期刊文献+
共找到201篇文章
< 1 2 11 >
每页显示 20 50 100
基于VMD-CNN-BiTCN滚动轴承故障诊断 被引量:3
1
作者 徐志祥 玄永伟 +1 位作者 王洪洋 王壬杰 《微特电机》 2025年第2期68-73,共6页
针对滚动轴承故障诊断中,传统卷积神经网络(CNN)特征提取感受野受限、无法有效提取数据时序特征的问题,提出了一种CNN结合双向时间卷积网络(BiTCN)的模型,该模型能够扩展感受野并有效捕获数据的时序特征。将原始振动信号通过变分模态(V... 针对滚动轴承故障诊断中,传统卷积神经网络(CNN)特征提取感受野受限、无法有效提取数据时序特征的问题,提出了一种CNN结合双向时间卷积网络(BiTCN)的模型,该模型能够扩展感受野并有效捕获数据的时序特征。将原始振动信号通过变分模态(VMD)分解为K个本征模函数(IMF);将分解后的信号输入到CNN层中进行特征提取和信号压缩;将该信号送入BiTCN中,提取正反两个方向的时序特征,使用膨胀卷积最大化感受野;通过池化层和全连接层实现滚动轴承故障诊断。实验结果显示,该模型在特征提取能力和时序特征感知具有显著优势,能够在多个数据集中表现出良好的故障诊断性能和泛化能力。 展开更多
关键词 滚动轴承 故障诊断 卷积神经网络 双向时间卷积网络 变分模态分解
在线阅读 下载PDF
基于CPO的IFMD-BiTCN-BiGRU-AT断路器寿命预测方法研究
2
作者 李斌 王幸之 王志鹏 《电子测量与仪器学报》 北大核心 2025年第10期255-268,共14页
为提高断路器寿命预测效率并制定合理的维修方案,基于断路器非周期振动信号可以充分表征剩余寿命的特性,提出一种基于冠豪猪优化算法(CPO)的改进特征模态分解-双向时间卷积网络-双向门控循环单元-注意力机制(IFMD-BiTCN-BiGRU-AT)预测... 为提高断路器寿命预测效率并制定合理的维修方案,基于断路器非周期振动信号可以充分表征剩余寿命的特性,提出一种基于冠豪猪优化算法(CPO)的改进特征模态分解-双向时间卷积网络-双向门控循环单元-注意力机制(IFMD-BiTCN-BiGRU-AT)预测模型。首先通过融合适应度函数和新周期估计方法改进特征模态分解法,弥补其处理非周期信号能力差的缺陷,并利用CPO实现IFMD自适应分解。其次,引入双向并行结构及注意力机制,构建BiTCN-BiGRU-AT预测模型来充分提取时间-空间重要特征,同时利用CPO搜索最优超参组合。最后,搭建断路器信号采集处理实验平台进行实验验证,用该方法进行预测并设计消融实验及多模型对比实验。最终,该方法得到的拟合度、平均绝对误差(MAE)、均方根误差(RMSE)指标分别为99.28%、80.33、98.17。相较于其他3种信号处理方法,经IFMD处理后,预测拟合度平均提高19.7%,且有最高的预测效率;相较于其他模型,该模型的预测拟合度平均提高18.3%,MAE、RMSE平均降低60.9%、61.6%。实验结果表明了该方法的有效性与性能优势。 展开更多
关键词 改进特征模态分解 冠豪猪优化算法 双向时间卷积网络 双向门控循环单元 剩余寿命预测
原文传递
考虑数据分解和Gish-BiTCN-MHSA的短期光伏功率预测
3
作者 刘海鹏 何艳苹 +2 位作者 金怀平 方奇文 吴洪 《太阳能学报》 北大核心 2025年第8期430-438,共9页
为有效应对分布式光伏电站输出功率的波动对电网稳定性的挑战,提出一个新的短期光伏功率预测框架。首先,使用最优变分模态分解(OVMD)技术将原始光伏功率数据分解成多个模态分量,并将其与相关特征融合,生成一系列子序列。然后,采用结合G... 为有效应对分布式光伏电站输出功率的波动对电网稳定性的挑战,提出一个新的短期光伏功率预测框架。首先,使用最优变分模态分解(OVMD)技术将原始光伏功率数据分解成多个模态分量,并将其与相关特征融合,生成一系列子序列。然后,采用结合Gish激活函数的双向时间卷积网络(Gish-BiTCN)对每个子序列进行预测,引入多头注意力机制(MHSA)使模型更加关注和捕捉时间相关特征。最后,通过对所有子序列的预测值进行重构得到最终的预测结果。通过实验验证其在光伏发电预测方面的优越性。 展开更多
关键词 光伏功率预测 变分模态分解 双向时间卷积网络 多头自注意力机制 鲸鱼优化算法 激活函数
原文传递
基于LERT和BiTCN的金融领域命名实体识别
4
作者 陈雪松 王璐瑶 王浩畅 《计算机技术与发展》 2025年第3期125-132,共8页
针对传统的命名实体识别方法难以解决金融文本中一词多义且文本的语义特征提取不够充分的问题,提出了一种基于LERT-BiTCN-CRF的金融领域命名实体识别模型。首先,使用LERT模型对输入的金融文本进行预训练以生成相对应字符向量;然后,通过... 针对传统的命名实体识别方法难以解决金融文本中一词多义且文本的语义特征提取不够充分的问题,提出了一种基于LERT-BiTCN-CRF的金融领域命名实体识别模型。首先,使用LERT模型对输入的金融文本进行预训练以生成相对应字符向量;然后,通过在TCN内部增加反向卷积层将其改进为BiTCN,采用BiTCN对字符向量进行编码以提取字符向量的全局语义特征;最后,通过CRF进行解码以得到最佳的预测标签序列。在公开数据集ChFinAnn和自制数据集FinanceNER两个金融领域数据集上进行对比实验,该模型在两个数据集上的F1值分别达到了84.16%和92.17%。相较于其它模型,该模型在金融领域的命名实体识别任务中效果更好,表明该模型具有一定的有效性。同时又在公开的Resume数据集上进行对比实验,该模型F1值相较于基线模型BiGRU-CRF提升2.31%,表明该模型具有一定的泛化性。 展开更多
关键词 LERT模型 金融领域 命名实体识别 双向时间卷积网络 条件随机场
在线阅读 下载PDF
土石坝渗流预测的BiTCN-Attention-LSSVM模型研究
5
作者 傅蜀燕 杨石勇 +2 位作者 陈德辉 王子轩 欧斌 《水资源与水工程学报》 北大核心 2025年第1期118-128,共11页
为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN... 为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN从前、后两个方向捕获时序数据中的长期依赖关系,引入Attention机制帮助模型专注于与预测相关的关键局部特征,并将BiTCN-Attention深度处理后的特征输入LSSVM模型中进行预测,最后以2个不同的数据集分析了模型的预测效果。案例分析表明:与LSSVM、CNN-LSSVM和TCN-LSSVM相比,BiTCN-Attention-LSSVM模型预测的各项评价指标均为最优,在土石坝测压管水位预测中展现出更高的模型精度和稳定性;BiTCN与Attention的相互结合能够更好地提取时序数据中的相互依赖关系,将BiTCN-Attention提取的特征输入LSSVM中进行预测可获得良好的预测性能,数据集扩充处理后有效提高了模型的学习能力。 展开更多
关键词 土石坝测压管水位 渗流预测 双向时序卷积神经网络 注意力机制 最小二乘支持向量机
在线阅读 下载PDF
Stability analysis of extended discrete-time BAMneural networks based on LMI approach
6
作者 刘妹琴 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期588-594,共7页
We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-tim... We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-time BAM neural networks as the extended discrete-time BAM neural networks with non-threshold activation functions. Here we present some conditions under which the neural networks have unique equilibrium points. To judge the global asymptotic stability of the equilibrium points, we introduce a new neural network model - standard neural network model (SNNM). For the SNNMs, we derive the sufficient conditions for the global asymptotic stability of the equilibrium points, which are formulated as some linear matrix inequalities (LMIs). We transform the discrete-time BAM into the SNNM and apply the general result about the SNNM to the determination of global asymptotic stability of the discrete-time BAM. The approach proposed extends the known stability results, has lower conservativeness, can be verified easily, and can also be applied to other forms of recurrent neural networks. 展开更多
关键词 standard neural network model bidirectional associative memory DISCRETE-time linear matrix inequality global asymptotic stability.
在线阅读 下载PDF
基于改进BiTCN和BiGRU的轴承变转速故障分类模型
7
作者 王文昊 亚森江·加入拉 +2 位作者 肖杨 吕路辉 兰志岗 《机电工程》 北大核心 2025年第12期2343-2353,共11页
为了提升变速故障数据集特征提取的准确率,减少传统神经网络在时间序列数据处理上的局限性,提出了一种基于改进双向时间卷积网络(BiTCN)和双向门控循环单元(BiGRU)的滚动轴承故障诊断方法。首先,通过变分模态分解(VMD)和快速傅里叶变换(... 为了提升变速故障数据集特征提取的准确率,减少传统神经网络在时间序列数据处理上的局限性,提出了一种基于改进双向时间卷积网络(BiTCN)和双向门控循环单元(BiGRU)的滚动轴承故障诊断方法。首先,通过变分模态分解(VMD)和快速傅里叶变换(FFT)对原始数据进行了预处理,引入了时间卷积网络(TCN)以提升卷积神经网络(CNN)在处理时间数据方面的性能,并引入了门控循环单元(GRU)以减少数据冗余;然后,构建了网络模型,使用改进BiTCN-BiGRU并行网络架构来提取滚动轴承振动信号的空间和时序特征,并利用交叉注意力机制以加强对重要信息的辨别,从而优化特征选择过程;最后,使用Kolmogorov-Arnold网络(KAN)层对滚动轴承故障数据进行了分类,借助实验和不同模型的对比分析,验证了改进BiTCN-BiGRU模型的泛化能力。研究结果证明:该模型在不同划分比例的训练、测试和验证样本下,轴承故障识别的准确率均高于一些常规深度学习算法;此外,在变速故障数据集下,该模型能够可靠地识别不同类型的轴承故障,并显示出良好的泛化能力;在两个数据集上的分类准确率分别达到了99.32%和96.39%。该模型在变转速故障诊断场景中能够显著提高故障识别准确率。 展开更多
关键词 滚动轴承故障诊断 双向时间卷积网络模型 双向门控循环模型 变分模态分解 快速傅里叶变换 故障识别准确率 泛化能力
在线阅读 下载PDF
基于TimeGAN-CNN-LSTM模型的河流水质预测研究 被引量:9
8
作者 张丽娜 陈会娟 余昭旭 《自动化仪表》 CAS 2022年第8期11-15,共5页
为精确预测河流水质中的铵离子(NH_(4)^(+))浓度,针对某公开水质数据进行了研究,提出了一种基于时间序列对抗生成网络(TimeGAN)、卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型。使用TimeGAN对河流水质历史数据进行数据增强,生成... 为精确预测河流水质中的铵离子(NH_(4)^(+))浓度,针对某公开水质数据进行了研究,提出了一种基于时间序列对抗生成网络(TimeGAN)、卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合模型。使用TimeGAN对河流水质历史数据进行数据增强,生成合成时间序列数据;采用CNN对输入的数据进行特征提取,并通过全连接层将数据输入到LSTM中得到预测值,从而建立TimeGANCNN-LSTM河流水质预测模型。试验结果表明,模型预测效果良好,其平均绝对误差(MAE)、均方根误差(RMSE)和决定系数(R^(2))分别为0.07、0.08和0.97,比CNN-LSTM模型分别提高了45.45%、47.06%和19.75%,比LSTM模型分别提高了50%、50%和21.25%。TimeGAN-CNN-LSTM既解决了训练模型时数据不充分的问题,又能够充分提取水质数据在时间和空间上的特征,具有较高的应用价值。 展开更多
关键词 水质预测 混合模型 时间序列对抗生成网络 卷积神经网络 长短期记忆网络 时间序列数据
在线阅读 下载PDF
采用CNN和Bidirectional GRU的时间序列分类研究 被引量:27
9
作者 张国豪 刘波 《计算机科学与探索》 CSCD 北大核心 2019年第6期916-927,共12页
时间序列数据具有非离散性、数据之间的时序相关性、特征空间维度大等特点,当前大多数分类方法需要经过复杂的数据处理或特征工程,未考虑到时间序列具有不同时间尺度特征以及序列数据之间的时序依赖。通过结合卷积神经网络和循环神经网... 时间序列数据具有非离散性、数据之间的时序相关性、特征空间维度大等特点,当前大多数分类方法需要经过复杂的数据处理或特征工程,未考虑到时间序列具有不同时间尺度特征以及序列数据之间的时序依赖。通过结合卷积神经网络和循环神经网络中的双向门控循环单元,提出了一个新的端对端深度学习神经网络模型BiGRU-FCN,不需要对数据进行复杂的预处理,并且通过不同的网络运算来获取多种特征信息,如卷积神经网络在时序信息上的空间特征以及双向循环神经网络在序列上的双向时序依赖特征,对单维时间序列进行分类。在大量的基准数据集上对模型进行实验与评估,实验结果表明,与现有的多种方法相比,所提出的模型具有更高的准确率,具有很好的分类效果。 展开更多
关键词 时间序列分类 深度学习 卷积神经网络 循环神经网络 双向门控循环单元
在线阅读 下载PDF
基于小波熵特征融合和ISSA-BiTCN的直流输电故障定位 被引量:6
10
作者 李瑞灵 高学军 +2 位作者 王灿 余波 徐彦彬 《科学技术与工程》 北大核心 2024年第26期11303-11313,共11页
特高压三端混合直流输电系统作为直流输电的一种重要形式,存在传输距离较长而导致的线路故障率较高的问题,对其进行准确的故障定位是系统稳定运行的基础。针对现有故障定位方法应用于输电线路单极接地故障时存在的高阻接地故障下定位模... 特高压三端混合直流输电系统作为直流输电的一种重要形式,存在传输距离较长而导致的线路故障率较高的问题,对其进行准确的故障定位是系统稳定运行的基础。针对现有故障定位方法应用于输电线路单极接地故障时存在的高阻接地故障下定位模糊、精度较低的问题,提出了一种基于小波包熵特征融合提取故障特征,再由改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化的双向时域卷积网络(bidirectional time-domain convolution network,BiTCN)模型的故障定位方法。首先,利用小波包变换提取线模电压行波信号,利用信息熵刻画电压波形中的深层故障特征,形成熵特征融合特征向量构成的特征矩阵作为BiTCN模型的输入;其次,搭建并训练BiTCN模型,并利用ISSA的迭代寻优对其进行优化,最终实现三端混合直流输电线路故障的精确定位;最后,在PSCAD/EMTDC仿真平台中搭建系统模型,验证所提方法的可实施性。结果表明该方法定位精度较高,具有较好的泛化能力和鲁棒性,对高阻故障耐受能力较好。 展开更多
关键词 三端混合直流输电系统 小波包熵特征融合 改进麻雀搜索算法 双向时域卷积网络
在线阅读 下载PDF
A Time Series Intrusion Detection Method Based on SSAE,TCN and Bi-LSTM 被引量:1
11
作者 Zhenxiang He Xunxi Wang Chunwei Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期845-871,共27页
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat... In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems. 展开更多
关键词 network intrusion detection bidirectional long short-term memory network time series stacked sparse autoencoder temporal convolutional network time steps
在线阅读 下载PDF
基于特征交叉注意力机制融合的轴承故障诊断方法 被引量:2
12
作者 赵国超 刘崇德 +2 位作者 宋宇宁 金鑫 李伟华 《振动与冲击》 北大核心 2025年第12期228-237,共10页
为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convo... 为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convolutional neural network,CNN)和双向时间卷积网络(bidirectional temporal convolutional network,BiTCN)提取时频特征,通过交叉注意力机制(cross-attention mechanism,CA)融合时频特征的能力,充分提取原始信号故障特征,利用全连接层实现滚动轴承故障类型的精确诊断。试验研究表明:在含信噪比为9.32 dB、标准差为2.98的高斯白噪声的环境下,使用CNN-BiTCN-CA模型轴承故障分类准确率为99.88%,相较于使用CNN、BiTCN和结合自注意力机制的卷积神经网络(CNN with self-attention mechanism,CNN-SA)诊断轴承故障,准确率分别提升约22.79%、4.85%和4.19%;在引入信噪比为3.31 dB、标准差为5.96的高斯白噪声时,该模型仍然可以达到96.12%的诊断准确率。CNN-BiTCN-CA模型能够深入提取轴承信号中的故障特征,有效提高故障分类准确性。 展开更多
关键词 滚动轴承 故障诊断 双向时间卷积网络(bitcn) 时频融合 交叉注意力机制(CA)
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:3
13
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
基于ECA-TCN的数据中心磁盘故障预测 被引量:1
14
作者 张铭泉 王宝兴 《智能系统学报》 北大核心 2025年第2期389-399,共11页
随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-tem... 随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-temporal convolutional network,ECA-TCN)模型,通过结合传统卷积神经网络一维卷积的优势,融入扩张卷积和残差结构,并引入注意力机制,该模型能够提高磁盘故障预测的准确性和稳定性。在实验中,将ECA-TCN模型与其他经典深度学习方法进行了比较,实验结果表明,ECA-TCN模型在磁盘故障预测任务上具有较高的准确性和稳定性。 展开更多
关键词 磁盘故障预测 长短时记忆网络 循环神经网络 扩张卷积 高效通道注意力机制 神经网络模型 时间序列预测 深度学习优化
在线阅读 下载PDF
融合局部感知增强的投篮上肢动作分解与高精度识别算法
15
作者 任宇飞 刘海林 《现代电子技术》 北大核心 2025年第18期119-124,共6页
为解决传统动作识别算法在处理篮球训练图像时存在的关节遮挡、感受野过大等问题,提出一种融合局部感知增强的高精度上肢动作分解识别模型。该模型通过轻量级HRNet分支提取人体全局结构特征,结合双流金字塔模块增强局部关节感知能力。... 为解决传统动作识别算法在处理篮球训练图像时存在的关节遮挡、感受野过大等问题,提出一种融合局部感知增强的高精度上肢动作分解识别模型。该模型通过轻量级HRNet分支提取人体全局结构特征,结合双流金字塔模块增强局部关节感知能力。空间流采用空洞卷积扩大手部感受野,时间流利用光流捕捉球员上肢的相对运动情况,显著提升了遮挡场景下的手部定位精度。同时,模型中还设计了时空分解模块进行空间与时序特征分析,强制网络聚焦并学习帧间的运动一致性,使数据处理的过程更具鲁棒性。最后引入自适应加权单元,最终输出高精度的关节点坐标。实验测试结果表明:所提模型的mAP@0.5达到86.9%,动作分类的F1值为95.3%,均优于目前的主流算法;且关键帧检出率为91.1%,帧率达到47 f/s,实时性良好,充分证明了该模型能够为篮球训练与赛事智能化分析提供可靠的技术手段。 展开更多
关键词 HRNet模型 双流金字塔 图卷积网络 时间卷积网络 人体动作识别 图像分析
在线阅读 下载PDF
基于时-频特征联合提取的谐波源数据驱动建模方法
16
作者 张逸 欧杰宇 +2 位作者 陈书畅 康燕艺 刘诗琦 《中国电机工程学报》 北大核心 2025年第22期8832-8844,I0014,共14页
既有谐波源建模方法在应用于内部拓扑未知与机理不明场景时,难以有效兼顾谐波源的频域稳态特征与动态时变特征,致使所构建模型的准确性与鲁棒性难以提升。为此,该文提出一种基于时-频特征联合提取的谐波源数据驱动建模方法。首先,根据... 既有谐波源建模方法在应用于内部拓扑未知与机理不明场景时,难以有效兼顾谐波源的频域稳态特征与动态时变特征,致使所构建模型的准确性与鲁棒性难以提升。为此,该文提出一种基于时-频特征联合提取的谐波源数据驱动建模方法。首先,根据谐波源历史电压电流的频域分量确定谐波源的主导谐波频次;其次,构建谐波源稳态电压时-频特征矩阵并对其进行伪彩色编码以实现特征升维;最后,将动态时变信号与稳态特征分量彩色图组合输入所构建的多重卷积神经网络(multiple convolutional neural network,MCNN)与双向长短时记忆网络(bi-directional long short term memory network,BiLSTM)组合模型,构建反映谐波源动态时变特征与频域稳态特征的电压-电流映射关系。经仿真与实测数据验证,相较于其他数据驱动建模方法,所提方法不仅在单一谐波源建模场景下具有明显的优势,在复杂多谐波源场景下也具备较高的准确率与较强的鲁棒性。 展开更多
关键词 电能质量 谐波源建模 数据驱动 时-频特征 多重卷积神经网络
原文传递
基于用户数据特征深度挖掘的快速图书检索算法
17
作者 窦淑庆 刘思豆 《现代电子技术》 北大核心 2025年第14期137-142,共6页
针对传统图书推荐系统所得到的计算结果滞后于实时需求且准确性较低的缺陷,文中基于用户画像数据,提出一种快速图书检索算法。该算法在用户画像构建部分对静态属性抽取和动态标签行为进行建模。在图书特征提取模型中,使用BERT-Word2Vec... 针对传统图书推荐系统所得到的计算结果滞后于实时需求且准确性较低的缺陷,文中基于用户画像数据,提出一种快速图书检索算法。该算法在用户画像构建部分对静态属性抽取和动态标签行为进行建模。在图书特征提取模型中,使用BERT-Word2Vec作为基础框架进行多模态特征提取,并利用双塔深度匹配模型构建了用户MLP塔和图书改进CNN塔,对特征进行充分细致的多维分析。模型通过将实时反馈机制Kafka-Redis流处理算法与会话注意力加权融合,最终实现了场景化的推荐。实验测试结果显示,NDCG@10指标较最优基准提升了约21.0%,行为反馈延迟在峰值500 QPS流量下小于等于3.5 s。表明所提算法能够为知识服务场景提供兼具准确性、时效性与场景适应性的信息推荐解决方案。 展开更多
关键词 用户画像 双向编码器表示技术 双塔深度匹配模型 多层感知器 卷积神经网络 推荐算法
在线阅读 下载PDF
基于融合评价指标BERT-RGCN的油田评价区块调整措施推荐方法
18
作者 王梅 朱晓丽 +2 位作者 孙洪国 王海艳 濮御 《东北石油大学学报》 北大核心 2025年第5期110-120,I0008,共12页
为解决油田领域区块调整措施推荐过程中存在的样本数据稀疏和语义特征复杂等问题,提出基于融合评价指标(EI)的变换器双向编码(BERT)与关系图卷积神经网络(RGCN)的油田评价区块调整措施推荐方法(EI-BERT-RGCN方法)。根据评价指标、评价... 为解决油田领域区块调整措施推荐过程中存在的样本数据稀疏和语义特征复杂等问题,提出基于融合评价指标(EI)的变换器双向编码(BERT)与关系图卷积神经网络(RGCN)的油田评价区块调整措施推荐方法(EI-BERT-RGCN方法)。根据评价指标、评价区块及措施之间的交互信息构建异构图,利用BERT模型生成评价指标、评价区块及措施术语词向量,共同作为输入词向量,将融合评价指标信息的异构图和输入词向量放入RGCN模型训练,学习评价区块的有效表征;在某油田评价区块提供的数据集上进行实验对比。结果表明:EI-BERT-RGCN方法能够捕捉文本中隐含的复杂语义并缓解数据稀疏问题,能更好理解未观察到的评价指标与调整措施之间的潜在关系,提升节点的表示质量。EI-BERT-RGCN模型在精确率、召回率、F_(1)分数及ROC曲线下面积等评价指标上优于其他基准模型,在保持较高精确率的同时,展现更好的泛化能力和鲁棒性。该结果为油田评价区块调整措施推荐提供参考。 展开更多
关键词 异构图 变换器双向编码(BERT) 预训练模型 关系图卷积神经网络(RGCN) 推荐算法 措施推荐 油田评价区块
在线阅读 下载PDF
基于BERT融合算法的病例文本结构化模型研究
19
作者 张雪 王琛琛 职宁 《中国医疗设备》 2025年第9期12-19,共8页
目的为提升临床病例文本中非结构化信息的提取效率与准确性,推动医学智能化发展,本研究提出一种基于双向编码器表示融合算法的病例文本结构化模型。方法该模型采用双向编码器进行语义表示,利用图卷积神经网络提取词语间局部依赖,融合长... 目的为提升临床病例文本中非结构化信息的提取效率与准确性,推动医学智能化发展,本研究提出一种基于双向编码器表示融合算法的病例文本结构化模型。方法该模型采用双向编码器进行语义表示,利用图卷积神经网络提取词语间局部依赖,融合长短时记忆网络建立时序关系,并引入条件随机场优化标签序列的一致性。实验选用MIMIC-Ⅲ和ClinicalSTS这2个权威临床数据集进行分析,构建五类医学文本分类任务,对比所有模型在不同结构组合下的性能表现。结果本研究所提出的病例文本结构化模型的精准度、召回率和F1得分分别为0.92、0.90和0.91,均较传统双向编码器模型提升约10%;在处理超过1000字的长文本场景时,模型效率提升达12%,表现出良好的时效性与可扩展性。结论本研究通过验证深度融合多种结构对提高病例文本结构化处理能力的有效性,为智能医学文本分析提供了理论依据。 展开更多
关键词 病例文本 长短时记忆网络 BERT 图卷积神经网络 结构化模型 医学智能化
在线阅读 下载PDF
基于注意力机制的LSTNet日前电价预测
20
作者 李璐 阚小瑞 +3 位作者 毕贵红 范玉瑞 朱泽良 周旭龙 《电力科学与工程》 2025年第4期1-10,共10页
为了提高日前电价预测精度,提出了一种基于注意力机制的长期和短期时间序列网络日前电价预测模型。首先,通过相关性分析筛选出对日前电价预测影响较大的因素;然后,利用卷积神经网络初步提取电价数据和各个因素之间的局部依赖关系;进一步... 为了提高日前电价预测精度,提出了一种基于注意力机制的长期和短期时间序列网络日前电价预测模型。首先,通过相关性分析筛选出对日前电价预测影响较大的因素;然后,利用卷积神经网络初步提取电价数据和各个因素之间的局部依赖关系;进一步,运用循环神经网络和循环跳跃神经网络挖掘出当前数据与前后时刻数据之间的联系,再通过注意力机制进行权重自适应分配后,仿真非线性部分的预测值。采用自回归模型对线性部分的电价数据进行提取。最后,将线性和非线性部分的预测值进行融合,得到最终预测结果。经仿真验证,所提模型有效提高了日前电价预测的精度。 展开更多
关键词 注意力机制 电价预测 卷积神经网络 长期和短期时间序列网络 自回归模型
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部