density,the binder can achieve a balance between rigidity and flexibility to adapt the volume expansion upon lithiation and reversible volume recovery after delithiation of Si.Therefore,Si/CMC-CA-PEDOT:PSS(Si/CCP)electrode demonstrates an excellent performance with high capacities of 2792.3 mAh g^(-1) at 0.5 A g^(-1) and a high area capacity above 2.6 mAh cm^(-2) under Si loading of 1.38 mg cm^(-2).The full cell Si/CCP paired with Li(Ni_(0.8)Co_(0.1)Mn_(0.1))O_(2) cathode discharges a capacity of 199.0 mAh g^(-1) with 84.3%ICE at 0.1 C and the capacity retention of 95.6%after 100 cycles.This work validates the effectiveness of 3D polymer binder and provides new insights to boost the performance of Si anode. 展开更多
关键词 3D conductive polymer binder crosslinking density self-adapting silicon anode
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部