期刊文献+
共找到453篇文章
< 1 2 23 >
每页显示 20 50 100
Bifunctionally Hydrophobic MOF-Supported Platinum Catalyst for the Removal of Ultralow Concentration Hydrogen Isotope 被引量:1
1
作者 Huiryung Heo Jeong-un Jang +5 位作者 Euna Jeong Hyung-Ju Kim Young Jin Kim Chan Woo Park Jungseob So Dong-Yeun Koh 《Energy & Environmental Materials》 2025年第2期140-150,共11页
Water often presents significant challenges in catalysts by deactivating active sites,poisoning the reaction,and even degrading composite structure.These challenges are amplified when the water participates as a react... Water often presents significant challenges in catalysts by deactivating active sites,poisoning the reaction,and even degrading composite structure.These challenges are amplified when the water participates as a reactant and is fed as a liquid phase,such as trickle bed-type reactors in a hydrogen-water isotope exchange(HIE)reaction.The key balance in such multiphase reactions is the precise control of catalyst design to repel bulk liquid water while diffusing water vapor.Herein,a platinum-incorporated metal-organic framework(MIL-101)based bifunctional hydrophobic catalyst functionalized with long alkyl chains(C_(12),dodecylamine)and further manufactured with poly(vinylidene fluoride),Pt@MIL-101-12/PVDF,has been developed which can show dramatically improved catalytic activity under multi-phase reactions involving hydrogen gas and liquid water.Pt@MIL-101-12/PVDF demonstrates enhanced macroscopic water-blocking properties,with a notable reduction of over 65%in water adsorption capacity and newly introduced liquid water repellency.while exhibiting a negligible increase in mass transfer resistance,i.e.,bifunctional hydrophobicity.Excellent catalytic activity,evaluated via HIE reaction,and its durability underscore the impact of bifunctional hydrophobicity.In situ DRIFTS analysis elucidates water adsorption/desorption dynamics within the catalyst composite,highlighting reinforced water diffusion at the microscopic level,affirming the catalyst's bifunctionality in different length scales.With demonstrated radiation resistance,Pt@MIL-101-12/PVDF emerges as a promising candidate for isotope exchange reactions. 展开更多
关键词 bifunctional hydrophobiccatalyst hydrogen-waterisotopeexchange hydrophobic modification metal-organic framework tritiumremoval
在线阅读 下载PDF
Polyphenol-metal coordination derived high-entropy alloy as bifunctional oxygen electrocatalyst for Zn-air batteries 被引量:1
2
作者 Meng-Di Hao Qin Li +3 位作者 Jing-Han Sun Deng Liu Hua-Long Yu Rui Liu 《Rare Metals》 2025年第4期2836-2844,共9页
High-entropy alloy(HEA)nanoparticles(NPs)have attracted great attention in electrocatalysis due to their tailorable complex compositions and unique properties.Herein,we introduce Fe,Co,Ni,Cr and Mn into the metal-poly... High-entropy alloy(HEA)nanoparticles(NPs)have attracted great attention in electrocatalysis due to their tailorable complex compositions and unique properties.Herein,we introduce Fe,Co,Ni,Cr and Mn into the metal-polyphenol coordination system to prepare HEA NPs enclosed in N-doped carbon(FeCoNiCrMn)with great potential for catalyzing oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).The unique high-entropy structural characteristics in FeCoNiCrMn facilitate effective interplay between metal species,leading to improved ORR(E_(1/2)=0.89 V)and OER(η=330 mV,j=10 mA·cm^(−2))activity.Additionally,FeCoNiCrMn exhibits excellent open-circuit voltage(1.523 V),power density(110 mW·cm^(−2))and long-term durability,outperforming Pt/C+IrO_(2) electrodes as a cathode catalyst in Zn-air batteries(ZABs).Such polyphenol-assisted alloying method broadens and simplifies the development of HEA electrocatalysts for high-performance ZABs. 展开更多
关键词 oxygen reduction reaction zinc air batteries metal sp bifunctional oxygen electrocatalyst oxygen evolution reaction oer nanoparticles polyphenol metal coordination hea nps
原文传递
Co/Co_(7)Fe_(3)heterostructures with controllable alloying degree on carbon spheres as bifunctional electrocatalyst forrechargeable zinc-air batteries
3
作者 Junkang Chen Yongyue Zhuang +3 位作者 Yanxin Qiao Yu Zhang Aihua Yuan Hu Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期476-487,共12页
Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is crucial for developing rechargeable zinc-air batteries(ZABs).Herein,an alloying-degree c... Exploring efficient and nonprecious metal electrocatalysts of oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)is crucial for developing rechargeable zinc-air batteries(ZABs).Herein,an alloying-degree control strategy was employed to fabricate nitrogen-doped carbon sphere(NCS)decorated with dual-phase Co/Co_(7)Fe_(3)heterojunctions(CoFe@NCS).The phase composition of materials has been adjusted by controlling the alloying degree.The optimal CoFe_(0.08)@NCS electrocatalyst displays a half-wave potential of 0.80 V for ORR and an overpotential of 283 mV at 10 mA·cm^(-2)for OER in an alkaline electrolyte.The intriguing bifunctional electrocatalytic activity and durability is attributed to the hierarchically porous structure and interfacial electron coupling of highly-active Co_(7)Fe_(3)alloy and metallic Co species.When the CoFe_(0.08)@NCS material is used as air-cathode catalyst of rechargeable liquid-state zinc-air battery(ZAB),the device shows a high peak power-density(157 mW·cm^(-2))and maintains a stable voltage gap over 150 h,outperforming those of the benchmark(Pt/C+RuO_(2))-based device.In particular,the as-fabricated solid-state flexible ZAB delivers a reliable compatibility under different bending conditions.Our work provides a promising strategy to develop metal/alloy-based electrocatalysts for the application in renewable energy conversion technologies. 展开更多
关键词 bifunctional electrocatalysts oxygen reduction reaction oxygen evolution reaction zinc-air battery metal/alloy carbon sphere
在线阅读 下载PDF
A bifunctional three‑dimensional Eu‑MOF fluorescent probe for highly sensitive detection of 2,4,6‑trinitrophenol and tetracycline
4
作者 GE Bangdi SONG Xiaowei LIANG Zhiqiang 《无机化学学报》 北大核心 2025年第10期2165-2174,共10页
Herein,a luminescent europium-based metal-organic framework(Eu-MOF,[Eu_(3)(L)(HL)(NO_(3))_(2)(DMF)_(2)]·4DMF·5H_(2)O,H_(4)L=5,5′-(pyrazine-2,6-diyl)diisophthalic acid,DMF=N,N-dimethylformamide)was developed... Herein,a luminescent europium-based metal-organic framework(Eu-MOF,[Eu_(3)(L)(HL)(NO_(3))_(2)(DMF)_(2)]·4DMF·5H_(2)O,H_(4)L=5,5′-(pyrazine-2,6-diyl)diisophthalic acid,DMF=N,N-dimethylformamide)was developed for the dual-functional detection of environmental pollutants.This fluorescence-quenching-based sensor exhibited excep-tional sensitivity for both 2,4,6-trinitrophenol(TNP)and tetracycline(TC),achieving remarkably low detection lim-its of 1.96×10^(-6)and 1.71×10^(-7)mol·L^(-1),respectively.Notably,the system exhibited 99%fluorescence quenching ef-ficiency for TC,indicating ultra-efficient analyte recognition.The detection performance surpasses most reported lu-minescent MOF sensors,attributed to synergistic mechanisms of fluorescence resonance energy transfer(FRET)and photoinduced electron transfer(PET).CCDC:2446483. 展开更多
关键词 metal-organic framework bifunctional fluorescent probe TETRACYCLINE 2 4 6-trinitrophenol
在线阅读 下载PDF
Visible-light-induced photocatalyst-and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent
5
作者 Huaixiang Yang Miao-Miao Li +3 位作者 Aijun Zhang Jiefei Guo Yongqi Yu Wei Ding 《Chinese Chemical Letters》 2025年第3期299-304,共6页
The tert-butyl nitrite as a bifunctional reagent mediated radical alkene difunctionalization has emerged as a powerful strategy for synthesis of structurally diverse oxime-containing compounds.However,the phosphorus-c... The tert-butyl nitrite as a bifunctional reagent mediated radical alkene difunctionalization has emerged as a powerful strategy for synthesis of structurally diverse oxime-containing compounds.However,the phosphorus-centered radical initiated transformations remain largely elusive.Herein,a visible-lightinduced radical phosphinoyloximation of alkenes with secondary phosphine oxides and tert-butyl nitrite has been developed under photocatalyst-and metal-free conditions.This protocol features mild conditions,broad substrate scope,good functional tolerance,and operational simplicity,yielding a diverse array ofα-phosphinoyl oximes in moderate to good yields with high stereoselectivities.The photomediated homolytic cleavage of O–NO bond of tert-butyl nitrite generates the reactive tert-butoxyl radical and persistent NO radical to act as both HAT reagent and the source of oximes. 展开更多
关键词 Photochemistry Phosphorus-centered radical Phosphinoyloximation α-Phosphinoyl oximes bifunctional reagent
原文传递
Engineering Bifunctional Catalytic Microenvironments for Durable and High‑Energy‑Density Metal-Air Batteries
6
作者 Jean Marie Vianney Nsanzimana Lebin Cai +2 位作者 Zhongqing Jiang Bao Yu Xia Thandavarayan Maiyalagan 《Nano-Micro Letters》 2025年第11期721-754,共34页
Rechargeable metal-air batteries have gained significant interest due to their high energy density and environmental benignity.However,these batteries face significant challenges,particularly related to the air-breath... Rechargeable metal-air batteries have gained significant interest due to their high energy density and environmental benignity.However,these batteries face significant challenges,particularly related to the air-breathing electrode,resulting in poor cycle life,low efficiency,and catalyst degradation.Developing a robust bifunctional electrocatalyst remains difficult,as oxygen electrocatalysis involves sluggish kinetics and follows different reaction pathways,often requiring distinct active sites.Consequently,the poorly understood mechanisms and irreversible surface reconstruction in the catalyst’s microenvironment,such as atomic modulation,nano-/microscale,and surface interfaces,lead to accelerated degradation during charge and discharge cycles.Overcoming these barriers requires advancements in the development and understanding of bifunctional electrocatalysts.In this review,the critical components of metal-air batteries,the associated challenges,and the current engineering approaches to address these issues are discussed.Additionally,the mechanisms of oxygen electrocatalysis on the air electrodes are examined,along with insights into how chemical characteristics of materials influence these mechanisms.Furthermore,recent advances in bifunctional electrocatalysts are highlighted,with an emphasis on the synthesis strategies,microenvironmental modulations,and stabilized systems demonstrating efficient performance,particularly zinc-and lithium-air batteries.Finally,perspectives and future research directions are provided for designing efficient and durable bifunctional electrocatalysts for metal-air batteries. 展开更多
关键词 ELECTROCATALYSIS Earth-abundant materials bifunctional electrocatalysts Oxygen electrocatalysis Metal-air batteries
在线阅读 下载PDF
Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control
7
作者 Meng Shan Yongmei Yu +4 位作者 Mengli Sun Shuping Yang Mengqi Wang Bo Zhu Junbiao Chang 《Chinese Chemical Letters》 2025年第1期248-252,共5页
Herein,we report the dynamic kinetic resolution asymmetric acylation ofγ-hydroxy-γ-perfluoroalkyl butenolides/phthalides catalyzed by amino acid-derived bifunctional organocatalysts,and a series of ketals were obtai... Herein,we report the dynamic kinetic resolution asymmetric acylation ofγ-hydroxy-γ-perfluoroalkyl butenolides/phthalides catalyzed by amino acid-derived bifunctional organocatalysts,and a series of ketals were obtained in high yields(up to 95%)and excellent enantioselectivities(up to 99%).In terms of synthetic utility,the reaction can be performed on a gram scale,and the product can be converted into potential biological nucleoside analog. 展开更多
关键词 bifunctional organocatalyst Dynamic kinetic resolution Hemiketal Chiral ketals Hydrogen bonding
原文传递
Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade
8
作者 Chonglong He Yulong Wang +5 位作者 Quan-Xin Li Zichen Yan Keyuan Zhang Shao-Fei Ni Xin-Hua Duan Le Liu 《Chinese Chemical Letters》 2025年第5期252-258,共7页
The radical difunctionalization of alkenes with sulfonyl bifunctional represents a powerful and straightforward approach to access functionalized alkane derivatives.However,both the mechanistic activation mode and the... The radical difunctionalization of alkenes with sulfonyl bifunctional represents a powerful and straightforward approach to access functionalized alkane derivatives.However,both the mechanistic activation mode and the substrate scopes of this type of radical difunctionalizations are still limited.We demonstrate herein a modular photoredox strategy for the difunctionalization of alkenes,employing arylsulfonyl acetate as the bifunctional reagent.This approach involves a radical addition/Smiles rearrangement cascade process,offering a robust alternative for the synthesis of valuableγ,γ-diaryl andγ-aryl esters.A complementary oxidative bifunctional reagents activation mode is identified to govern the radical cascade reactions,facilitating the simultaneous incorporation of aryl and carboxylate-bearing alkyl groups into the alkenes with excellent diastereoselectivity.Noteworthy features of this method include mild reaction conditions,organophotocatalysis,high atom-and step-economy,excellent functional group compatibility and great structural diversity. 展开更多
关键词 Radical difunctionalization bifunctional reagents Smiles rearrangement PHOTOREDOX γ γ-Diaryl andγ-aryl ester
原文传递
Cobalt-modified nitrogen-doped carbon nanotubes as bifunctional catalysts for one-pot synthesis of 2,5-diformylfuran from glucose
9
作者 Trinh Hao Nguyen Dao Anh Le Nguyen +4 位作者 Duy Quoc Mai Mai Ngoc Thi Le Diep Dinh Le Ha Bich Phan Phuong Hoang Tran 《Journal of Energy Chemistry》 2025年第4期440-447,共8页
In the past century,industrial and economic growth relied heavily on fossil fuels such as coal,oil,and natural gas.As the society energy demands continue to grow,these fossil fuel reserves are depleted,leading to sign... In the past century,industrial and economic growth relied heavily on fossil fuels such as coal,oil,and natural gas.As the society energy demands continue to grow,these fossil fuel reserves are depleted,leading to significant environmental issues[1].Currently,sustainable biomass resources have attracted much attention as potential substitutes to fossil fuels for producing biofuels and commodity chemicals[2]. 展开更多
关键词 commodity chemicals fossil fuels diformylfuran fossil fuel one pot synthesis natural gasas bifunctional catalysts cobalt modified nitrogen doped carbon nanotubes
在线阅读 下载PDF
Locally-doped MoS_(2) monolayer with in-plane bifunctional heterostructure toward overall water splitting
10
作者 Zhuo-Jun Duan Hang Xia +10 位作者 Han-Ze Li Gong-Lei Shao Yi-Zhang Ren Xuan Tang Qiu-Nan Liu Jin-Hua Hong Sheng Dai Yung-Chang Lin Kazu Suenaga Yong-Min He Song Liu 《Rare Metals》 2025年第5期3130-3140,共11页
Exploring earth-abundant,highly active bifunctional electrocatalysts for efficient hydrogen and oxygen evolution is crucial for water splitting.However,due to their distinct free energies and conducting behaviors(elec... Exploring earth-abundant,highly active bifunctional electrocatalysts for efficient hydrogen and oxygen evolution is crucial for water splitting.However,due to their distinct free energies and conducting behaviors(electron/hole),balancing the catalytic efficiency between hydrogen and oxygen evolution remains challenging for achieving bifunctional electrocatalysts.Here,we report a locally-doped MoS_(2)monolayer with an in-plane heterostructure acting as a bifunctional electrocatalyst and apply it to the overall water splitting.In this heterostructure,the core region contains Mo/S vacancies,while the ring region was doped by Fe atoms(in two substitution configurations:1FeMo and 3FeMo-VS clusters)with a p-type conductive characteristic.Our micro-cell measurements,combined with density functional theory(DFT)calculations,reveal that the vacancies-rich core region presents remarkable hydrogen evolution reaction(HER)activity while the Fe-doped ring gives an excellent oxygen evolution reaction(OER)activity,thus forming an in-plane bifunctional electrocatalyst.Finally,as a proof-of-concept for overall water splitting,we constructed a full-cell configuration based on a locally-doped MoS_(2)monolayer,which achieved a cell voltage of 1.87 V at 10 mA·cm^(-2),demonstrating outstanding performance in strong acid electrolytes.Our work provides insight into the hetero-integration of bifunctional electrocatalysts at the atomic level,paving the way for designing transition metal dichalcogenide catalysts with activity-manipulated regions capable of multiple reactions. 展开更多
关键词 Locally-doped monolayer In-plane heterostructure MoS_(2) bifunctional catalysts Overall water salitting
原文传递
In Situ Formation of Bifunctional Interlayer on 3D Conductive Scaffold for Dendrite-Free Li Metal Batteries
11
作者 Yonghwan Kim Dohyeong Kim +7 位作者 Minjun Bae Yujin Chang Won Young An Hwichan Hong Seon Jae Hwang Dongwan Kim Jeongyeon Lee Yuanzhe Piao 《Energy & Environmental Materials》 2025年第3期68-81,共14页
Regulating lithium(Li)plating/stripping behavior in three-dimensional(3D)conductive scaffolds is critical to stabilizing Li metal batteries(LMBs).Surface protrusions and roughness in these scaffolds can induce uneven ... Regulating lithium(Li)plating/stripping behavior in three-dimensional(3D)conductive scaffolds is critical to stabilizing Li metal batteries(LMBs).Surface protrusions and roughness in these scaffolds can induce uneven distributions of the electric fields and ionic concentrations,forming“hot spots.”Hot spots may cause uncontrollable Li dendrites growth,presenting significant challenges to the cycle stability and safety of LMBs.To address these issues,we construct a Li ionic conductive-dielectric gradient bifunctional interlayer(ICDL)onto a 3D Li-injected graphene/carbon nanotube scaffold(LGCF)via in situ reaction of exfoliated hexagonal boron nitride(fhBN)and molten Li.Microscopic and spectroscopic analyses reveal that ICDL consists of fhBN-rich outer layer and inner layer enriched with Li_(3)N and Li-boron composites(Li-B).The outer layer utilizes dielectric properties to effectively homogenize the electric field,while the inner layer ensures high Li ion conductivity.Moreover,DFT calculations indicate that ICDL can effectively adsorb Li and decrease the Li diffusion barrier,promoting enhanced Li ion transport.The modulation of Li kinetics by ICDL increases the critical length of the Li nucleus,enabling suppression of Li dendrite growth.Attributing to these advantages,the ICDL-coated LGCF(ICDL@LGCF)demonstrates impressive long-term cycle performances in both symmetric cells and full cells. 展开更多
关键词 3D conductive scaffolds bifunctional interlayer dielectric Li ion conductivity lithium metal anodes
在线阅读 下载PDF
Host-vip Engineering of Dual-Metal Nitrogen Carbides as Bifunctional Oxygen Electrocatalysts for Long-Cycle Rechargeable Zn-Air Battery
12
作者 Yisi Liu Zongxu Li +5 位作者 Yonghang Zeng Meifeng Liu Dongbin Xiong Lina Zhou Yue Du Yao Xiao 《Carbon Energy》 2025年第4期50-61,共12页
The key to obtaining high intrinsic catalytic activity of Me-N_(x)-C electrocatalysts for Zn-air batteries is to form high-density bifunctional Me-N_(x) active sites during the pyrolysis of the precursor while maintai... The key to obtaining high intrinsic catalytic activity of Me-N_(x)-C electrocatalysts for Zn-air batteries is to form high-density bifunctional Me-N_(x) active sites during the pyrolysis of the precursor while maintaining structural stability.In this study,a host-vip spatial confinement strategy was utilized to synthesize a composite catalyst consisting of Co_(3)Fe_(7) nanoparticles confined in an N-doped carbon network.The coupling between the host(MIL-88B)and vip(cobalt porphyrin,CoPP)produces highdensity bimetallic atomic active sites.By controlling the mass of vip molecules,it is possible to construct precursors with the highest activity potential.The Co_(3)Fe_(7)/NC material with a certain amount of the vip displays a better electrocatalytic performance for both oxygen reduction reaction and oxygen evolution reaction with a half-wave potential(E_(1/2))of 0.85 V and an overpotential of 1.59 V at 10 mAcm^(-2),respectively.The specific structure of bimetallic active centers is verified to be FeN2-CoN_(4) using experimental characterizations,and the oxygen reaction mechanism is explored by in-situ characterization techniques and first-principles calculations.The Zn-air battery assembled with Co_(3)Fe_(7)/NC cathode exhibits a remarkable open-circuit voltage of 1.52 V,an exceptional peak power density of 248.1mWcm^(-2),and stable cycling stability over 1000 h.Particularly,the corresponding flexible Zn-air battery affords prominent cycling performance under different bending angles.This study supplies the idea and method of designing catalysts with specific structures at the atomic and electronic scales for breaking through the large-scale application of electrocatalysts based on oxygen reactions in fuel cells/metal-air batteries. 展开更多
关键词 bifunctional electrocatalytic performance bimetal active sites host−vip engineering MIL-88B Zn-air battery
在线阅读 下载PDF
Freestanding lamellar nanoporous Ni-Co-Mn alloy:a highly active and stable 3D bifunctional electrode for high-current-density water splitting
13
作者 Shao-Fei Zhang Lu-Yi Shi +7 位作者 Jin Wang Yue Deng Zhi-Yuan Shen Hao Liu Jin-Feng Sun Tian-Tian Li Zhi-Jia Zhang Jian-Li Kang 《Rare Metals》 2025年第1期275-287,共13页
Retaining satisfactory electrocatalytic performance under high current density plays a crucial role in industrial water splitting but is still limited to the enormous energy loss because of insufficient exposure of ac... Retaining satisfactory electrocatalytic performance under high current density plays a crucial role in industrial water splitting but is still limited to the enormous energy loss because of insufficient exposure of active sites caused by the blocked mass/charge transportation at this condition.Herein,we present a freestanding lamellar nanoporous Ni-Co-Mn alloy electrode(Lnp-NCM)designed by a refined variant of the“dealloying-coarsening-dealloying”protocol for highly efficient bifunctional electrocatalyst,where large porous channels distribute on the surface and small porous channels at the interlayer.With its 3D lamellar architecture regulating,the electrocatalytic properties of the electrodes with different distances between lamellas are compared,and faster energy conversion kinetics is achieved with efficient bubble transport channels and abundant electroactive sites.Note that the optimized sample(Lnp-NCM4)is expected to be a potential bifunctional electrocatalyst with low overpotentials of 258 and 439 mV at high current densities of 1000 and 900 mA·cm^(-2)for hydrogen and oxygen evolution reactions(HER and OER),respectively.During overall water splitting in a two-electrode cell with Lnp-NCM4 as cathode and anode,it only needs an ultralow cell voltage of 1.75 V to produce 100 mA·cm^(-2)with remarkable long-term stability over 50 h.This study on lamellar nanoporous electrode design approaches industrial water splitting requirements and paves a way for developing other catalytic systems. 展开更多
关键词 Lamellar nanoporous structure bifunctional electrode High current density Electrocatalysis
原文传递
Architecting double-shelled hollow carbon nanocages embedded bimetallic sites as bifunctional oxygen electrocatalyst for zinc-air batteries
14
作者 Congcong Wang Kai Zhang Bai Yang 《Chinese Chemical Letters》 2025年第8期512-517,共6页
Rational design of complex hollow nanostructures offers a great opportunity to construct various functional nanostructures.A novel in situ disassembly-polymerization-pyrolysis approach was developed to synthesize atom... Rational design of complex hollow nanostructures offers a great opportunity to construct various functional nanostructures.A novel in situ disassembly-polymerization-pyrolysis approach was developed to synthesize atomically dispersed Fe single atoms(Fe SAs)and tiny Co nanoparticles(Co NPs)binary sites embedded in double-shelled hollow carbon nanocages(Co NPs/Fe SAs DSCNs)without removing excess templates.The Co NPs/Fe SAs DSCNs displayed excellent bifunctional activity,boosting the realistic rechargeable zinc-air batteries with high efficiency,long-term durability,and reversibility,which is comparable to noble metal catalysts(Pt/C and RuO_(2)).The enhanced catalytic activity should be attributed to as well as the strong interactions between Fe SAs and Co NPs with the nitrogen-doped carbon matrix,the exposure of more active sites,and the high-flux mass transportation.In addition,the confinement effect between the double C–N shells prevented the aggregation and corrosion of metal atoms,thus improving the durability of the Co NPs/Fe SAs DSCNs,further highlighting the structural advantages of carbon nanoreactor.This work provides guidance for further rational design and preparation of complex hollow structure materials with advanced bifunctional air cathodes. 展开更多
关键词 Double-shelled hollow carbon nanocages In situ polymerization Bimetallic sites bifunctional oxygen electrocatalyst Zn-air batteries
原文传递
Core-Shell IrPt Nanoalloy on La/Ni-Co_(3)O_(4)for High-Performance Bifunctional PEM Electrolysis with Ultralow Noble Metal Loading
15
作者 Yifei Liu Xinmeng Er +11 位作者 Xinyao Wang Hangxing Ren Wenchao Wang Feng Cao Taiyan Zhang Pan Liu Yakun Yuan Fangbo Yu Yang Ren Fuqiang Huang Wenjiang Ding Lina Chong 《Nano-Micro Letters》 2025年第12期782-803,共22页
The development of highly efficient and durable bifunctional catalysts with minimal precious metal usage is critical for advancing proton exchange membrane water electrolysis(PEMWE).We present an iridium-platinum nano... The development of highly efficient and durable bifunctional catalysts with minimal precious metal usage is critical for advancing proton exchange membrane water electrolysis(PEMWE).We present an iridium-platinum nanoalloy(IrPt)supported on lanthanum and nickel co-doped cobalt oxide,featuring a core-shell architecture with an amorphous IrPtOx shell and an IrPt core.This catalyst exhibits exceptional bifunctional activity for oxygen and hydrogen evolution reactions in acidic media,achieving 2 A cm^(-2)at 1.72 V in a PEMWE device with ultralow loadings of 0.075 mgIr cm^(-2)and 0.075 mgPt cm^(-2)at anode and cathode,respectively.It demonstrates outstanding durability,sustaining water splitting for over 646 h with a degradation rate of only 5μV h^(-1),outperforming state-of-the-art Ir-based catalysts.In situ X-ray absorption spectroscopy and density functional theory simulations reveal that the optimized charge redistribution between Ir and Pt,along with the IrPt core-IrPtOx shell structure,enhances performance.The Ir-O-Pt active sites enable a bi-nuclear mechanism for oxygen evolution reaction and a Volmer-Tafel mechanism for hydrogen evolution reaction,reducing kinetic barriers.Hierarchical porosity,abundant oxygen vacancies,and a high electrochemical surface area further improve electron and mass transfer.This work offers a cost-effective solution for green hydrogen production and advances the design of highperformance bifunctional catalysts for PEMWE. 展开更多
关键词 Proton exchange membrane water electrolysis bifunctional catalyst Oxygen evolution reaction Hydrogen evolution reaction Core-shell catalyst
在线阅读 下载PDF
Unraveling the Ni-Co synergy in bifunctional hydroxide cocatalysts for better cooperation of CO_(2)reduction and H_(2)O oxidation in 2D S-scheme photosynthetic systems
16
作者 Lingxuan Hu Yan Zhang +7 位作者 Qian Lin Fengying Cao Weihao Mo Shuxian Zhong Hongjun Lin Liyan Xie Leihong Zhao Song Bai 《Chinese Journal of Catalysis》 2025年第1期311-325,共15页
Layered transition metal hydroxides show distinct advantages in separately co-catalyzing CO_(2)reduction and H_(2)O oxidation at the electron-accumulating and hole-accumulating sites of wrapped heterojunction photocat... Layered transition metal hydroxides show distinct advantages in separately co-catalyzing CO_(2)reduction and H_(2)O oxidation at the electron-accumulating and hole-accumulating sites of wrapped heterojunction photocatalysts,while concurrently preventing side reactions and photocorrosion on the semiconductor surface.Herein,Ni-Co bimetallic hydroxides with varying Ni/Co molar ratios(Ni_(x)Co_(1-x)(OH)_(2),x=1,0.75,0.5,0.25,and 0)were grown in situ on a model 2D/2D S-scheme heterojunction composed of Cu_(2)O nanosheets and Fe_(2)O_(3)nanoplates to form a series of Cu_(2)O/Fe_(2)O_(3)@Ni_(x)Co_(1-x)(OH)_(2)(CF@NiCo)photocatalysts.The combined experimental and theoretical investigation demonstrates that incorporating an appropriate amount of Co into Ni(OH)_(2)not only modulates the energy band structure of Ni_(x)Co_(1-x)(OH)_(2),balances the electron-and hole-trapping abilities of the bifunctional cocatalyst and maximizes the charge separation efficiency of the heterojunction,but also regulates the d-band center of Ni_(x)Co_(1-x)(OH)_(2),reinforcing the adsorption and activation of CO_(2)and H_(2)O on the cocatalyst surface and lowering the rate-limiting barriers in the CO_(2)-to-CO and H_(2)O-to-O_(2)conversion.Benefiting from the Ni-Co synergy,the redox reactions proceed stoichiometrically.The optimized CF@Ni_(0.75)Co_(0.25)achieves CO and O_(2)yields of 552.7 and 313.0μmol gcat^(-1)h^(-1),respectively,11.3/9.9,1.6/1.7,and 4.5/5.9-fold higher than those of CF,CF@Ni,and CF@Co.This study offers valuable insights into the design of bifunctional noble-metal-free cocatalysts for high-performance artificial photosynthesis. 展开更多
关键词 Ni-Co synergy bifunctional cocatalyst CO_(2)reduction H20oxidation 2D/2D heterojunction S-scheme photosynthetic system
在线阅读 下载PDF
First-principles microkinetic simulations revealing the driving effect of zeolite in bifunctional catalysts for the conversion of syngas to olefins
17
作者 Wende Hu Jun Ke +1 位作者 Yangdong Wang Chuanming Wang 《Chinese Journal of Catalysis》 2025年第6期222-233,共12页
Direct conversion of syngas to light olefins(STO)on bifunctional catalysts has garnered significant attention,yet a comprehensive understanding of the reaction pathway and reaction kinetics remains elusive.Herein,we t... Direct conversion of syngas to light olefins(STO)on bifunctional catalysts has garnered significant attention,yet a comprehensive understanding of the reaction pathway and reaction kinetics remains elusive.Herein,we theoretically addressed the kinetics of the direct STO reaction on typical ZnAl_(2)O_(4)/zeolite catalysts by establishing a complete reaction network,consisting of methanol synthesis and conversion,water gas shift(WGS)reaction,olefin hydrogenation,and other relevant steps.The WGS reaction occurs very readily on ZnAl_(2)O_(4) surface whereas which is less active towards alkane formation via olefin hydrogenation,and the latter can be attributed to the characteristics of the H_(2) heterolytic activation and the weak polarity of olefins.The driving effect of zeolite component towards CO conversion was demonstrated by microkinetic simulations,which is sensitive to reaction conditions like space velocity and reaction temperature.Under a fixed ratio of active sites between oxide and zeolite components,the concept of the“impossible trinity”of high CO conversion,high olefin selectivity,and high space velocity can thus be manifested.This work thus provides a comprehensive kinetic picture on the direct STO conversion,offering valuable insights for the design of each component of bifunctional catalysts and the optimization of reaction conditions. 展开更多
关键词 Syngas to olefins bifunctional catalysis Microkinetic simulations Driving effect Impossible trinity ZnAl_(2)O_(4)oxide
在线阅读 下载PDF
P doped Ni_(3)S_(2)and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction
18
作者 Mengzhao Liu Jie Yin +4 位作者 Chengjian Wang Weiji Wang Yuan Gao Mengxia Yan Ping Geng 《Chinese Chemical Letters》 2025年第9期384-389,共6页
The biomass electrochemical oxidation coupled with hydrogen evolution reaction has received widespread attention due to its carbon-neutral and sustainable properties.The electrosynthesis of 2,5-furanodicarboxylic acid... The biomass electrochemical oxidation coupled with hydrogen evolution reaction has received widespread attention due to its carbon-neutral and sustainable properties.The electrosynthesis of 2,5-furanodicarboxylic acid(FDCA)from 5-hydroxymethylfurfural(HMF)oxidation is one of the most promising means for the production of bioplastic monomers.In this work,we constructed a novel P-doped Ni_(3)S_(2)and Ni heterojunction on nickel foam(P-Ni_(3)S_(2)/Ni/NF)using electrodeposition methods and thermal sulfuration techniques as a bifunctional catalyst for the simultaneous anodic oxidation of HMF to FDCA(HMFOR)and the cathodic hydrogen evolution reaction(HER).On one hand,the synergistic promotion of P doping and the heterojunction of Ni_(3)S_(2)and Ni accelerated electron transfer,and on the other hand,the structure of three-dimensional microsphere stacking on NF surface to form macropores enhances the exposure of catalytically active sites.The prepared P-Ni_(3)S_(2)/Ni/NF exhibited remarkable performance with high HMF conversion(99.2%),FDCA yield(98.1%),and Faraday efficiency(98.8%),and excellent stability with good product selectivity for 7 consecutive cycles,which stands at a higher level than majority of previously published electrocatalysts.Furthermore,P-Ni_(3)S_(2)/Ni/NF also shows a significant response in HER.By using HMFOR and HER as the anodic reaction and cathodic reaction,respectively,the biomass upgrading and hydrogen production can be carried out simultaneously.The synthesized P-Ni_(3)S_(2)/Ni/NF only need a voltage of 1.31V to achieve a current density of 10mA/cm^(2)in a two-electrode system of HMFOR and HER,which is much lower than that of 1.48 V in OER and HER process,thus potentially reducing the cost of this process. 展开更多
关键词 5-Hydroxymethylfurfural oxidation Hydrogen evolution reaction bifunctional electrocatalyst P-doped Ni_(3)S_(2)
原文传递
Heterogeneous β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl bifunctional electrocatalyst for superior concurrent conversion of glycerol and nitrite
19
作者 Mingdan Wang Pengzuo Chen +1 位作者 Huigang Wang Yanying Zhao 《Journal of Energy Chemistry》 2025年第5期185-193,共9页
The electrochemical biomass valorization of industrial by-products or pollutants using renewable electricity offers significant promise for carbon neutrality.However,the huge challenges still exist in the development ... The electrochemical biomass valorization of industrial by-products or pollutants using renewable electricity offers significant promise for carbon neutrality.However,the huge challenges still exist in the development of efficient bifunctional electrocatalysts.Herein,we put forward a high-efficiency coelectrolysis system by coupling the nitrite reduction reaction(NO_(2)RR)and the glycerol oxidation reaction(GOR)over a novel heterogeneous β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl catalyst.Theβ-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl shows excellent bifunctional performance with high Faradaic efficiencies of formate(90.1%)and NH_(3)(91.9%)at cell voltage of 1.5 V,high yield rate of formate(89.6 mg h^(-1)cm^(-2))and NH_(3)(36.07 mg h^(-1)cm^(-2))at cell voltage of 1.9 V,and superior stability in an anion exchange membrane co-electrolyzer.The in-situ Raman result confirms the unique Co/Cu-based bimetallic synergistic sites of β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl towards superior GOR performance,while the operando Fourier transform infrared spectroscopy demonstrates the improved protonation kinetics of key intermediates and optimized water dissociation ability ofβ-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl for high NO_(2)RR activity.Our work illuminates alternative avenues to exploit the innovative and energy-saving technology for the co-production of high-added chemicals. 展开更多
关键词 Heterogeneous catalyst β-Co(OH)_(2)/Cu_(2)(OH)_(3)Cl bifunctional performance Nitrite reduction reaction Glycerol oxidation reaction
在线阅读 下载PDF
Design Principles and Mechanistic Understandings of Non-Noble-Metal Bifunctional Electrocatalysts for Zinc-Air Batteries 被引量:2
20
作者 Yunnan Gao Ling Liu +10 位作者 Yi Jiang Dexin Yu Xiaomei Zheng Jiayi Wang Jingwei Liu Dan Luo Yongguang Zhang Zhenjia Shi Xin Wang Ya‑Ping Deng Zhongwei Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期13-48,共36页
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-... Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs. 展开更多
关键词 Zinc-air batteries bifunctional electrocatalysts Design principles Mechanistic understandings
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部