期刊文献+
共找到1,366篇文章
< 1 2 69 >
每页显示 20 50 100
Leveraging Bayesian methods for addressing multi-uncertainty in data-driven seismic liquefaction assessment
1
作者 Zhihui Wang Roberto Cudmani +2 位作者 Andrés Alfonso Peña Olarte Chaozhe Zhang Pan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2474-2491,共18页
When assessing seismic liquefaction potential with data-driven models,addressing the uncertainties of establishing models,interpreting cone penetration tests(CPT)data and decision threshold is crucial for avoiding bia... When assessing seismic liquefaction potential with data-driven models,addressing the uncertainties of establishing models,interpreting cone penetration tests(CPT)data and decision threshold is crucial for avoiding biased data selection,ameliorating overconfident models,and being flexible to varying practical objectives,especially when the training and testing data are not identically distributed.A workflow characterized by leveraging Bayesian methodology was proposed to address these issues.Employing a Multi-Layer Perceptron(MLP)as the foundational model,this approach was benchmarked against empirical methods and advanced algorithms for its efficacy in simplicity,accuracy,and resistance to overfitting.The analysis revealed that,while MLP models optimized via maximum a posteriori algorithm suffices for straightforward scenarios,Bayesian neural networks showed great potential for preventing overfitting.Additionally,integrating decision thresholds through various evaluative principles offers insights for challenging decisions.Two case studies demonstrate the framework's capacity for nuanced interpretation of in situ data,employing a model committee for a detailed evaluation of liquefaction potential via Monte Carlo simulations and basic statistics.Overall,the proposed step-by-step workflow for analyzing seismic liquefaction incorporates multifold testing and real-world data validation,showing improved robustness against overfitting and greater versatility in addressing practical challenges.This research contributes to the seismic liquefaction assessment field by providing a structured,adaptable methodology for accurate and reliable analysis. 展开更多
关键词 data-driven method Bayes analysis Seismic liquefaction UNCERTAINTY Neural network
在线阅读 下载PDF
Big Data Creates New Opportunities for Materials Research: A Review on Methods and Applications of Machine Learning for Materials Design 被引量:34
2
作者 Teng Zhou Zhen Song Kai Sundmacher 《Engineering》 SCIE EI 2019年第6期1017-1026,共10页
Materials development has historically been driven by human needs and desires, and this is likely to con- tinue in the foreseeable future. The global population is expected to reach ten billion by 2050, which will pro... Materials development has historically been driven by human needs and desires, and this is likely to con- tinue in the foreseeable future. The global population is expected to reach ten billion by 2050, which will promote increasingly large demands for clean and high-ef ciency energy, personalized consumer prod- ucts, secure food supplies, and professional healthcare. New functional materials that are made and tai- lored for targeted properties or behaviors will be the key to tackling this challenge. Traditionally, advanced materials are found empirically or through experimental trial-and-error approaches. As big data generated by modern experimental and computational techniques is becoming more readily avail- able, data-driven or machine learning (ML) methods have opened new paradigms for the discovery and rational design of materials. In this review article, we provide a brief introduction on various ML methods and related software or tools. Main ideas and basic procedures for employing ML approaches in materials research are highlighted. We then summarize recent important applications of ML for the large-scale screening and optimal design of polymer and porous materials, catalytic materials, and energetic mate- rials. Finally, concluding remarks and an outlook are provided. 展开更多
关键词 big data data-driven Machine learning Materials screening Materials design
在线阅读 下载PDF
Data-driven Methods to Predict the Burst Strength of Corroded Line Pipelines Subjected to Internal Pressure 被引量:3
3
作者 Jie Cai Xiaoli Jiang +2 位作者 Yazhou Yang Gabriel Lodewijks Minchang Wang 《Journal of Marine Science and Application》 CSCD 2022年第2期115-132,共18页
A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength p... A corrosion defect is recognized as one of the most severe phenomena for high-pressure pipelines,especially those served for a long time.Finite-element method and empirical formulas are thereby used for the strength prediction of such pipes with corrosion.However,it is time-consuming for finite-element method and there is a limited application range by using empirical formulas.In order to improve the prediction of strength,this paper investigates the burst pressure of line pipelines with a single corrosion defect subjected to internal pressure based on data-driven methods.Three supervised ML(machine learning)algorithms,including the ANN(artificial neural network),the SVM(support vector machine)and the LR(linear regression),are deployed to train models based on experimental data.Data analysis is first conducted to determine proper pipe features for training.Hyperparameter tuning to control the learning process is then performed to fit the best strength models for corroded pipelines.Among all the proposed data-driven models,the ANN model with three neural layers has the highest training accuracy,but also presents the largest variance.The SVM model provides both high training accuracy and high validation accuracy.The LR model has the best performance in terms of generalization ability.These models can be served as surrogate models by transfer learning with new coming data in future research,facilitating a sustainable and intelligent decision-making of corroded pipelines. 展开更多
关键词 Pipelines CORROSION Burst strength Internal pressure data-driven method Machine learning
在线阅读 下载PDF
Big Model Strategy for Bridge Structural Health Monitoring Based on Data-Driven, Adaptive Method and Convolutional Neural Network (CNN) Group 被引量:2
4
作者 Yadong Xu Weixing Hong +3 位作者 Mohammad Noori Wael A.Altabey Ahmed Silik Nabeel S.D.Farhan 《Structural Durability & Health Monitoring》 EI 2024年第6期763-783,共21页
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb... This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure. 展开更多
关键词 Structural Health Monitoring(SHM) BRIDGES big model Convolutional Neural Network(CNN) Finite Element method(FEM)
在线阅读 下载PDF
Data Augmentation:A Multi-Perspective Survey on Data,Methods,and Applications
5
作者 Canlin Cui Junyu Yao Heng Xia 《Computers, Materials & Continua》 2025年第12期4275-4306,共32页
High-quality data is essential for the success of data-driven learning tasks.The characteristics,precision,and completeness of the datasets critically determine the reliability,interpretability,and effectiveness of su... High-quality data is essential for the success of data-driven learning tasks.The characteristics,precision,and completeness of the datasets critically determine the reliability,interpretability,and effectiveness of subsequent analyzes and applications,such as fault detection,predictive maintenance,and process optimization.However,for many industrial processes,obtaining sufficient high-quality data remains a significant challenge due to high costs,safety concerns,and practical constraints.To overcome these challenges,data augmentation has emerged as a rapidly growing research area,attracting considerable attention across both academia and industry.By expanding datasets,data augmentation techniques improve greater generalization and more robust performance in actual applications.This paper provides a comprehensive,multi-perspective review of data augmentation methods for industrial processes.For clarity and organization,existing studies are systematically grouped into four categories:small sample with low dimension,small sample with high dimension,large sample with low dimension,and large sample with high dimension.Within this framework,the review examines current research from both methodological and application-oriented perspectives,highlighting main methods,advantages,and limitations.By synthesizing these findings,this review offers a structured overview for scholars and practitioners,serving as a valuable reference for newcomers and experienced researchers seeking to explore and advance data augmentation techniques in industrial processes. 展开更多
关键词 data-driven data augmentation big data industrial application
在线阅读 下载PDF
Data-Model Fusion Methods and Applications Toward Smart Manufacturing and Digital Engineering
6
作者 Fei Tao Yilin Li +2 位作者 Yupeng Wei Chenyuan Zhang Ying Zuo 《Engineering》 2025年第12期36-50,共15页
As pivotal supporting technologies for smart manufacturing and digital engineering,model-based and data-driven methods have been widely applied in many industrial fields,such as product design,process monitoring,and s... As pivotal supporting technologies for smart manufacturing and digital engineering,model-based and data-driven methods have been widely applied in many industrial fields,such as product design,process monitoring,and smart maintenance.While promising,both methods have issues that need to be addressed.For example,model-based methods are limited by low computational accuracy and a high computational burden,and data-driven methods always suffer from poor interpretability and redundant features.To address these issues,the concept of data-model fusion(DMF)emerges as a promising solution.DMF involves integrating model-based methods with data-driven methods by incorporating big data into model-based methods or embedding relevant domain knowledge into data-driven methods.Despite growing efforts in the field of DMF,a unanimous definition of DMF remains elusive,and a general framework of DMF has been rarely discussed.This paper aims to address this gap by providing a thorough overview and categorization of both data-driven methods and model-based methods.Subsequently,this paper also presents the definition and categorization of DMF and discusses the general framework of DMF.Moreover,the primary seven applications of DMF are reviewed within the context of smart manufacturing and digital engineering.Finally,this paper directs the future directions of DMF. 展开更多
关键词 Data-model fusion Model-based methods data-driven methods Smart manufacturing Digital engineering
在线阅读 下载PDF
A data-driven PCA-RF-VIM method to identify key factors driving post-fracturing gas production of tight reservoirs
7
作者 Yifan Zhao Xiaofan Li +5 位作者 Lei Zuo Zhongtai Hu Liangbin Dou Huagui Yu Tiantai Li Jun Lu 《Energy Geoscience》 2025年第2期436-450,共15页
Hydraulic fracturing technology has achieved remarkable results in improving the production of tight gas reservoirs,but its effectiveness is under the joint action of multiple factors of complexity.Traditional analysi... Hydraulic fracturing technology has achieved remarkable results in improving the production of tight gas reservoirs,but its effectiveness is under the joint action of multiple factors of complexity.Traditional analysis methods have limitations in dealing with these complex and interrelated factors,and it is difficult to fully reveal the actual contribution of each factor to the production.Machine learning-based methods explore the complex mapping relationships between large amounts of data to provide datadriven insights into the key factors driving production.In this study,a data-driven PCA-RF-VIM(Principal Component Analysis-Random Forest-Variable Importance Measures)approach of analyzing the importance of features is proposed to identify the key factors driving post-fracturing production.Four types of parameters,including log parameters,geological and reservoir physical parameters,hydraulic fracturing design parameters,and reservoir stimulation parameters,were inputted into the PCA-RF-VIM model.The model was trained using 6-fold cross-validation and grid search,and the relative importance ranking of each factor was finally obtained.In order to verify the validity of the PCA-RF-VIM model,a consolidation model that uses three other independent data-driven methods(Pearson correlation coefficient,RF feature significance analysis method,and XGboost feature significance analysis method)are applied to compare with the PCA-RF-VIM model.A comparison the two models shows that they contain almost the same parameters in the top ten,with only minor differences in one parameter.In combination with the reservoir characteristics,the reasonableness of the PCA-RF-VIM model is verified,and the importance ranking of the parameters by this method is more consistent with the reservoir characteristics of the study area.Ultimately,the ten parameters are selected as the controlling factors that have the potential to influence post-fracturing gas production,as the combined importance of these top ten parameters is 91.95%on driving natural gas production.Analyzing and obtaining these ten controlling factors provides engineers with a new insight into the reservoir selection for fracturing stimulation and fracturing parameter optimization to improve fracturing efficiency and productivity. 展开更多
关键词 data-driven method Controlling factor Hydraulic fracturing Gas production
在线阅读 下载PDF
Summary study of data-driven photometric stereo methods 被引量:2
8
作者 Qian ZHENG Boxin SHI Gang PAN 《Virtual Reality & Intelligent Hardware》 2020年第3期213-221,共9页
Background A photometric stereo method aims to recover the surface normal of a 3D object observed under varying light directions.It is an ill-defined problem because the general reflectance properties of the surface a... Background A photometric stereo method aims to recover the surface normal of a 3D object observed under varying light directions.It is an ill-defined problem because the general reflectance properties of the surface are unknown.Methods This paper reviews existing data-driven methods,with a focus on their technical insights into the photometric stereo problem.We divide these methods into two categories,per-pixel and all-pixel,according to how they process an image.We discuss the differences and relationships between these methods from the perspective of inputs,networks,and data,which are key factors in designing a deep learning approach.Results We demonstrate the performance of the models using a popular benchmark dataset.Conclusions Data-driven photometric stereo methods have shown that they possess a superior performance advantage over traditional methods.However,these methods suffer from various limitations,such as limited generalization capability.Finally,this study suggests directions for future research. 展开更多
关键词 Photometric stereo data-driven methods Non-Lambertian reflectance
在线阅读 下载PDF
Exploration on the Application and Innovation of Enterprise Audit Methods under the Background of Big Data
9
作者 LIANG Chunli 《外文科技期刊数据库(文摘版)经济管理》 2021年第6期048-050,共5页
Through various investigations, it can be found that the current situation of our country's audit industry is still dominated by traditional methods, which rely more on the auditors' experience and judgment, a... Through various investigations, it can be found that the current situation of our country's audit industry is still dominated by traditional methods, which rely more on the auditors' experience and judgment, and cannot obtain the full amount of data for audit, but only discover what to evaluate, which is commonly known as "seeing only trees but not forests". Therefore, it is impossible to objectively and accurately evaluate the real situation of the audited units, and the audit efficiency and effectiveness are greatly reduced. With the continuous rapid development of the global economy, science and technology in many fields are progressing together, and many industries are increasingly relying on the use of big data information technology. Against this background, the introduction of big data technology can bring about significant changes in audit work. Because the audit work is based on big data, this enables auditors to rely more on the use of this technology. At the same time, it can adapt to the development of the current big data era and bring convenience to the audit work. Under the background of big data, the use and innovation of audit methods are conducive to the effective adjustment and improvement of audit methods themselves, and are also conducive to the faster extraction of effective information and its effective analysis and use. This is the direction of the progress and development of China's audit industry, and is also the realistic need of our auditors. Therefore, the audit work under the background of big data is of great significance. 展开更多
关键词 big data audit method USE INNOVATION
原文传递
Smart Society and Artificial Intelligence:Big Data Scheduling and the Global Standard Method Applied to Smart Maintenance 被引量:2
10
作者 Ruben Foresti Stefano Rossi +2 位作者 Matteo Magnani Corrado Guarino Lo Bianco Nicola Delmonte 《Engineering》 SCIE EI 2020年第7期835-846,共12页
The implementation of artificial intelligence(AI)in a smart society,in which the analysis of human habits is mandatory,requires automated data scheduling and analysis using smart applications,a smart infrastructure,sm... The implementation of artificial intelligence(AI)in a smart society,in which the analysis of human habits is mandatory,requires automated data scheduling and analysis using smart applications,a smart infrastructure,smart systems,and a smart network.In this context,which is characterized by a large gap between training and operative processes,a dedicated method is required to manage and extract the massive amount of data and the related information mining.The method presented in this work aims to reduce this gap with near-zero-failure advanced diagnostics(AD)for smart management,which is exploitable in any context of Society 5.0,thus reducing the risk factors at all management levels and ensuring quality and sustainability.We have also developed innovative applications for a humancentered management system to support scheduling in the maintenance of operative processes,for reducing training costs,for improving production yield,and for creating a human–machine cyberspace for smart infrastructure design.The results obtained in 12 international companies demonstrate a possible global standardization of operative processes,leading to the design of a near-zero-failure intelligent system that is able to learn and upgrade itself.Our new method provides guidance for selecting the new generation of intelligent manufacturing and smart systems in order to optimize human–machine interactions,with the related smart maintenance and education. 展开更多
关键词 Smart maintenance Smart society Artificial intelligence Human-centered management system big data scheduling Global standard method Society 5.0 Industry 4.0
在线阅读 下载PDF
A Data-Driven Adaptive Method for Attitude Control of Fixed-Wing Unmanned Aerial Vehicles 被引量:2
11
作者 Meili Chen Yuan Wang 《Advances in Aerospace Science and Technology》 2019年第1期1-15,共15页
In this paper, a real-time online data-driven adaptive method is developed to deal with uncertainties such as high nonlinearity, strong coupling, parameter perturbation and external disturbances in attitude control of... In this paper, a real-time online data-driven adaptive method is developed to deal with uncertainties such as high nonlinearity, strong coupling, parameter perturbation and external disturbances in attitude control of fixed-wing unmanned aerial vehicles (UAVs). Firstly, a model-free adaptive control (MFAC) method requiring only input/output (I/O) data and no model information is adopted for control scheme design of angular velocity subsystem which contains all model information and up-mentioned uncertainties. Secondly, the internal model control (IMC) method featured with less tuning parameters and convenient tuning process is adopted for control scheme design of the certain Euler angle subsystem. Simulation results show that, the method developed is obviously superior to the cascade PID (CPID) method and the nonlinear dynamic inversion (NDI) method. 展开更多
关键词 data-driven Adaptive method ATTITUDE CONTROL Unmanned AERIAL Vehicles (UAV) Internal Model CONTROL
在线阅读 下载PDF
Alternating minimization for data-driven computational elasticity from experimental data: kernel method for learning constitutive manifold
12
作者 Yoshihiro Kanno 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第5期260-265,共6页
Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected ... Data-driven computing in elasticity attempts to directly use experimental data on material,without constructing an empirical model of the constitutive relation,to predict an equilibrium state of a structure subjected to a specified external load.Provided that a data set comprising stress-strain pairs of material is available,a data-driven method using the kernel method and the regularized least-squares was developed to extract a manifold on which the points in the data set approximately lie(Kanno 2021,Jpn.J.Ind.Appl.Math.).From the perspective of physical experiments,stress field cannot be directly measured,while displacement and force fields are measurable.In this study,we extend the previous kernel method to the situation that pairs of displacement and force,instead of pairs of stress and strain,are available as an input data set.A new regularized least-squares problem is formulated in this problem setting,and an alternating minimization algorithm is proposed to solve the problem. 展开更多
关键词 Alternating minimization Regularized least-squares Kernel method Manifold learning data-driven computing
在线阅读 下载PDF
The Development of Market Method of Asset Appraisal Based on the Application of Big Data
13
作者 Jinyu Tian Meijin Xin 《Journal of Modern Accounting and Auditing》 2017年第10期451-456,共6页
Big data could be utilized in work and life. Asset appraisal could also make full use of big data to improve the efficiency and effectiveness of appraisal. The paper is going to study the application of big data in di... Big data could be utilized in work and life. Asset appraisal could also make full use of big data to improve the efficiency and effectiveness of appraisal. The paper is going to study the application of big data in different fields to learn how big data works in practices and what the effect is after utilizing the new tool. Then, the paper is going to apply big data in appraisal in specific work environment. By collecting information, researching literature and practicing with appraisers, this paper f'mds some means to improve market method by making full use of big data. The article researched further by applying the method in different projects of asset appraisal. Real estate, intangible asset, corporate valuation and machines could be valued by the market method improved by big data. There are different details for appraisers to be careful in practical work. Some companies have already put the technology into practice and achieved great benefit, which makes the application of big data meaningful. 展开更多
关键词 big data asset appraisal market method APPLICATION
在线阅读 下载PDF
Big Data Application in Asset Appraisal Using Market Method
14
作者 Jinyu Tian Meijin Xin 《Journal of Modern Accounting and Auditing》 2017年第11期478-482,共5页
The big data era is coming, which influences the life of human beings in every aspect, such as working, studying, shopping and so on. The data could be uploaded and recorded by the digital devices like smart-phone and... The big data era is coming, which influences the life of human beings in every aspect, such as working, studying, shopping and so on. The data could be uploaded and recorded by the digital devices like smart-phone and pad. The volume of data could provide useful information to hdp learn the habit of human beings and improve the efficiency of work. The domain of asset appraisal could make full use of big data to collect and sort information involving the appraised asset and market. On the one hand, market method of asset appraisal needs a plenty of information of reference substance and industry development. On the other hand, big data with the trait of volume and velocity could be utilized to collect information. The paper reveals that taking advantage of big data application in asset appraisal using market method is an evolutionary process in which the gradual understanding of the potential of big data plays a crucial role. 展开更多
关键词 big data asset appraisal market method
在线阅读 下载PDF
Database Research Method for Researches on International Chinese Language Teaching in an Era of Big Data
15
作者 SONG Fei HAN Xiu-juan XU Ming-hui 《Journal of Literature and Art Studies》 2018年第1期124-136,共13页
The database research method is a method that analyses, generalizes and deduces from the data of subject investigated with database techniques, quantitative statistics and mathematical models. As the big data age come... The database research method is a method that analyses, generalizes and deduces from the data of subject investigated with database techniques, quantitative statistics and mathematical models. As the big data age comes with the data explosion in modem society, the International Chinese Language Teaching (ICLT) shows signs of sizable data accumulation, remarkable economic property, strong modeling requirements and notable cross-research trends, which thus make this method necessary as a new and independent research method in the researches on this area. Theory bases, applicative areas, available software and data resources, research program designs, as well as their advantages and disadvantages will be figured out in this paper. In the near future, it will bring about a revolution to the international Chinese language teaching. 展开更多
关键词 big data Intemational Chinese Language Teaching database research method
在线阅读 下载PDF
Smart cities,smart systems:A comprehensive review of system dynamics model applications in urban studies in the big data era 被引量:2
16
作者 Gift Fabolude Charles Knoble +1 位作者 Anvy Vu Danlin Yu 《Geography and Sustainability》 2025年第1期25-36,共12页
This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models ... This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models. 展开更多
关键词 Urban sustainability Smart cities System dynamics models big data analytics Urban system complexity data-driven urbanism
在线阅读 下载PDF
Prospects for Construction New Metamorphic Rock Database in Big Data Epoch 被引量:1
17
作者 Bo Liu Mingguo Zhai 《Journal of Earth Science》 2025年第2期450-459,共10页
Research into metamorphism plays a pivotal role in reconstructing the evolution of continent,particularly through the study of ancient rocks that are highly susceptible to metamorphic alterations due to multiple tecto... Research into metamorphism plays a pivotal role in reconstructing the evolution of continent,particularly through the study of ancient rocks that are highly susceptible to metamorphic alterations due to multiple tectonic activities.In the big data era,the establishment of new data platforms and the application of big data methods have become a focus for metamorphic rocks.Significant progress has been made in creating specialized databases,compiling comprehensive datasets,and utilizing data analytics to address complex scientific questions.However,many existing databases are inadequate in meeting the specific requirements of metamorphic research,resulting from a substantial amount of valuable data remaining uncollected.Therefore,constructing new databases that can cope with the development of the data era is necessary.This article provides an extensive review of existing databases related to metamorphic rocks and discusses data-driven studies in this.Accordingly,several crucial factors that need to be taken into consideration in the establishment of specialized metamorphic databases are identified,aiming to leverage data-driven applications to achieve broader scientific objectives in metamorphic research. 展开更多
关键词 metamorphic rock DATABASE big data data-driven research PETROLOGY
原文传递
Data-Driven Prediction of Maximum Displacement of Flexible Riser Based on Movement of Platform 被引量:1
18
作者 SONG Jin-ze WU Yu-ze +3 位作者 HE Yu-fa ZHOU Shui-gen ZHU Hong-jun DENG Kai-rui 《China Ocean Engineering》 2025年第5期793-805,共13页
Mitigating vortex-induced vibrations(VIV)in flexible risers represents a critical concern in offshore oil and gas production,considering its potential impact on operational safety and efficiency.The accurate predictio... Mitigating vortex-induced vibrations(VIV)in flexible risers represents a critical concern in offshore oil and gas production,considering its potential impact on operational safety and efficiency.The accurate prediction of displacement and position of VIV in flexible risers remains challenging under actual marine conditions.This study presents a data-driven model for riser displacement prediction that corresponds to field conditions.Experimental data analysis reveals that the XGBoost algorithm predicts the maximum displacement and position with superior accuracy compared with Support vector regression(SVR),considering both computational efficiency and precision.Platform displacement in the Y-direction demonstrates a significant positive correlation with both axial depth and maximum displacement magnitude.The fourth point displacement exhibits the highest contribution to model prediction outcomes,showing a positive influence on maximum displacement while negatively affecting the axial depth of maximum displacement.Platform displacement in the X-and Y-directions exhibits competitive effects on both the riser’s maximum displacement and its axial depth.Through the implementation of XGBoost algorithm and SHapley Additive exPlanation(SHAP)analysis,the model effectively estimates the riser’s maximum displacement and its precise location.This data-driven approach achieves predictions using minimal,readily available data points,enhancing its practical field applications and demonstrating clear relevance to academic and professional communities. 展开更多
关键词 data-driven method flexible riser vortex-induced vibration(VIV) platform displacement
在线阅读 下载PDF
Profit Growth and Innovation: Application of Big Data Analysis Technology in Agricultural Economic Management
19
作者 Xiaolan TANG Yingzi HE +4 位作者 Biao CHEN Haitao JIANG Hubo JIANG Xinyan TAN Haiqin YE 《Asian Agricultural Research》 2025年第6期1-5,10,共6页
In this paper,the application of agricultural big data in agricultural economic management is deeply explored,and its potential in promoting profit growth and innovation is analyzed.However,challenges persist in data ... In this paper,the application of agricultural big data in agricultural economic management is deeply explored,and its potential in promoting profit growth and innovation is analyzed.However,challenges persist in data collection and integration,limitations of analytical technologies,talent development,team building,and policy support when applying agricultural big data.Effective application strategies are proposed,including data-driven precision agriculture practices,construction of data integration and management platforms,data security and privacy protection strategies,as well as long-term planning and development strategies for agricultural big data,to maximize its impact on agricultural economic management.Future advancements require collaborative efforts in technological innovation,talent cultivation,and policy support,to realize the extensive application of agricultural big data in agricultural economic management and ensure sustainable industrial development. 展开更多
关键词 Agricultural big data Precision agriculture data-driven Data security and privacy
在线阅读 下载PDF
Data-Driven Parametric Design of Additively Manufactured Hybrid Lattice Structure for Stiffness and Wide-Band Damping Performance
20
作者 Chenyang Li Shangqin Yuan +3 位作者 Han Zhang Shaoying Li Xinyue Li Jihong Zhu 《Additive Manufacturing Frontiers》 2025年第2期30-39,共10页
The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies m... The outstanding comprehensive mechanical properties of newly developed hybrid lattice structures make them useful in engineering applications for bearing multiple mechanical loads.Additive-manufacturing technologies make it possible to fabricate these highly spatially programmable structures and greatly enhance the freedom in their design.However,traditional analytical methods do not sufficiently reflect the actual vibration-damping mechanism of lattice structures and are limited by their high computational cost.In this study,a hybrid lattice structure consisting of various cells was designed based on quasi-static and vibration experiments.Subsequently,a novel parametric design method based on a data-driven approach was developed for hybrid lattices with engineered properties.The response surface method was adopted to define the sensitive optimization target.A prediction model for the lattice geometric parameters and vibration properties was established using a backpropagation neural network.Then,it was integrated into the genetic algorithm to create the optimal hybrid lattice with varying geometric features and the required wide-band vibration-damping characteristics.Validation experiments were conducted,demonstrating that the optimized hybrid lattice can achieve the target properties.In addition,the data-driven parametric design method can reduce computation time and be widely applied to complex structural designs when analytical and empirical solutions are unavailable. 展开更多
关键词 Hybrid lattice structure data-driven Wide-band damping Machine-learning method
在线阅读 下载PDF
上一页 1 2 69 下一页 到第
使用帮助 返回顶部