期刊文献+
共找到5,748篇文章
< 1 2 250 >
每页显示 20 50 100
Security and Privacy Frameworks for Access Control Big Data Systems 被引量:3
1
作者 Paolina Centonze 《Computers, Materials & Continua》 SCIE EI 2019年第5期361-374,共14页
In the security and privacy fields,Access Control(AC)systems are viewed as the fundamental aspects of networking security mechanisms.Enforcing AC becomes even more challenging when researchers and data analysts have t... In the security and privacy fields,Access Control(AC)systems are viewed as the fundamental aspects of networking security mechanisms.Enforcing AC becomes even more challenging when researchers and data analysts have to analyze complex and distributed Big Data(BD)processing cluster frameworks,which are adopted to manage yottabyte of unstructured sensitive data.For instance,Big Data systems’privacy and security restrictions are most likely to failure due to the malformed AC policy configurations.Furthermore,BD systems were initially developed toped to take care of some of the DB issues to address BD challenges and many of these dealt with the“three Vs”(Velocity,Volume,and Variety)attributes,without planning security consideration,which are considered to be patch work.Some of the BD“three Vs”characteristics,such as distributed computing,fragment,redundant data and node-to node communication,each with its own security challenges,complicate even more the applicability of AC in BD.This paper gives an overview of the latest security and privacy challenges in BD AC systems.Furthermore,it analyzes and compares some of the latest AC research frameworks to reduce privacy and security issues in distributed BD systems,which very few enforce AC in a cost-effective and in a timely manner.Moreover,this work discusses some of the future research methodologies and improvements for BD AC systems.This study is valuable asset for Artificial Intelligence(AI)researchers,DB developers and DB analysts who need the latest AC security and privacy research perspective before using and/or improving a current BD AC framework. 展开更多
关键词 big data access control distributed systems SECURITY PRIVACY
在线阅读 下载PDF
TPTVer: A Trusted Third Party Based Trusted Verifier for Multi-Layered Outsourced Big Data System in Cloud Environment 被引量:3
2
作者 Jing Zhan Xudong Fan +2 位作者 Lei Cai Yaqi Gao Junxi Zhuang 《China Communications》 SCIE CSCD 2018年第2期122-137,共16页
Cloud computing is very useful for big data owner who doesn't want to manage IT infrastructure and big data technique details. However, it is hard for big data owner to trust multi-layer outsourced big data system... Cloud computing is very useful for big data owner who doesn't want to manage IT infrastructure and big data technique details. However, it is hard for big data owner to trust multi-layer outsourced big data system in cloud environment and to verify which outsourced service leads to the problem. Similarly, the cloud service provider cannot simply trust the data computation applications. At last,the verification data itself may also leak the sensitive information from the cloud service provider and data owner. We propose a new three-level definition of the verification, threat model, corresponding trusted policies based on different roles for outsourced big data system in cloud. We also provide two policy enforcement methods for building trusted data computation environment by measuring both the Map Reduce application and its behaviors based on trusted computing and aspect-oriented programming. To prevent sensitive information leakage from verification process,we provide a privacy-preserved verification method. Finally, we implement the TPTVer, a Trusted third Party based Trusted Verifier as a proof of concept system. Our evaluation and analysis show that TPTVer can provide trusted verification for multi-layered outsourced big data system in the cloud with low overhead. 展开更多
关键词 big data security outsourced ser-vice security MapReduce behavior trustedverification trusted third party
在线阅读 下载PDF
Multi-Aspect Incremental Tensor Decomposition Based on Distributed In-Memory Big Data Systems 被引量:1
3
作者 Hye-Kyung Yang Hwan-Seung Yong 《Journal of Data and Information Science》 CSCD 2020年第2期13-32,共20页
Purpose:We propose In Par Ten2,a multi-aspect parallel factor analysis three-dimensional tensor decomposition algorithm based on the Apache Spark framework.The proposed method reduces re-decomposition cost and can han... Purpose:We propose In Par Ten2,a multi-aspect parallel factor analysis three-dimensional tensor decomposition algorithm based on the Apache Spark framework.The proposed method reduces re-decomposition cost and can handle large tensors.Design/methodology/approach:Considering that tensor addition increases the size of a given tensor along all axes,the proposed method decomposes incoming tensors using existing decomposition results without generating sub-tensors.Additionally,In Par Ten2 avoids the calculation of Khari–Rao products and minimizes shuffling by using the Apache Spark platform.Findings:The performance of In Par Ten2 is evaluated by comparing its execution time and accuracy with those of existing distributed tensor decomposition methods on various datasets.The results confirm that In Par Ten2 can process large tensors and reduce the re-calculation cost of tensor decomposition.Consequently,the proposed method is faster than existing tensor decomposition algorithms and can significantly reduce re-decomposition cost.Research limitations:There are several Hadoop-based distributed tensor decomposition algorithms as well as MATLAB-based decomposition methods.However,the former require longer iteration time,and therefore their execution time cannot be compared with that of Spark-based algorithms,whereas the latter run on a single machine,thus limiting their ability to handle large data.Practical implications:The proposed algorithm can reduce re-decomposition cost when tensors are added to a given tensor by decomposing them based on existing decomposition results without re-decomposing the entire tensor.Originality/value:The proposed method can handle large tensors and is fast within the limited-memory framework of Apache Spark.Moreover,In Par Ten2 can handle static as well as incremental tensor decomposition. 展开更多
关键词 PARAFAC Tensor decomposition Incremental tensor decomposition Apache Spark big data
在线阅读 下载PDF
Components and Development in Big Data System: A Survey 被引量:3
4
作者 Jing-Huan Yu Zi-Meng Zhou 《Journal of Electronic Science and Technology》 CAS CSCD 2019年第1期51-72,共22页
With the growth of distributed computing systems, the modern Big Data analysis platform products often have diversified characteristics. It is hard for users to make decisions when they are in early contact with Big D... With the growth of distributed computing systems, the modern Big Data analysis platform products often have diversified characteristics. It is hard for users to make decisions when they are in early contact with Big Data platforms. In this paper, we discussed the design principles and research directions of modern Big Data platforms by presenting research in modern Big Data products. We provided a detailed review and comparison of several state-ofthe-art frameworks and concluded into a typical structure with five horizontal and one vertical. According to this structure, this paper presents the components and modern optimization technologies developed for Big Data, which helps to choose the most suitable components and architecture from various Big Data technologies based on requirements. 展开更多
关键词 big data CLOUD COMPUTING data analysis optimization system architecture
在线阅读 下载PDF
Smart cities,smart systems:A comprehensive review of system dynamics model applications in urban studies in the big data era 被引量:1
5
作者 Gift Fabolude Charles Knoble +1 位作者 Anvy Vu Danlin Yu 《Geography and Sustainability》 2025年第1期25-36,共12页
This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models ... This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models. 展开更多
关键词 Urban sustainability Smart cities system dynamics models big data analytics Urban system complexity data-driven urbanism
在线阅读 下载PDF
Enhanced Practical Byzantine Fault Tolerance for Service Function Chain Deployment:Advancing Big Data Intelligence in Control Systems
6
作者 Peiying Zhang Yihong Yu +3 位作者 Jing Liu ChongLv Lizhuang Tan Yulin Zhang 《Computers, Materials & Continua》 2025年第6期4393-4409,共17页
As Internet ofThings(IoT)technologies continue to evolve at an unprecedented pace,intelligent big data control and information systems have become critical enablers for organizational digital transformation,facilitati... As Internet ofThings(IoT)technologies continue to evolve at an unprecedented pace,intelligent big data control and information systems have become critical enablers for organizational digital transformation,facilitating data-driven decision making,fostering innovation ecosystems,and maintaining operational stability.In this study,we propose an advanced deployment algorithm for Service Function Chaining(SFC)that leverages an enhanced Practical Byzantine Fault Tolerance(PBFT)mechanism.The main goal is to tackle the issues of security and resource efficiency in SFC implementation across diverse network settings.By integrating blockchain technology and Deep Reinforcement Learning(DRL),our algorithm not only optimizes resource utilization and quality of service but also ensures robust security during SFC deployment.Specifically,the enhanced PBFT consensus mechanism(VRPBFT)significantly reduces consensus latency and improves Byzantine node detection through the introduction of a Verifiable Random Function(VRF)and a node reputation grading model.Experimental results demonstrate that compared to traditional PBFT,the proposed VRPBFT algorithm reduces consensus latency by approximately 30%and decreases the proportion of Byzantine nodes by 40%after 100 rounds of consensus.Furthermore,the DRL-based SFC deployment algorithm(SDRL)exhibits rapid convergence during training,with improvements in long-term average revenue,request acceptance rate,and revenue/cost ratio of 17%,14.49%,and 20.35%,respectively,over existing algorithms.Additionally,the CPU resource utilization of the SDRL algorithmreaches up to 42%,which is 27.96%higher than other algorithms.These findings indicate that the proposed algorithm substantially enhances resource utilization efficiency,service quality,and security in SFC deployment. 展开更多
关键词 big data intelligent transformation heterogeneous networks service function chain blockchain deep reinforcement learning trusted deployment
在线阅读 下载PDF
Innovative Research on the Integration of Big Data Technology in Poverty Recurrence Monitoring and Agricultural Product Sales Systems
7
作者 Yuxin Jiang Tingting Li Xinyi Liu 《Journal of Electronic Research and Application》 2025年第2期268-273,共6页
With the advancement of the rural revitalization strategy,preventing poverty recurrence among previously impoverished populations has become a crucial social concern.The application of big data technology in poverty r... With the advancement of the rural revitalization strategy,preventing poverty recurrence among previously impoverished populations has become a crucial social concern.The application of big data technology in poverty recurrence monitoring and agricultural product sales systems can effectively enhance precise identification and early warning capabilities,promoting the sustainable development of rural economies.This paper explores the application of big data technology in poverty recurrence monitoring,analyzes its innovative integration with agricultural product sales systems,and proposes an intelligent monitoring and sales platform model based on big data,aiming to provide a reference for relevant policy formulation. 展开更多
关键词 big data technology Poverty recurrence monitoring Agricultural product sales Intelligent early warning Rural revitalization
在线阅读 下载PDF
The Role of Big Data Analysis in Digital Currency Systems
8
作者 Zhengkun Xiu 《Proceedings of Business and Economic Studies》 2025年第1期1-5,共5页
In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This s... In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This system restores the essential characteristics of currency while providing auxiliary services related to the formation,circulation,storage,application,and promotion of digital currency.Compared to traditional currency management technologies,big data analysis technology,which is primarily embedded in digital currency systems,enables the rapid acquisition of information.This facilitates the identification of standard associations within currency data and provides technical support for the operational framework of digital currency. 展开更多
关键词 big data Digital currency Computational methods Transaction speed
在线阅读 下载PDF
Diversity,Complexity,and Challenges of Viral Infectious Disease Data in the Big Data Era:A Comprehensive Review 被引量:1
9
作者 Yun Ma Lu-Yao Qin +1 位作者 Xiao Ding Ai-Ping Wu 《Chinese Medical Sciences Journal》 2025年第1期29-44,I0005,共17页
Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning fr... Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape. 展开更多
关键词 viral infectious diseases big data data diversity and complexity data standardization artificial intelligence data analysis
暂未订购
Hybrid Teaching Reform and Practice in Big Data Collection and Preprocessing Courses Based on the Bosi Smart Learning Platform 被引量:1
10
作者 Yang Wang Xuemei Wang Wanyan Wang 《Journal of Contemporary Educational Research》 2025年第2期96-100,共5页
This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model... This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model follows a“three-stage”and“two-subject”framework,incorporating a structured design for teaching content and assessment methods before,during,and after class.Practical results indicate that this approach significantly enhances teaching effectiveness and improves students’learning autonomy. 展开更多
关键词 big data Collection and Preprocessing Bosi smart learning platform Hybrid teaching Teaching reform
在线阅读 下载PDF
Revolutionizing Crop Breeding:Next-Generation Artificial Intelligence and Big Data-Driven Intelligent Design 被引量:1
11
作者 Ying Zhang Guanmin Huang +5 位作者 Yanxin Zhao Xianju Lu Yanru Wang Chuanyu Wang Xinyu Guo Chunjiang Zhao 《Engineering》 2025年第1期245-255,共11页
The security of the seed industry is crucial for ensuring national food security.Currently,developed countries in Europe and America,along with international seed industry giants,have entered the Breeding 4.0 era.This... The security of the seed industry is crucial for ensuring national food security.Currently,developed countries in Europe and America,along with international seed industry giants,have entered the Breeding 4.0 era.This era integrates biotechnology,artificial intelligence(AI),and big data information technology.In contrast,China is still in a transition period between stages 2.0 and 3.0,which primarily relies on conventional selection and molecular breeding.In the context of increasingly complex international situations,accurately identifying core issues in China's seed industry innovation and seizing the frontier of international seed technology are strategically important.These efforts are essential for ensuring food security and revitalizing the seed industry.This paper systematically analyzes the characteristics of crop breeding data from artificial selection to intelligent design breeding.It explores the applications and development trends of AI and big data in modern crop breeding from several key perspectives.These include highthroughput phenotype acquisition and analysis,multiomics big data database and management system construction,AI-based multiomics integrated analysis,and the development of intelligent breeding software tools based on biological big data and AI technology.Based on an in-depth analysis of the current status and challenges of China's seed industry technology development,we propose strategic goals and key tasks for China's new generation of AI and big data-driven intelligent design breeding.These suggestions aim to accelerate the development of an intelligent-driven crop breeding engineering system that features large-scale gene mining,efficient gene manipulation,engineered variety design,and systematized biobreeding.This study provides a theoretical basis and practical guidance for the development of China's seed industry technology. 展开更多
关键词 Crop breeding Next-generation artificial intelligence Multiomics big data Intelligent design breeding
在线阅读 下载PDF
BIG-ABAC:Leveraging Big Data for Adaptive,Scalable,and Context-Aware Access Control
12
作者 Sondes Baccouri Takoua Abdellatif 《Computer Modeling in Engineering & Sciences》 2025年第4期1071-1093,共23页
Managing sensitive data in dynamic and high-stakes environments,such as healthcare,requires access control frameworks that offer real-time adaptability,scalability,and regulatory compliance.BIG-ABAC introduces a trans... Managing sensitive data in dynamic and high-stakes environments,such as healthcare,requires access control frameworks that offer real-time adaptability,scalability,and regulatory compliance.BIG-ABAC introduces a transformative approach to Attribute-Based Access Control(ABAC)by integrating real-time policy evaluation and contextual adaptation.Unlike traditional ABAC systems that rely on static policies,BIG-ABAC dynamically updates policies in response to evolving rules and real-time contextual attributes,ensuring precise and efficient access control.Leveraging decision trees evaluated in real-time,BIG-ABAC overcomes the limitations of conventional access control models,enabling seamless adaptation to complex,high-demand scenarios.The framework adheres to the NIST ABAC standard while incorporating modern distributed streaming technologies to enhance scalability and traceability.Its flexible policy enforcement mechanisms facilitate the implementation of regulatory requirements such as HIPAA and GDPR,allowing organizations to align access control policies with compliance needs dynamically.Performance evaluations demonstrate that BIG-ABAC processes 95% of access requests within 50 ms and updates policies dynamically with a latency of 30 ms,significantly outperforming traditional ABAC models.These results establish BIG-ABAC as a benchmark for adaptive,scalable,and context-aware access control,making it an ideal solution for dynamic,high-risk domains such as healthcare,smart cities,and Industrial IoT(IIoT). 展开更多
关键词 ABAC big data CONTEXT-AWARE decision trees adaptive policy SCALABILITY
在线阅读 下载PDF
Psychoanalysis of the Attention Economy in the Era of Big Data:A Topological Interpretation Based on Lacan’s Three Orders
13
作者 Yisheng Lin Qi Jiang Zilan Zhang 《Proceedings of Business and Economic Studies》 2025年第4期65-70,共6页
In the era of Big Data,the attention economy has emerged as a core logic of capital accumulation,yet behavioral economic explanations fail to penetrate the unconscious drives and desire structures underlying attention... In the era of Big Data,the attention economy has emerged as a core logic of capital accumulation,yet behavioral economic explanations fail to penetrate the unconscious drives and desire structures underlying attention investment.This paper adopts Lacan’s topological framework of the three orders(the Real,the Symbolic,and the Imaginary)to conduct a psychoanalytic dissection of the attention economy.It argues that Big Data-driven attention mechanisms essentially manipulate desire across these three orders:algorithms,functioning as the“digital big Other,”exploit the Real’s traumatic surplus and the deferred structure of desire through infinite scroll and traumatic stimuli;regulate identity production in the Symbolic via visibility laws,social currency,and datafication;and construct narcissistic illusions in the Imaginary through filters,filter bubbles,and illusions of hyperconnection.Ultimately,the paper proposes an ethics of lucid attention,calling for critical algorithmic literacy,confrontation with the Real’s lack,dismantling of Imaginary illusions,and reclaiming sovereignty over attention-essential for preserving subjective dignity and human freedom in the digital age. 展开更多
关键词 Attention economy big data Lacan’s Three Orders PSYCHOANALYSIS Algorithm
在线阅读 下载PDF
Teaching Reform and Practice of Statistics Courses in Big Data Management and Applications Major in the Context of New Quality Productivity
14
作者 Tinghui Huang Junchao Dong Liang Min 《Journal of Contemporary Educational Research》 2025年第2期23-31,共9页
In the new era,the impact of emerging productive forces has permeated every sector of industry.As the core production factor of these forces,data plays a pivotal role in industrial transformation and social developmen... In the new era,the impact of emerging productive forces has permeated every sector of industry.As the core production factor of these forces,data plays a pivotal role in industrial transformation and social development.Consequently,many domestic universities have introduced majors or courses related to big data.Among these,the Big Data Management and Applications major stands out for its interdisciplinary approach and emphasis on practical skills.However,as an emerging field,it has not yet accumulated a robust foundation in teaching theory and practice.Current instructional practices face issues such as unclear training objectives,inconsistent teaching methods and course content,insufficient integration of practical components,and a shortage of qualified faculty-factors that hinder both the development of the major and the overall quality of education.Taking the statistics course within the Big Data Management and Applications major as an example,this paper examines the challenges faced by statistics education in the context of emerging productive forces and proposes corresponding improvement measures.By introducing innovative teaching concepts and strategies,the teaching system for professional courses is optimized,and authentic classroom scenarios are recreated through illustrative examples.Questionnaire surveys and statistical analyses of data collected before and after the teaching reforms indicate that the curriculum changes effectively enhance instructional outcomes,promote the development of the major,and improve the quality of talent cultivation. 展开更多
关键词 New quality productivity big data Compound talents Statistics course Teaching examples
在线阅读 下载PDF
Preliminary exploration of constructing a standardized process for prognostic biomarker discovery based on genetic big data
15
作者 Wang Min Yang Yongqi Li Xiawei 《China Standardization》 2025年第3期60-64,共5页
The paper utilized a standardized methodology to identify prognostic biomarkers in hepatocellular carcinoma(HCC)by analyzing transcriptomic and clinical data from The Cancer Genome Atlas(TCGA)database.The approach,whi... The paper utilized a standardized methodology to identify prognostic biomarkers in hepatocellular carcinoma(HCC)by analyzing transcriptomic and clinical data from The Cancer Genome Atlas(TCGA)database.The approach,which included stringent data preprocessing,differential gene expression analysis,and Kaplan-Meier survival analysis,provided valuable insights into the genetic underpinnings of HCC.The comprehensive analysis of a dataset involving 370 HCC patients uncovered correlations between survival status and pathological characteristics,including tumor size,lymph node involvement,and distant metastasis.The processed transcriptome dataset,comprising 420 samples and annotating 26,783 genes,served as a robust platform for identifying differential gene expression patterns.Among the significant differential expression genes,the key genes such as FBXO43,HAGLROS,CRISPLD1,LRRC3.DT,and ERN2,were pinpointed,which showed significant associations with patient survival outcomes,indicating their potential as novel prognostic biomarkers.This study can not only enhance the understanding of HCC’s genetic landscape but also establish a blueprint for a standardized process to discover prognostic biomarkers of various diseases using genetic big data.Future research should focus on validating these biomarkers through independent cohorts and exploring their utility in the development of personalized treatment strategies. 展开更多
关键词 standardized process genetic big data prognostic biomarkers Kaplan-Meier survival analysis hepatocellular carcinoma
暂未订购
TBM big data preprocessing method in machine learning and its application to tunneling
16
作者 Xinyue Zhang Xiaoping Zhang +3 位作者 Quansheng Liu Weiqiang Xie Shaohui Tang Zengmao Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4762-4783,共22页
The big data generated by tunnel boring machines(TBMs)are widely used to reveal complex rock-machine interactions by machine learning(ML)algorithms.Data preprocessing plays a crucial role in improving ML accuracy.For ... The big data generated by tunnel boring machines(TBMs)are widely used to reveal complex rock-machine interactions by machine learning(ML)algorithms.Data preprocessing plays a crucial role in improving ML accuracy.For this,a TBM big data preprocessing method in ML was proposed in the present study.It emphasized the accurate division of TBM tunneling cycle and the optimization method of feature extraction.Based on the data collected from a TBM water conveyance tunnel in China,its effectiveness was demonstrated by application in predicting TBM performance.Firstly,the Score-Kneedle(S-K)method was proposed to divide a TBM tunneling cycle into five phases.Conducted on 500 TBM tunneling cycles,the S-K method accurately divided all five phases in 458 cycles(accuracy of 91.6%),which is superior to the conventional duration division method(accuracy of 74.2%).Additionally,the S-K method accurately divided the stable phase in 493 cycles(accuracy of 98.6%),which is superior to two state-of-the-art division methods,namely the histogram discriminant method(accuracy of 94.6%)and the cumulative sum change point detection method(accuracy of 92.8%).Secondly,features were extracted from the divided phases.Specifically,TBM tunneling resistances were extracted from the free rotating phase and free advancing phase.The resistances were subtracted from the total forces to represent the true rock-fragmentation forces.The secant slope and the mean value were extracted as features of the increasing phase and stable phase,respectively.Finally,an ML model integrating a deep neural network and genetic algorithm(GA-DNN)was established to learn the preprocessed data.The GA-DNN used 6 secant slope features extracted from the increasing phase to predict the mean field penetration index(FPI)and torque penetration index(TPI)in the stable phase,guiding TBM drivers to make better decisions in advance.The results indicate that the proposed TBM big data preprocessing method can improve prediction accuracy significantly(improving R2s of TPI and FPI on the test dataset from 0.7716 to 0.9178 and from 0.7479 to 0.8842,respectively). 展开更多
关键词 Tunnel boring machine big data preprocessing Division of tunneling cycle Tunneling resistance Machine learning
在线阅读 下载PDF
Strategies and Practices of Enterprise Human Resource Management in the Era of Big Data
17
作者 Wei Gao 《Proceedings of Business and Economic Studies》 2025年第5期104-109,共6页
With the comprehensive development of modern information technology,big data technology has been integrated into various industries and has become a pillar technology supporting industrial upgrading and transformation... With the comprehensive development of modern information technology,big data technology has been integrated into various industries and has become a pillar technology supporting industrial upgrading and transformation.In enterprise human resource management,big data technology also has a broad application space and important application value.To gain higher market competitiveness and comprehensively improve the quality and efficiency of human resource management,enterprises need to rely on big data technology for comprehensive reform and optimization,thereby building an efficient,fair,open,and scientific human resource management model.This paper analyzes the problems and changes of enterprise human resource management in the era of big data,and then puts forward effective strategies for enterprise human resource management based on the era of big data. 展开更多
关键词 big data era ENTERPRISES Human resource management STRATEGIES
在线阅读 下载PDF
Financial Data Security Management in the Era of Big Data
18
作者 Yanling Liu Yun Li 《Proceedings of Business and Economic Studies》 2025年第2期37-42,共6页
In the era of big data,the financial industry is undergoing profound changes.By integrating multiple data sources such as transaction records,customer interactions,market trends,and regulatory requirements,big data te... In the era of big data,the financial industry is undergoing profound changes.By integrating multiple data sources such as transaction records,customer interactions,market trends,and regulatory requirements,big data technology has significantly improved the decision-making efficiency,customer insight,and risk management capabilities of financial institutions.The financial industry has become a pioneer in the application of big data technology,which is widely used in scenarios such as fraud detection,risk management,customer service optimization,and smart transactions.However,financial data security management also faces many challenges,including data breaches,privacy protection,compliance requirements,the complexity of emerging technologies,and the balance between data access and security.This article explores the major challenges of financial data security management,coping strategies,and the evolution of the regulatory environment,and it looks ahead to future trends,highlighting the important role of artificial intelligence and machine learning in financial data security. 展开更多
关键词 big data Artificial intelligence data security Privacy protection
在线阅读 下载PDF
Application Strategies of Artificial Intelligence and Big Data Technology in Computer Monitoring and Control
19
作者 Yumin Yuan Xiyuan Li 《Journal of Electronic Research and Application》 2025年第2期29-34,共6页
This article focuses on the current computer monitoring and control as the research direction,studying the application strategies of artificial intelligence and big data technology in this field.It includes an introdu... This article focuses on the current computer monitoring and control as the research direction,studying the application strategies of artificial intelligence and big data technology in this field.It includes an introduction to artificial intelligence and big data technology,the application strategies of artificial intelligence and big data technology in computer hardware,software,and network monitoring,as well as the application strategies of artificial intelligence and big data technology in computer process,access,and network control.This analysis aims to serve as a reference for the application of artificial intelligence and big data technology in computer monitoring and control,ultimately enhancing the security of computer systems. 展开更多
关键词 Computer monitoring and control Artificial intelligence technology big data technology Hardware and software Network security
在线阅读 下载PDF
Traffic Forecast and Business Operation Optimization Strategy of Smart Tourist Attractions Driven by Big Data
20
作者 Aihan Cao 《Proceedings of Business and Economic Studies》 2025年第5期184-190,共7页
In order to improve the competitiveness of smart tourist attractions in the tourism market,this paper selects a scenic spot in Shenyang and uses big data technology to predict the passenger flow of the scenic spot.Fir... In order to improve the competitiveness of smart tourist attractions in the tourism market,this paper selects a scenic spot in Shenyang and uses big data technology to predict the passenger flow of the scenic spot.Firstly,this paper introduces the big data-driven forecast model of scenic spot passenger flow.Based on the traditional autoregressive integral moving average model and artificial neural network model,it builds a big data analysis and forecast model.Through the analysis of data source,model building,scenic spot passenger flow accuracy,and modeling time comparison,it affirms the advantages of big data analysis in forecasting scenic spot passenger flow.Finally,it puts forward four commercial operation optimization strategies:adjusting the ticket pricing of scenic spots,upgrading the catering and accommodation services in scenic spots,planning and designing play projects,and formulating accurate scenic spot marketing strategies,in order to provide references for the optimization and upgrading of smart tourist attractions in the future. 展开更多
关键词 big data Smart tourist attractions Passenger flow forecast Commercial operation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部