For denote the Lebesgue space for and the Hardy space for p <1 In this paper, the authors study mapping properties of bilinear operators given by finite sums of the products of the standard fractional integrals or ...For denote the Lebesgue space for and the Hardy space for p <1 In this paper, the authors study mapping properties of bilinear operators given by finite sums of the products of the standard fractional integrals or the standard fractional integral with the Calderon-Zygmund operator. The authors prove that such mapping properties hold if and only if these operators satisfy certain cancellation conditions.展开更多
We extend the(outer)measureγ_(I) associated to an operator ideal I to a measureγ_(I) for bounded bilinear operators.If I is surjective and closed,and J is the class of those bilinear operators such thatγ_(I)(T)=0,w...We extend the(outer)measureγ_(I) associated to an operator ideal I to a measureγ_(I) for bounded bilinear operators.If I is surjective and closed,and J is the class of those bilinear operators such thatγ_(I)(T)=0,we prove that J coincides with the composition bideal I?B.If I satisfies theΣ_(r)-condition,we establish a simple necessary and sufficient condition for an interpolated operator by the real method to belong to J.Furthermore,if in addition I is symmetric,we prove a formula for the measureγ_(I) of an operator interpolated by the real method.In particular,results apply to weakly compact operators.展开更多
The main goal of this paper is to establish the boundedness of bilinear strongly singular operator T^(-)and its commutator Tb_(1),b_(2)on generalized Morrey spaces M_(p)^(u)(μ)over non-homogeneous metric measure spac...The main goal of this paper is to establish the boundedness of bilinear strongly singular operator T^(-)and its commutator Tb_(1),b_(2)on generalized Morrey spaces M_(p)^(u)(μ)over non-homogeneous metric measure spaces.Under assumption that the Lebesgue measurable functions u,u1 and u2 belong to W_(τ)forτ∈(0,2),and u1u2=u.The authors prove that T_(-)is bounded from product spaces M_(p1)^(u1)(μ)×M_(p2)^(u2)(μ)into spaces M_(p)^(u)(μ),where 1/p=1/p_(1)+1/p_(2)with 1<p1,p2<∞;and also bounded from product spaces M_(p1)^(u1)(μ)×M_(p2)^(u2)(μ)into generalized weak Morrey spaces WM_(p)^(u)(μ).Furthermore,the author also show that commutator Tb1,b2 generated by b_(1),b_(2)∈RBMO(μ)and T is bounded from product spaces M_(p1)^(u1)(μ)×M_(p2)^(u2)(μ)into spaces M_(p)^(u)(μ).展开更多
Let G be a locally compact Vilenkin group. In this paper the authors study the boundedness of bilinear operators B(f, g) given by finite sums of products of Calderdn-Zygmund operators in Herz space and Herz-type Har...Let G be a locally compact Vilenkin group. In this paper the authors study the boundedness of bilinear operators B(f, g) given by finite sums of products of Calderdn-Zygmund operators in Herz space and Herz-type Hardy space on G. And an example, the boundedness from the products of Herz space to Herz-type Hardy space is given in the last section.展开更多
In this paper,we obtain that b∈ BMO(Rn) if and only if the commutator[b,Iα]is bounded from the Morrey spaces Lp1,λ1Rn×Lp2,λ2Rnto Lq,λ(Rn),for some appropriate indices p,q,λ,μ.Also we show that b ∈ Lip...In this paper,we obtain that b∈ BMO(Rn) if and only if the commutator[b,Iα]is bounded from the Morrey spaces Lp1,λ1Rn×Lp2,λ2Rnto Lq,λ(Rn),for some appropriate indices p,q,λ,μ.Also we show that b ∈ Lip_β(R^n) if and only if the commutator[b,I_α]is bounded from the Morrey spaces Lp1,λ1)Rn×Lp2,λ(Rnto Lq,λRn,for some appropriate indices p,q,λ,μ.展开更多
We introduce a bilinear extension of the so-called exotic Calderón–Zygmund operators.These kernels arise naturally from the bilinear singular integrals associated with Zygmund dilations.We show that such a class...We introduce a bilinear extension of the so-called exotic Calderón–Zygmund operators.These kernels arise naturally from the bilinear singular integrals associated with Zygmund dilations.We show that such a class of operators satisfy a T 1 theorem in the same form as the standard Calderón–Zygmund operators.However,one-parameter weighted estimates may fail in general,and unlike the linear case,we are not able to provide the end-point estimates in full generality.展开更多
In this paper, we obtain the boundedness of the fractional integral operators, the bilineax fractional integral operators and the bilinear Hilbert transform on α-modulation spaces.
The aim of this paper is to establish the boundedness of bilinear pseudodifferential operator T_(σ) and its commutator[b_(1),b_(2),T_(σ)]generated by T_(σ) and b_(1),b_(2) BMO(R^(n))on generalized fractional weight...The aim of this paper is to establish the boundedness of bilinear pseudodifferential operator T_(σ) and its commutator[b_(1),b_(2),T_(σ)]generated by T_(σ) and b_(1),b_(2) BMO(R^(n))on generalized fractional weighted Morrey spaces L^(p,η,φ)(w).Under assumption that a weight satisfies a certain condition,the authors prove that Ts is bounded from products of spaces L^(p1,η1,φ)(w1)L^(p2,η2,φ)(w2)into spaces L^(p,η,φ)(w),where w=(w_(1),w_(2)) A_(P),P=(p1,p2),η=η1+η2 and 1/p=1/p_(1)+1/p_(2) with p_(1),p_(2)(1,∞).Furthermore,the authors show that the[b1,b2,T_(σ)]is bounded from products of generalized fractional Morrey spaces L^(p1,η1,φ)(R^(n))L^(p2,η2,φ)(R^(n))into L^(p,η,φ)(R^(n)).As corollaries,the boundedness of the T_(σ) and[b_(1),b_(2),T_(σ)]on generalized weighted Morrey spaces L^(p,φ)(w)and on generalized Morrey spaces L^(p,φ)(R^(n))is also obtained.展开更多
A (2+1)-dimensional KdV equation is obtained by use of Hirota method, which possesses N-soliton solution, specially its exact two-soliton solution is presented. By employing a proper algebraic transformation and th...A (2+1)-dimensional KdV equation is obtained by use of Hirota method, which possesses N-soliton solution, specially its exact two-soliton solution is presented. By employing a proper algebraic transformation and the Riccati equation, a type of hell-shape soliton solutions are produced via regarding the variable in the Riccati equation as the independent variable. Finally, we extend the above (2+1)-dimensional KdV equation into (3+1)-dimensional equation, the two-soliton solutions are given.展开更多
The present article deals with multi-waves and breathers solution of the(2+1)-dimensional variable-coefficient CaudreyDodd-Gibbon-Kotera-Sawada equation under the Hirota bilinear operator method.The obtained solutions...The present article deals with multi-waves and breathers solution of the(2+1)-dimensional variable-coefficient CaudreyDodd-Gibbon-Kotera-Sawada equation under the Hirota bilinear operator method.The obtained solutions for solving the current equation represent some localized waves including soliton,solitary wave solutions,periodic and cross-kink solutions in which have been investigated by the approach of the bilinear method.Mainly,by choosing specific parameter constraints in the multi-waves and breathers,all cases the periodic and cross-kink solutions can be captured from the 1-and 2-soliton.The obtained solutions are extended with numerical simulation to analyze graphically,which results in 1-and 2-soliton solutions and also periodic and cross-kink solutions profiles.That will be extensively used to report many attractive physical phenomena in the fields of acoustics,heat transfer,fluid dynamics,classical mechanics,and so on.We have shown that the assigned method is further general,efficient,straightforward,and powerful and can be exerted to establish exact solutions of diverse kinds of fractional equations originated in mathematical physics and engineering.We have depicted the figures of the evaluated solutions in order to interpret the physical phenomena.展开更多
Jimbo-Miwa(JM) equation is one of the famous(3+1)-dimensional conditionally integrable nonlinear dynamical systems. It is pointed out that JM equation and its generalized form possess some types of interesting nonline...Jimbo-Miwa(JM) equation is one of the famous(3+1)-dimensional conditionally integrable nonlinear dynamical systems. It is pointed out that JM equation and its generalized form possess some types of interesting nonlinear excitations such as the algebraic lump-type line solitons, the lumpoff-type half line solitons, and segment solitons.展开更多
In this paper, the authors consider a class of bilinear pseudo-differential operators with symbols of order 0 and type (1, 0) in the sense of HSrmander and use the atomic decompositions of local Hardy spaces to esta...In this paper, the authors consider a class of bilinear pseudo-differential operators with symbols of order 0 and type (1, 0) in the sense of HSrmander and use the atomic decompositions of local Hardy spaces to establish the boundedness of the bilinear pseudo-differential operators and the bilinear singular integral operators on the product of local Hardy spaces.展开更多
In this paper, the behavior on the product of Lebesgue spaces is considered for the maximal operators associated with the bilinear singular integral operators whose kernels satisfy certain minimal regularity conditions.
In this paper,the authors obtain the boundedness of vector valued bilinear Calderón-Zygmund operators on products of weighted Herz-Morrey spaces with variable exponents.
Let T_σ be the bilinear Fourier multiplier operator with associated multiplier σ satisfying the Sobolev regularity that sup κ∈Z∥σ_κ∥W^s(R^(2n))< ∞ for some s ∈ (n, 2n]. In this paper, it is proved that th...Let T_σ be the bilinear Fourier multiplier operator with associated multiplier σ satisfying the Sobolev regularity that sup κ∈Z∥σ_κ∥W^s(R^(2n))< ∞ for some s ∈ (n, 2n]. In this paper, it is proved that the commutator generated by T_σ and CMO(R^n) functions is a compact operator from L^(p1)(R^n, w_1) × L^(p2)(R^n, w_2) to L^p(R^n, ν_w) for appropriate indices p_1, p_2, p ∈ (1, ∞) with1 p=1/ p_1 +1/ p_2 and weights w_1, w_2 such that w = (w_1, w_2) ∈ A_(p/t)(R^(2n)).展开更多
In this paper,we consider the density-dependent magnetohydrodynamic equations with vacuum,and provide a regularity criterion involving the velocity and magnetic fields in Besov space of negative order,which improves[J...In this paper,we consider the density-dependent magnetohydrodynamic equations with vacuum,and provide a regularity criterion involving the velocity and magnetic fields in Besov space of negative order,which improves[Jishan FAN,Fucai LI,G.NAKAMURA,Zhong TAN,Regularity criteria for the three-dimensional magnetohydrodynamic equations.J.Differential Equations,2014,256(8):2858 2875]in some sense.The method is to establish a new bilinear estimate.展开更多
We obtain the boundedness for the fractional integral operators from the modulation Hardy space μp,q to the modulation Hardy space μr,q for all 0 < p < ∞. The result is an extension of the known result for th...We obtain the boundedness for the fractional integral operators from the modulation Hardy space μp,q to the modulation Hardy space μr,q for all 0 < p < ∞. The result is an extension of the known result for the case 1 < p < ∞ and it contains a larger range of r than those in the classical result of the Lp → Lr boundedness in the Lebesgue spaces. We also obtain some estimates on the modulation spaces for the bilinear fractional operators.展开更多
In this paper,by introducing the space with weak mixed norms,weak type estimates of two kinds of multilinear fractional Hausdorff operators RΦ,β and SΦ,β on Lebesgue spaces are shown.By virtue of Marcinkiewicz int...In this paper,by introducing the space with weak mixed norms,weak type estimates of two kinds of multilinear fractional Hausdorff operators RΦ,β and SΦ,β on Lebesgue spaces are shown.By virtue of Marcinkiewicz interpolation,strong type estimates of these two operators on Lebesgue spaces are also obtained.Our methods shed some new light on dealing with the case of non-radial function Φ.展开更多
基金Supported by the NNSF and the National Education Comittee of China
文摘For denote the Lebesgue space for and the Hardy space for p <1 In this paper, the authors study mapping properties of bilinear operators given by finite sums of the products of the standard fractional integrals or the standard fractional integral with the Calderon-Zygmund operator. The authors prove that such mapping properties hold if and only if these operators satisfy certain cancellation conditions.
基金supported in part by UCM(Grant No.PR3/23-30811)。
文摘We extend the(outer)measureγ_(I) associated to an operator ideal I to a measureγ_(I) for bounded bilinear operators.If I is surjective and closed,and J is the class of those bilinear operators such thatγ_(I)(T)=0,we prove that J coincides with the composition bideal I?B.If I satisfies theΣ_(r)-condition,we establish a simple necessary and sufficient condition for an interpolated operator by the real method to belong to J.Furthermore,if in addition I is symmetric,we prove a formula for the measureγ_(I) of an operator interpolated by the real method.In particular,results apply to weakly compact operators.
基金Supported by the National Natural Science Foundation of China(Grant No.12201500)the Science Foundation for Youths of Gansu Province(Grant No.22JR5RA173)the Young Teachers’Scientific Research Ability Promotion Project of Northwest Normal University(Grant No.NWNU-LKQN2020-07)。
文摘The main goal of this paper is to establish the boundedness of bilinear strongly singular operator T^(-)and its commutator Tb_(1),b_(2)on generalized Morrey spaces M_(p)^(u)(μ)over non-homogeneous metric measure spaces.Under assumption that the Lebesgue measurable functions u,u1 and u2 belong to W_(τ)forτ∈(0,2),and u1u2=u.The authors prove that T_(-)is bounded from product spaces M_(p1)^(u1)(μ)×M_(p2)^(u2)(μ)into spaces M_(p)^(u)(μ),where 1/p=1/p_(1)+1/p_(2)with 1<p1,p2<∞;and also bounded from product spaces M_(p1)^(u1)(μ)×M_(p2)^(u2)(μ)into generalized weak Morrey spaces WM_(p)^(u)(μ).Furthermore,the author also show that commutator Tb1,b2 generated by b_(1),b_(2)∈RBMO(μ)and T is bounded from product spaces M_(p1)^(u1)(μ)×M_(p2)^(u2)(μ)into spaces M_(p)^(u)(μ).
文摘Let G be a locally compact Vilenkin group. In this paper the authors study the boundedness of bilinear operators B(f, g) given by finite sums of products of Calderdn-Zygmund operators in Herz space and Herz-type Hardy space on G. And an example, the boundedness from the products of Herz space to Herz-type Hardy space is given in the last section.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1126105511661075)
文摘In this paper,we obtain that b∈ BMO(Rn) if and only if the commutator[b,Iα]is bounded from the Morrey spaces Lp1,λ1Rn×Lp2,λ2Rnto Lq,λ(Rn),for some appropriate indices p,q,λ,μ.Also we show that b ∈ Lip_β(R^n) if and only if the commutator[b,I_α]is bounded from the Morrey spaces Lp1,λ1)Rn×Lp2,λ(Rnto Lq,λRn,for some appropriate indices p,q,λ,μ.
基金Supported by National Key R&D Program of China(Grant No.2021YFA1002500)NNSF of China(Grant Nos.12222114 and 12001400)。
文摘We introduce a bilinear extension of the so-called exotic Calderón–Zygmund operators.These kernels arise naturally from the bilinear singular integrals associated with Zygmund dilations.We show that such a class of operators satisfy a T 1 theorem in the same form as the standard Calderón–Zygmund operators.However,one-parameter weighted estimates may fail in general,and unlike the linear case,we are not able to provide the end-point estimates in full generality.
基金Supported by the National Natural Science Foundation of China(11271330)
文摘In this paper, we obtain the boundedness of the fractional integral operators, the bilineax fractional integral operators and the bilinear Hilbert transform on α-modulation spaces.
基金supported by the National Natural Science Foundation of China(Grant No.12201500)the Science Foundation for Youths of Gansu Province(Grant No.22JR5RA173)the Young Teachers’Scientific Research Ability Promotion Project of Northwest Normal University(Grant No.NWNU-LKQN2020-07).
文摘The aim of this paper is to establish the boundedness of bilinear pseudodifferential operator T_(σ) and its commutator[b_(1),b_(2),T_(σ)]generated by T_(σ) and b_(1),b_(2) BMO(R^(n))on generalized fractional weighted Morrey spaces L^(p,η,φ)(w).Under assumption that a weight satisfies a certain condition,the authors prove that Ts is bounded from products of spaces L^(p1,η1,φ)(w1)L^(p2,η2,φ)(w2)into spaces L^(p,η,φ)(w),where w=(w_(1),w_(2)) A_(P),P=(p1,p2),η=η1+η2 and 1/p=1/p_(1)+1/p_(2) with p_(1),p_(2)(1,∞).Furthermore,the authors show that the[b1,b2,T_(σ)]is bounded from products of generalized fractional Morrey spaces L^(p1,η1,φ)(R^(n))L^(p2,η2,φ)(R^(n))into L^(p,η,φ)(R^(n)).As corollaries,the boundedness of the T_(σ) and[b_(1),b_(2),T_(σ)]on generalized weighted Morrey spaces L^(p,φ)(w)and on generalized Morrey spaces L^(p,φ)(R^(n))is also obtained.
基金*The project supported by National Natural Science Foundation of China under Grant No. 10471139 and Hong Kong Research Grant Council under Grant No. HKBU/2016/03P
文摘A (2+1)-dimensional KdV equation is obtained by use of Hirota method, which possesses N-soliton solution, specially its exact two-soliton solution is presented. By employing a proper algebraic transformation and the Riccati equation, a type of hell-shape soliton solutions are produced via regarding the variable in the Riccati equation as the independent variable. Finally, we extend the above (2+1)-dimensional KdV equation into (3+1)-dimensional equation, the two-soliton solutions are given.
基金supported by the National Science and Technology Major Project(Nos.2017ZX05019001 and 2017ZX05019006)the PetroChina Innovation Foundation(No.2016D-5007-0303)the Science Foundation of China University of Petroleum,Beijing(No.2462016YJRC020)。
文摘The present article deals with multi-waves and breathers solution of the(2+1)-dimensional variable-coefficient CaudreyDodd-Gibbon-Kotera-Sawada equation under the Hirota bilinear operator method.The obtained solutions for solving the current equation represent some localized waves including soliton,solitary wave solutions,periodic and cross-kink solutions in which have been investigated by the approach of the bilinear method.Mainly,by choosing specific parameter constraints in the multi-waves and breathers,all cases the periodic and cross-kink solutions can be captured from the 1-and 2-soliton.The obtained solutions are extended with numerical simulation to analyze graphically,which results in 1-and 2-soliton solutions and also periodic and cross-kink solutions profiles.That will be extensively used to report many attractive physical phenomena in the fields of acoustics,heat transfer,fluid dynamics,classical mechanics,and so on.We have shown that the assigned method is further general,efficient,straightforward,and powerful and can be exerted to establish exact solutions of diverse kinds of fractional equations originated in mathematical physics and engineering.We have depicted the figures of the evaluated solutions in order to interpret the physical phenomena.
基金Supported by National Natural Science Foundation of China under Grant No.11435005Ningbo Natural Science Foundation(No.2015A610159)+1 种基金granted by the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No.xkzwl1502sponsored by K.C.Wong Magna Fund in Ningbo University
文摘Jimbo-Miwa(JM) equation is one of the famous(3+1)-dimensional conditionally integrable nonlinear dynamical systems. It is pointed out that JM equation and its generalized form possess some types of interesting nonlinear excitations such as the algebraic lump-type line solitons, the lumpoff-type half line solitons, and segment solitons.
基金supported by National Natural Science Foundation of China(Grant No.10861010)
文摘In this paper, the authors consider a class of bilinear pseudo-differential operators with symbols of order 0 and type (1, 0) in the sense of HSrmander and use the atomic decompositions of local Hardy spaces to establish the boundedness of the bilinear pseudo-differential operators and the bilinear singular integral operators on the product of local Hardy spaces.
文摘In this paper, the behavior on the product of Lebesgue spaces is considered for the maximal operators associated with the bilinear singular integral operators whose kernels satisfy certain minimal regularity conditions.
基金supported by the National Natural Science Foundation of China(Nos.11761026)Guangxi Natural Science Foundation(No.2020GXNSFAA159085)。
文摘In this paper,the authors obtain the boundedness of vector valued bilinear Calderón-Zygmund operators on products of weighted Herz-Morrey spaces with variable exponents.
基金supported by the National Natural Science Foundation of China(No.11371370)
文摘Let T_σ be the bilinear Fourier multiplier operator with associated multiplier σ satisfying the Sobolev regularity that sup κ∈Z∥σ_κ∥W^s(R^(2n))< ∞ for some s ∈ (n, 2n]. In this paper, it is proved that the commutator generated by T_σ and CMO(R^n) functions is a compact operator from L^(p1)(R^n, w_1) × L^(p2)(R^n, w_2) to L^p(R^n, ν_w) for appropriate indices p_1, p_2, p ∈ (1, ∞) with1 p=1/ p_1 +1/ p_2 and weights w_1, w_2 such that w = (w_1, w_2) ∈ A_(p/t)(R^(2n)).
基金Supported by the Natural Science Foundation of Jiangxi Province(Grant No.20151BAB201010)the National Natural Science Foundation of China(Grant Nos.1150112511361004)
文摘In this paper,we consider the density-dependent magnetohydrodynamic equations with vacuum,and provide a regularity criterion involving the velocity and magnetic fields in Besov space of negative order,which improves[Jishan FAN,Fucai LI,G.NAKAMURA,Zhong TAN,Regularity criteria for the three-dimensional magnetohydrodynamic equations.J.Differential Equations,2014,256(8):2858 2875]in some sense.The method is to establish a new bilinear estimate.
基金supported by National Natural Science Foundation of China (Grant Nos.10931001, 10871173)
文摘We obtain the boundedness for the fractional integral operators from the modulation Hardy space μp,q to the modulation Hardy space μr,q for all 0 < p < ∞. The result is an extension of the known result for the case 1 < p < ∞ and it contains a larger range of r than those in the classical result of the Lp → Lr boundedness in the Lebesgue spaces. We also obtain some estimates on the modulation spaces for the bilinear fractional operators.
基金Supported by National Natural Science Foundation of China(Grant Nos.11201287 and 11201103)a grant of the First-class Discipline of Universities in Shanghai
文摘In this paper,by introducing the space with weak mixed norms,weak type estimates of two kinds of multilinear fractional Hausdorff operators RΦ,β and SΦ,β on Lebesgue spaces are shown.By virtue of Marcinkiewicz interpolation,strong type estimates of these two operators on Lebesgue spaces are also obtained.Our methods shed some new light on dealing with the case of non-radial function Φ.