期刊文献+
共找到303篇文章
< 1 2 16 >
每页显示 20 50 100
Integrating Bayesian and Convolution Neural Network for Uncertainty Estimation of Cataract from Fundus Images
1
作者 Anandhavalli Muniasamy Ashwag Alasmari 《Computer Modeling in Engineering & Sciences》 2025年第4期569-592,共24页
The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has signifi... The effective and timely diagnosis and treatment of ocular diseases are key to the rapid recovery of patients.Today,the mass disease that needs attention in this context is cataracts.Although deep learning has significantly advanced the analysis of ocular disease images,there is a need for a probabilistic model to generate the distributions of potential outcomes and thusmake decisions related to uncertainty quantification.Therefore,this study implements a Bayesian Convolutional Neural Networks(BCNN)model for predicting cataracts by assigning probability values to the predictions.It prepares convolutional neural network(CNN)and BCNN models.The proposed BCNN model is CNN-based in which reparameterization is in the first and last layers of the CNN model.This study then trains them on a dataset of cataract images filtered from the ocular disease fundus images fromKaggle.The deep CNN model has an accuracy of 95%,while the BCNN model has an accuracy of 93.75% along with information on uncertainty estimation of cataracts and normal eye conditions.When compared with other methods,the proposed work reveals that it can be a promising solution for cataract prediction with uncertainty estimation. 展开更多
关键词 Bayesian neural networks(bnns) convolution neural networks(CNN) Bayesian convolution neural networks(BCNNs) predictive modeling precision medicine uncertainty quantification
在线阅读 下载PDF
Stochastic Binary Neural Networks for Qualitatively Robust Predictive Model Mapping 被引量:1
2
作者 A. T. Burrell P. Papantoni-Kazakos 《International Journal of Communications, Network and System Sciences》 2012年第9期603-608,共6页
We consider qualitatively robust predictive mappings of stochastic environmental models, where protection against outlier data is incorporated. We utilize digital representations of the models and deploy stochastic bi... We consider qualitatively robust predictive mappings of stochastic environmental models, where protection against outlier data is incorporated. We utilize digital representations of the models and deploy stochastic binary neural networks that are pre-trained to produce such mappings. The pre-training is implemented by a back propagating supervised learning algorithm which converges almost surely to the probabilities induced by the environment, under general ergodicity conditions. 展开更多
关键词 Qualitative ROBUSTNESS PREDICTIVE Model Mapping STOCHASTIC APPROXIMATION STOCHASTIC binary neural networks Real-Time Supervised Learning ERGODICITY
在线阅读 下载PDF
基于改进BNN-LSTM的风电功率概率预测 被引量:1
3
作者 李昱 《微型电脑应用》 2024年第3期206-209,共4页
针对确定性的风电功率预测难以提供预测结果的波动区间和支撑风险决策的问题,以贝叶斯网络为基础,通过将先验分布置于LSTM网络层权重参数之上,构建了贝叶斯LSTM神经网络(BNN-LSTM)。以时间卷积神经网络(TCNN)处理风电功率预测的历史时... 针对确定性的风电功率预测难以提供预测结果的波动区间和支撑风险决策的问题,以贝叶斯网络为基础,通过将先验分布置于LSTM网络层权重参数之上,构建了贝叶斯LSTM神经网络(BNN-LSTM)。以时间卷积神经网络(TCNN)处理风电功率预测的历史时序数据,提取时序数据的关联特征。使用互信息熵方法分析了风电功率的气象数据集,剔除关联性小的变量,对气象数据集进行降维处理。并采用嵌入(embedding)结构学习风电功率时间分类特征。随后将TCNN处理后的时序数据、降维后的气象数据以及时间分类特征数据一起送入BNN-LSTM预测模型,通过在某风电数据集不同算法的概率预测指标pinball损失和Winkler评分的对比验证,可知,本文所提方法能从可对风电功率波动做出较为准确的响应,预测效果更好。 展开更多
关键词 贝叶斯神经网络 bnn-LSTM 时间卷积神经网络 风电功率 互信息熵 概率预测
在线阅读 下载PDF
Faster-than- Nyquist rate communication via convolutional neural networks- based demodulators 被引量:2
4
作者 欧阳星辰 吴乐南 《Journal of Southeast University(English Edition)》 EI CAS 2016年第1期6-10,共5页
A demodulator based on convolutional neural networks( CNNs) is proposed to demodulate bipolar extended binary phase shifting keying( EBPSK) signals transmitted at a faster-thanNyquist( FTN) rate, solving the pro... A demodulator based on convolutional neural networks( CNNs) is proposed to demodulate bipolar extended binary phase shifting keying( EBPSK) signals transmitted at a faster-thanNyquist( FTN) rate, solving the problem of severe inter symbol interference( ISI) caused by FTN rate signals. With the characteristics of local connectivity, pooling and weight sharing,a six-layer CNNs structure is used to demodulate and eliminate ISI. The results showthat with the symbol rate of 1. 07 k Bd, the bandwidth of the band-pass filter( BPF) in a transmitter of 1 k Hz and the changing number of carrier cycles in a symbol K = 5,10,15,28, the overall bit error ratio( BER) performance of CNNs with single-symbol decision is superior to that with a doublesymbol united-decision. In addition, the BER performance of single-symbol decision is approximately 0. 5 d B better than that of the coherent demodulator while K equals the total number of carrier circles in a symbol, i. e., K = N = 28. With the symbol rate of 1. 07 k Bd, the bandwidth of BPF in a transmitter of 500 Hz and K = 5,10,15,28, the overall BER performance of CNNs with double-symbol united-decision is superior to those with single-symbol decision. Moreover, the double-symbol uniteddecision method is approximately 0. 5 to 1. 5 d B better than that of the coherent demodulator while K = N = 28. The demodulators based on CNNs successfully solve the serious ISI problems generated during the transmission of FTN rate bipolar EBPSK signals, which is beneficial for the improvement of spectrum efficiency. 展开更多
关键词 bipolar extended binary phase shifting keying(EBPSK) convolutional neural networks(CNNs) faster-thanNyquist(FTN) rate double-symbol united-decision
在线阅读 下载PDF
Non-Intrusive Load Identification Model Based on 3D Spatial Feature and Convolutional Neural Network 被引量:1
5
作者 Jiangyong Liu Ning Liu +3 位作者 Huina Song Ximeng Liu Xingen Sun Dake Zhang 《Energy and Power Engineering》 2021年第4期30-40,共11页
<div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I t... <div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I trajectory characteristics to a large extent, so it is widely used in load identification. However, using single binary V-I trajectory feature for load identification has certain limitations. In order to improve the accuracy of load identification, the power feature is added on the basis of the binary V-I trajectory feature in this paper. We change the initial binary V-I trajectory into a new 3D feature by mapping the power feature to the third dimension. In order to reduce the impact of imbalance samples on load identification, the SVM SMOTE algorithm is used to balance the samples. Based on the deep learning method, the convolutional neural network model is used to extract the newly produced 3D feature to achieve load identification in this paper. The results indicate the new 3D feature has better observability and the proposed model has higher identification performance compared with other classification models on the public data set PLAID. </div> 展开更多
关键词 Non-Intrusive Load Identification binary V-I Trajectory Feature Three-Dimensional Feature Convolutional neural network Deep Learning
在线阅读 下载PDF
Application of BP Neural Network in Classification and Prediction of Blended Learning Achievements 被引量:1
6
作者 Liu Zhang Yi-Fei Chen +2 位作者 Zi-Quan Pei Jia-Wei Yuan Nai-Qiao Tang 《Journal on Artificial Intelligence》 2022年第1期15-26,共12页
Analyzing and predicting the learning behavior data of students in blended teaching can provide reference basis for teaching.Aiming at weak generalization ability of existing algorithm models in performance prediction... Analyzing and predicting the learning behavior data of students in blended teaching can provide reference basis for teaching.Aiming at weak generalization ability of existing algorithm models in performance prediction,a BP neural network is introduced to classify and predict the grades of students in the blended teaching.L2 regularization term is added to construct the BP neural network model in order to reduce the risk of overfitting.Combined with Pearson coefficient,effective feature data are selected as the validation dataset of the model by mining the data of Chao-Xing platform.The performance of common machine learning algorithms and the BP neural network are compared on the dataset.Experiments show that BP neural network model has stronger generalizability than common machine learning models.The BP neural network with L2 regularization has better fitting ability than the original BP neural network model.It achieves better performance with improved accuracy. 展开更多
关键词 Blended teaching student performance prediction BP neural network binary prediction
在线阅读 下载PDF
MOLTEN SALT PHASE DIAGRAMS CALCULATION USING ARTIFICIAL NEURAL NETWORK OR PATTERN RECOGNITION-BOND PARAMETERS
7
作者 Wang Xueye, Qiu Guanzhou and Wang DianzuoDepartment of Mineral Engineering, Central South University of Technology, Changsha 410083, P. R. ChinaChen NianyiShanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai 200050, P. R. Ch 《中国有色金属学会会刊:英文版》 CSCD 1998年第1期143-149,共7页
MOLTENSALTPHASEDIAGRAMSCALCULATIONUSINGARTIFICIALNEURALNETWORKORPATTERNRECOGNITIONBONDPARAMETERS①Part1.Thepr... MOLTENSALTPHASEDIAGRAMSCALCULATIONUSINGARTIFICIALNEURALNETWORKORPATTERNRECOGNITIONBONDPARAMETERS①Part1.Thepredictionofthepha... 展开更多
关键词 phase diagram CALCULATION artificial neural network PATTERN RECOGNITION bond parameter binary MOLTEN SALT system
在线阅读 下载PDF
Integrated Evolving Spiking Neural Network and Feature Extraction Methods for Scoliosis Classification
8
作者 Nurbaity Sabri Haza Nuzly Abdull Hamed +2 位作者 Zaidah Ibrahim Kamalnizat Ibrahim Mohd Adham Isa 《Computers, Materials & Continua》 SCIE EI 2022年第12期5559-5573,共15页
Adolescent Idiopathic Scoliosis(AIS)is a deformity of the spine that affects teenagers.The current method for detecting AIS is based on radiographic images which may increase the risk of cancer growth due to radiation... Adolescent Idiopathic Scoliosis(AIS)is a deformity of the spine that affects teenagers.The current method for detecting AIS is based on radiographic images which may increase the risk of cancer growth due to radiation.Photogrammetry is another alternative used to identify AIS by distinguishing the curves of the spine from the surface of a human’s back.Currently,detecting the curve of the spine is manually performed,making it a time-consuming task.To overcome this issue,it is crucial to develop a better model that automatically detects the curve of the spine and classify the types of AIS.This research proposes a new integration of ESNN and Feature Extraction(FE)methods and explores the architecture of ESNN for the AIS classification model.This research identifies the optimal Feature Extraction(FE)methods to reduce computational complexity.The ability of ESNN to provide a fast result with a simplicity and performance capability makes this model suitable to be implemented in a clinical setting where a quick result is crucial.A comparison between the conventional classifier(Support Vector Machine(SVM),Multi-layer Perceptron(MLP)and Random Forest(RF))with the proposed AIS model also be performed on a dataset collected by an orthopedic expert from Hospital Universiti Kebangsaan Malaysia(HUKM).This dataset consists of various photogrammetry images of the human back with different types ofMalaysian AIS patients to solve the scoliosis problem.The process begins by pre-processing the images which includes resizing and converting the captured pictures to gray-scale images.This is then followed by feature extraction,normalization,and classification.The experimental results indicate that the integration of LBP and ESNN achieves higher accuracy compared to the performance of multiple baseline state-of-the-art Machine Learning for AIS classification.This demonstrates the capability of ESNN in classifying the types of AIS based on photogrammetry images. 展开更多
关键词 Adolescent idiopathic scoliosis evolving spiking neural network lenke type local binary pattern PHOTOGRAMMETRY
在线阅读 下载PDF
Human and Machine Vision Based Indian Race Classification Using Modified-Convolutional Neural Network
9
作者 Vani A.Hiremani Kishore Kumar Senapati 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2603-2618,共16页
The inter-class face classification problem is more reasonable than the intra-class classification problem.To address this issue,we have carried out empirical research on classifying Indian people to their geographica... The inter-class face classification problem is more reasonable than the intra-class classification problem.To address this issue,we have carried out empirical research on classifying Indian people to their geographical regions.This work aimed to construct a computational classification model for classifying Indian regional face images acquired from south and east regions of India,referring to human vision.We have created an Automated Human Intelligence System(AHIS)to evaluate human visual capabilities.Analysis of AHIS response showed that face shape is a discriminative feature among the other facial features.We have developed a modified convolutional neural network to characterize the human vision response to improve face classification accuracy.The proposed model achieved mean F1 and Matthew Correlation Coefficient(MCC)of 0.92 and 0.84,respectively,on the validation set,outperforming the traditional Convolutional Neural Network(CNN).The CNN-Contoured Face(CNN-FC)model is developed to train contoured face images to investigate the influence of face shape.Finally,to cross-validate the accuracy of these models,the traditional CNN model is trained on the same dataset.With an accuracy of 92.98%,the Modified-CNN(M-CNN)model has demonstrated that the proposed method could facilitate the tangible impact in intra-classification problems.A novel Indian regional face dataset is created for supporting this supervised classification work,and it will be available to the research community. 展开更多
关键词 Data collection and preparation human vision analysis machine vision canny edge approximation method color local binary patterns convolutional neural network
在线阅读 下载PDF
Supervised Learning for Gene Regulatory Network Based on Flexible Neural Tree Model
10
作者 Bin Yang Wei Zhang 《国际计算机前沿大会会议论文集》 2017年第2期68-70,共3页
Gene regulatory network (GRN) inference from gene expression data remains a big challenge in system biology. In this paper, flexible neural tree (FNT) model is proposed as a binary classifier for inference of gene reg... Gene regulatory network (GRN) inference from gene expression data remains a big challenge in system biology. In this paper, flexible neural tree (FNT) model is proposed as a binary classifier for inference of gene regulatory network. A novel tree-based evolutionary algorithm and firefly algorithm (FA) are used to optimize the structure and parameters of FNT model, respectively.The two E.coli networks are used to test FNT model and the results reveal that FNT model performs better than state-of-the-art unsupervised and supervised learning methods. 展开更多
关键词 Gene REGULATORY network FLEXIBLE neural network binary CLASSIFIER FIREFLY algorithm
在线阅读 下载PDF
高能效低延迟的BNN硬件加速器设计
11
作者 周培培 杜高明 +1 位作者 李桢旻 王晓蕾 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第12期1655-1661,共7页
针对二值化神经网络(binary neural network,BNN)硬件设计过程中大量0值引发计算量增加以及BNN中同一权值数据与同一特征图数据多次重复运算导致计算周期和计算功耗增加的问题,文章分别提出全0值跳过方法和预计算结果缓存方法,有效减少... 针对二值化神经网络(binary neural network,BNN)硬件设计过程中大量0值引发计算量增加以及BNN中同一权值数据与同一特征图数据多次重复运算导致计算周期和计算功耗增加的问题,文章分别提出全0值跳过方法和预计算结果缓存方法,有效减少网络的计算量、计算周期和计算功耗;并基于现场可编程门阵列(field programmable gate array,FPGA)设计一款BNN硬件加速器,即手写数字识别系统。实验结果表明,使用所提出的全0值跳过方法和预计算结果缓存方法后,在100 MHz的频率下,设计的加速器平均能效可达1.81 TOPs/W,相较于其他BNN加速器,提升了1.27~4.34倍。 展开更多
关键词 二值化神经网络(bnn) 权值共享 重复运算 现场可编程门阵列(FPGA) 硬件加速器
在线阅读 下载PDF
面向二分类问题的直觉模糊深度随机配置网络
12
作者 丁世飞 朱姜兰 +2 位作者 张成龙 郭丽丽 张健 《软件学报》 北大核心 2025年第10期4660-4670,共11页
深度随机配置网络(deep stochastic configuration network,DSCN)采取前馈学习方式,基于特有的监督机制随机分配节点参数,具有全局逼近性.但是,在实际场景下,数据采集过程中潜在的离群值和噪声,易对分类结果产生负面影响.为提高DSCN解... 深度随机配置网络(deep stochastic configuration network,DSCN)采取前馈学习方式,基于特有的监督机制随机分配节点参数,具有全局逼近性.但是,在实际场景下,数据采集过程中潜在的离群值和噪声,易对分类结果产生负面影响.为提高DSCN解决二分类问题的性能,基于DSCN引入直觉模糊数思想,提出了一种直觉模糊深度随机配置网络(intuitionistic fuzzy deep stochastic configuration network,IFDSCN).与标准DSCN不同,IFDSCN通过计算样本隶属度和非隶属度,为每个样本分配一个直觉模糊数,通过加权的方法来生成最优分类器,以克服噪声和异常值对数据分类的负面影响.在8个基准数据集上的实验结果表明,所提出的模型与直觉模糊孪生支持向量机(intuitionistic fuzzy twin support vector machine,IFTWSVM)、核岭回归(kernel ridge regression,KRR)、直觉模糊核岭回归(intuitionistic fuzzy kernel ridge regression,IFKRR)、随机函数向量链接神经网络(random vector functional link neural network,RVFL)和SCN等学习模型相比,IFDSCN具有更好的二分类性能. 展开更多
关键词 直觉模糊数 随机配置网络 二分类 数据噪声 神经网络
在线阅读 下载PDF
基于扩展局部二值模式的多尺度人脸表情识别方法
13
作者 胡黄水 戚星烁 +1 位作者 王出航 王玲 《吉林大学学报(理学版)》 北大核心 2025年第5期1427-1436,共10页
针对人脸表情识别在复杂环境下姿态和光照鲁棒性差的问题,提出一种融合扩展局部二值模式和多尺度网络结构的人脸表情识别方法.该方法通过扩展传统局部二值模式的感受野并增强像素间的空间联系,减少光照对人脸表情识别的噪声干扰;通过将... 针对人脸表情识别在复杂环境下姿态和光照鲁棒性差的问题,提出一种融合扩展局部二值模式和多尺度网络结构的人脸表情识别方法.该方法通过扩展传统局部二值模式的感受野并增强像素间的空间联系,减少光照对人脸表情识别的噪声干扰;通过将特征图在通道维度均匀分为若干子集并利用不同数量相同卷积块的方式提取特征图的多尺度特征,有效处理人脸姿态变化.在数据集Fer2013和RAF-DB上的实验结果表明,该方法可有效提高人脸表情识别的准确率和鲁棒性,为复杂环境下的人脸表情识别提供了有效解决方案. 展开更多
关键词 人脸表情识别 局部二值模式 多尺度网络 卷积神经网络
在线阅读 下载PDF
基于深度学习的电力电缆故障诊断与定位策略研究
14
作者 张羽翔 胡雨时 +1 位作者 张宏志 鞠杨 《微型电脑应用》 2025年第6期20-25,共6页
电力电缆内部绝缘失效或外部损坏时,会导致所在的配电区域发生不对称故障,进而引发局部停电。为了快速且准确地对电缆故障进行诊断和分类,采用一维卷积神经网络(1D-CNN)分类器和二进制支持向量机(BSVM)分类器,提出一种基于深度学习的电... 电力电缆内部绝缘失效或外部损坏时,会导致所在的配电区域发生不对称故障,进而引发局部停电。为了快速且准确地对电缆故障进行诊断和分类,采用一维卷积神经网络(1D-CNN)分类器和二进制支持向量机(BSVM)分类器,提出一种基于深度学习的电力电缆故障诊断与定位策略。采用ATP-EMTP程序模拟并采集地下电缆发送的端信号,利用分数离散余弦变换(FrDCT)和奇异值分解(SVD)实现数据特征提取和化简,采用BSVM分类器进行电缆故障检测,采用1D-CNN分类器进行电缆故障的分类和定位。仿真结果表明,当分数因子α=0.8时,故障定位准确率为99.6%,最低执行时间为0.15 s,最大错误率为0.0789%,所提策略可以有效实现电缆的故障诊断与定位。 展开更多
关键词 电力电缆 深度学习 故障诊断与定位 一维卷积神经网络 二进制支持向量机
在线阅读 下载PDF
基于优化CNN-BiLSTM神经网络的间歇精馏过程建模
15
作者 郭旭 贾继宁 姚克俭 《化工学报》 北大核心 2025年第9期4613-4629,共17页
间歇式精馏因其操作灵活性和适应性广泛应用于精细化工、制药及食品加工等行业,然而其非稳态特性和显著变化的操作条件使得传统静态模型难以精确描述系统动态行为,最终导致物质在塔内的分离效果不佳。为此本研究以乙醇-水二元混合物体... 间歇式精馏因其操作灵活性和适应性广泛应用于精细化工、制药及食品加工等行业,然而其非稳态特性和显著变化的操作条件使得传统静态模型难以精确描述系统动态行为,最终导致物质在塔内的分离效果不佳。为此本研究以乙醇-水二元混合物体系间歇精馏塔馏出液和塔釜乙醇质量分数数据为研究对象,提出了一种基于卷积神经网络(convolutional neural network,CNN)和双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)复合的预测软测量模型(CNN-BiLSTM),并通过改进的雪消融优化器(improved snow ablation optimizer,ISAO)优化模型超参数,旨在使其能够替代在线测量仪对间歇精馏控制起到辅助作用。实验结果表明,在馏出液和塔釜乙醇质量分数预测中,经过ISAO优化后的CNN-BiLSTM神经网络在测试集上的均方根误差和平均绝对误差相较于初始模型降幅至少为82.27%,其动态预测性能显著提升。 展开更多
关键词 间歇式 二元混合物 分离 神经网络 超参数优化 优化算法
在线阅读 下载PDF
基于机器学习的富硒土壤预测模型的构建与比较——以江西省信丰县油山地区为例
16
作者 杨兰 王运 +4 位作者 邹勇军 胡宝群 李满根 张安 朱满怀 《吉林大学学报(地球科学版)》 北大核心 2025年第5期1629-1643,共15页
利用未知硒数据快速、高效、精准地圈定富硒土壤,需构建预测富硒土壤的最佳模型。从1 277个1∶5万表层土壤的地球化学数据中选取502个数据组成数据集,以w(Zn)、w(K_(2)O)、w(P)、w(Mo)、w(Mn)、w(Cr)、pH、D(泥盆系)为自变量,以是否富S... 利用未知硒数据快速、高效、精准地圈定富硒土壤,需构建预测富硒土壤的最佳模型。从1 277个1∶5万表层土壤的地球化学数据中选取502个数据组成数据集,以w(Zn)、w(K_(2)O)、w(P)、w(Mo)、w(Mn)、w(Cr)、pH、D(泥盆系)为自变量,以是否富Se为因变量,运用SPSS Modeler 18软件构建二元Logistic回归模型、多层感知器神经网络模型、随机森林模型及支持向量机模型(包括线性、多项式、径向基和Sigmoid核函数),并通过35组土壤样品实测数据进行验证。结果表明:二元Logistic回归模型、多层感知器神经网络模型、随机森林模型及(线性、多项式、径向基、Sigmoid)支持向量机模型的预测准确率和验证总体准确率分别为88.8%和94.3%、91.0%和97.1%、96.6%和97.1%、87.9%和97.1%、86.1%和94.3%、86.9%和94.3%、80.3%和91.4%;以上模型的曲线下面积(AUC)值分别为0.948、0.950、0.993、0.937、0.945、0.928和0.873,随机森林模型的准确率和稳定性最佳。同时,本次研究发现了清洁富硒土壤及绿色富硒山稻,表明该方法在富硒土壤预测中具有可行性,且可进一步拓展到地质找矿及环境监测等领域。 展开更多
关键词 富硒土壤 机器学习 二元Logistic回归模型 多层感知器神经网络模型 随机森林模型 支持向量机模型
在线阅读 下载PDF
可变光照下多姿态人脸表情识别方法
17
作者 王灵月 李颖 +1 位作者 郭磊 杨新生 《现代电子技术》 北大核心 2025年第14期154-158,共5页
为消除光照度变化对图像的影响,提供更为全面和清晰的面部信息,并提高表情识别鲁棒性,提出一种可变光照下多姿态人脸表情识别方法。利用自商图像法对原始人脸图像进行光照处理,消除光照度变化对图像的影响。利用生成对抗网络建立多姿态... 为消除光照度变化对图像的影响,提供更为全面和清晰的面部信息,并提高表情识别鲁棒性,提出一种可变光照下多姿态人脸表情识别方法。利用自商图像法对原始人脸图像进行光照处理,消除光照度变化对图像的影响。利用生成对抗网络建立多姿态人脸正面化模型,对光照处理后的人脸图像进行再处理,得到标准正面姿态的人脸图像,为表情识别提供更为全面和清晰的面部信息,提高表情识别鲁棒性。利用局部二值卷积神经网络处理标准正面姿态的人脸图像,完成可变光照下多姿态人脸表情识别。实验结果表明:所提方法可有效地对人脸图像进行光照与人脸正面化处理,不同姿态情况下,该方法均可完成人脸表情的精准识别;在不同光照条件下,人脸表情识别的精度均较高。 展开更多
关键词 人脸表情识别 光照处理 多姿态人脸识别 人脸正面化 自商图像法 局部二值卷积神经网络 生成对抗网络
在线阅读 下载PDF
基于二值化神经网络的大规模储能电站电池容量衰退预测
18
作者 杨夯 郭宜果 +5 位作者 黄小庆 文普同 谢丹 薄其滨 付一木 李静璇 《电力科学与技术学报》 北大核心 2025年第2期227-234,共8页
大规模储能电站的电池单体数量庞大。传统卷积神经网络在电池容量衰退预测中具备较高的预测精度,但其对计算资源需求较高,限制了其在储能电站电池管理系统中的应用。为此,提出一种基于二值化神经网络(binary neuval network,BNN)的电池... 大规模储能电站的电池单体数量庞大。传统卷积神经网络在电池容量衰退预测中具备较高的预测精度,但其对计算资源需求较高,限制了其在储能电站电池管理系统中的应用。为此,提出一种基于二值化神经网络(binary neuval network,BNN)的电池容量衰退预测方法。首先,设计一个将网络权重和激活函数二值化的轻量化模型,并以电池的放电容量-电压曲线作为输入,输出关键参数的累积分布函数值。其次,通过二分法求解该参数,并将其代入双曲线方程进行容量衰退预测。最后,基于锂电池公开数据集仿真表明:在预测精度与传统神经网络模型相当的情况下,所提模型的参数量减少48.9%,预测速度提升22.37%,可降低模型复杂度和设备算力成本,为大规模储能电站电池管理提供一个更高效、更轻量的预测方法。 展开更多
关键词 储能电站 电池容量 衰退预测 二值化神经网络 卷积神经网络
在线阅读 下载PDF
基于分层仿生神经网络的多机器人协同区域搜索算法
19
作者 陈波 张辉 +2 位作者 江一鸣 钟杭 王耀南 《自动化学报》 北大核心 2025年第4期890-902,共13页
针对多机器人系统在战场、灾难现场等复杂未知环境下的区域搜索问题,提出一种基于分层仿生神经网络的多机器人协同区域搜索算法.首先将仿生神经网络(Bio-inspired neural network,BNN)和不同分辨率下的区域栅格地图结合,构建分层仿生神... 针对多机器人系统在战场、灾难现场等复杂未知环境下的区域搜索问题,提出一种基于分层仿生神经网络的多机器人协同区域搜索算法.首先将仿生神经网络(Bio-inspired neural network,BNN)和不同分辨率下的区域栅格地图结合,构建分层仿生神经网络信息模型,其中包括区域搜索神经网络信息模型(Area search neural network information model,AS-BNN)和区域覆盖神经网络信息模型(Area coverage neural network information model,AC-BNN).机器人在任务区域内实时探测到的环境信息将转换为AS-BNN和AC-BNN中神经元的动态活性值.其次,在分层仿生神经网络信息模型基础上引入分布式模型预测控制(Distributed model predictive control,DMPC)框架,并设计多机器人分层协同决策机制.当机器人处于正常搜索状态时,基于AS-BNN进行搜索路径滚动优化决策;当机器人陷入局部最优状态时,则启用ACBNN引导机器人快速找到新的未搜索区域.最后,在复杂未知环境下进行多机器人区域搜索仿真实验,并与该领域内的3种算法进行比较.仿真结果验证了所提算法能够在复杂未知环境下引导多机器人系统高效地完成区域搜索任务. 展开更多
关键词 未知环境 多机器人系统 区域搜索 仿生神经网络 分布式模型预测控制
在线阅读 下载PDF
高效还原式二值神经网络
20
作者 曾凯 万子鑫 +1 位作者 王铭涛 沈韬 《电子学报》 北大核心 2025年第2期568-580,共13页
将权重分布、激活分布和梯度尽可能地还原为原始全精度网络数据,能够极大提高二值网络的推理能力.然而,现有方法将正向传播中的还原操作直接作用于二值数据,同时用以控制反向传播的梯度近似函数均为固定或手动方式确定,导致二值网络的... 将权重分布、激活分布和梯度尽可能地还原为原始全精度网络数据,能够极大提高二值网络的推理能力.然而,现有方法将正向传播中的还原操作直接作用于二值数据,同时用以控制反向传播的梯度近似函数均为固定或手动方式确定,导致二值网络的还原效率有待改进.针对这一问题,构建了高效还原式二值神经网络.首先提出面向信息熵最大的分布恢复方法,通过对原始全精度权重均值平移和模长缩放,使量化后的二值权重直接具备分布最大还原特性,同时采用基于简单统计的平移和缩放因子,极大提高了权重和激活的还原效率;进一步提出基于自适应分布近似的梯度函数,根据当前全精度数据的实际分布,以P分位动态确定当前梯度的更新范围,进而自适应改变近似函数的形状,使训练过程中的梯度得到高效更新,从而提高了模型的收敛能力.在保证执行效率提升的前提下,通过理论分析证实了本文方法能够使二值数据达到最大程度还原.与当前现有的先进二值网络模型相比本文方法实验结果表现优异,其中针对ResNet-18和ResNet-20量化的分布还原操作计算时间开销分别下降了60%和67%;同时在CIFAR-10数据集上针对VGG-Small二值量化取得93.0%的准确率,在ImageNet数据集上针对ResNet-18二值量化取得61.9%的准确率,均为当前二值神经网络的最佳性能表现.相关代码开源在https://github.com/sjmp525/IA/tree/ER-BNN. 展开更多
关键词 二值神经网络 信息还原 信息熵最大 自适应梯度
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部