期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
基于VMD-CNN-BiTCN滚动轴承故障诊断 被引量:3
1
作者 徐志祥 玄永伟 +1 位作者 王洪洋 王壬杰 《微特电机》 2025年第2期68-73,共6页
针对滚动轴承故障诊断中,传统卷积神经网络(CNN)特征提取感受野受限、无法有效提取数据时序特征的问题,提出了一种CNN结合双向时间卷积网络(BiTCN)的模型,该模型能够扩展感受野并有效捕获数据的时序特征。将原始振动信号通过变分模态(V... 针对滚动轴承故障诊断中,传统卷积神经网络(CNN)特征提取感受野受限、无法有效提取数据时序特征的问题,提出了一种CNN结合双向时间卷积网络(BiTCN)的模型,该模型能够扩展感受野并有效捕获数据的时序特征。将原始振动信号通过变分模态(VMD)分解为K个本征模函数(IMF);将分解后的信号输入到CNN层中进行特征提取和信号压缩;将该信号送入BiTCN中,提取正反两个方向的时序特征,使用膨胀卷积最大化感受野;通过池化层和全连接层实现滚动轴承故障诊断。实验结果显示,该模型在特征提取能力和时序特征感知具有显著优势,能够在多个数据集中表现出良好的故障诊断性能和泛化能力。 展开更多
关键词 滚动轴承 故障诊断 卷积神经网络 双向时间卷积网络 变分模态分解
在线阅读 下载PDF
考虑数据分解和Gish-BiTCN-MHSA的短期光伏功率预测
2
作者 刘海鹏 何艳苹 +2 位作者 金怀平 方奇文 吴洪 《太阳能学报》 北大核心 2025年第8期430-438,共9页
为有效应对分布式光伏电站输出功率的波动对电网稳定性的挑战,提出一个新的短期光伏功率预测框架。首先,使用最优变分模态分解(OVMD)技术将原始光伏功率数据分解成多个模态分量,并将其与相关特征融合,生成一系列子序列。然后,采用结合G... 为有效应对分布式光伏电站输出功率的波动对电网稳定性的挑战,提出一个新的短期光伏功率预测框架。首先,使用最优变分模态分解(OVMD)技术将原始光伏功率数据分解成多个模态分量,并将其与相关特征融合,生成一系列子序列。然后,采用结合Gish激活函数的双向时间卷积网络(Gish-BiTCN)对每个子序列进行预测,引入多头注意力机制(MHSA)使模型更加关注和捕捉时间相关特征。最后,通过对所有子序列的预测值进行重构得到最终的预测结果。通过实验验证其在光伏发电预测方面的优越性。 展开更多
关键词 光伏功率预测 变分模态分解 双向时间卷积网络 多头自注意力机制 鲸鱼优化算法 激活函数
原文传递
土石坝渗流预测的BiTCN-Attention-LSSVM模型研究
3
作者 傅蜀燕 杨石勇 +2 位作者 陈德辉 王子轩 欧斌 《水资源与水工程学报》 北大核心 2025年第1期118-128,共11页
为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN... 为了克服常规机器学习模型在处理时序数据时难以有效捕捉长期依赖关系和局部重要性的局限,提出了一种基于双向时序卷积神经网络(BiTCN)、注意力机制(Attention)和最小二乘支持向量机(LSSVM)的土石坝渗流预测耦合模型。该模型利用BiTCN从前、后两个方向捕获时序数据中的长期依赖关系,引入Attention机制帮助模型专注于与预测相关的关键局部特征,并将BiTCN-Attention深度处理后的特征输入LSSVM模型中进行预测,最后以2个不同的数据集分析了模型的预测效果。案例分析表明:与LSSVM、CNN-LSSVM和TCN-LSSVM相比,BiTCN-Attention-LSSVM模型预测的各项评价指标均为最优,在土石坝测压管水位预测中展现出更高的模型精度和稳定性;BiTCN与Attention的相互结合能够更好地提取时序数据中的相互依赖关系,将BiTCN-Attention提取的特征输入LSSVM中进行预测可获得良好的预测性能,数据集扩充处理后有效提高了模型的学习能力。 展开更多
关键词 土石坝测压管水位 渗流预测 双向时序卷积神经网络 注意力机制 最小二乘支持向量机
在线阅读 下载PDF
基于小波熵特征融合和ISSA-BiTCN的直流输电故障定位 被引量:5
4
作者 李瑞灵 高学军 +2 位作者 王灿 余波 徐彦彬 《科学技术与工程》 北大核心 2024年第26期11303-11313,共11页
特高压三端混合直流输电系统作为直流输电的一种重要形式,存在传输距离较长而导致的线路故障率较高的问题,对其进行准确的故障定位是系统稳定运行的基础。针对现有故障定位方法应用于输电线路单极接地故障时存在的高阻接地故障下定位模... 特高压三端混合直流输电系统作为直流输电的一种重要形式,存在传输距离较长而导致的线路故障率较高的问题,对其进行准确的故障定位是系统稳定运行的基础。针对现有故障定位方法应用于输电线路单极接地故障时存在的高阻接地故障下定位模糊、精度较低的问题,提出了一种基于小波包熵特征融合提取故障特征,再由改进麻雀搜索算法(improved sparrow search algorithm,ISSA)优化的双向时域卷积网络(bidirectional time-domain convolution network,BiTCN)模型的故障定位方法。首先,利用小波包变换提取线模电压行波信号,利用信息熵刻画电压波形中的深层故障特征,形成熵特征融合特征向量构成的特征矩阵作为BiTCN模型的输入;其次,搭建并训练BiTCN模型,并利用ISSA的迭代寻优对其进行优化,最终实现三端混合直流输电线路故障的精确定位;最后,在PSCAD/EMTDC仿真平台中搭建系统模型,验证所提方法的可实施性。结果表明该方法定位精度较高,具有较好的泛化能力和鲁棒性,对高阻故障耐受能力较好。 展开更多
关键词 三端混合直流输电系统 小波包熵特征融合 改进麻雀搜索算法 双向时域卷积网络
在线阅读 下载PDF
A Time Series Intrusion Detection Method Based on SSAE,TCN and Bi-LSTM
5
作者 Zhenxiang He Xunxi Wang Chunwei Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期845-871,共27页
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat... In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems. 展开更多
关键词 network intrusion detection bidirectional long short-term memory network time series stacked sparse autoencoder temporal convolutional network time steps
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:3
6
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
基于特征交叉注意力机制融合的轴承故障诊断方法 被引量:1
7
作者 赵国超 刘崇德 +2 位作者 宋宇宁 金鑫 李伟华 《振动与冲击》 北大核心 2025年第12期228-237,共10页
为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convo... 为了解决轴承振动信号特征提取不充分导致故障诊断准确率低的问题,提出一种基于特征交叉注意力机制融合的轴承故障诊断方法,建立CNN-BiTCN-CA诊断模型。采用变分模态分解和快速傅里叶变换对原始信号进行重构,分别使用卷积神经网络(convolutional neural network,CNN)和双向时间卷积网络(bidirectional temporal convolutional network,BiTCN)提取时频特征,通过交叉注意力机制(cross-attention mechanism,CA)融合时频特征的能力,充分提取原始信号故障特征,利用全连接层实现滚动轴承故障类型的精确诊断。试验研究表明:在含信噪比为9.32 dB、标准差为2.98的高斯白噪声的环境下,使用CNN-BiTCN-CA模型轴承故障分类准确率为99.88%,相较于使用CNN、BiTCN和结合自注意力机制的卷积神经网络(CNN with self-attention mechanism,CNN-SA)诊断轴承故障,准确率分别提升约22.79%、4.85%和4.19%;在引入信噪比为3.31 dB、标准差为5.96的高斯白噪声时,该模型仍然可以达到96.12%的诊断准确率。CNN-BiTCN-CA模型能够深入提取轴承信号中的故障特征,有效提高故障分类准确性。 展开更多
关键词 滚动轴承 故障诊断 双向时间卷积网络(bitcn) 时频融合 交叉注意力机制(CA)
在线阅读 下载PDF
动态时间序列建模的多模态情感识别方法 被引量:2
8
作者 李佳泽 梅红岩 +1 位作者 贾丽云 李文娅 《计算机工程与应用》 北大核心 2025年第1期196-205,共10页
现有的情感识别研究未充分考虑语音信号中的局部-全局信息和长期时间依赖关系,文本特征提取也存在特征稀疏和信息丢失的问题。为解决上述问题,提出动态时间序列建模的多模态情感识别方法。设计动态时间窗口模块分割语音信号从而捕捉局部... 现有的情感识别研究未充分考虑语音信号中的局部-全局信息和长期时间依赖关系,文本特征提取也存在特征稀疏和信息丢失的问题。为解决上述问题,提出动态时间序列建模的多模态情感识别方法。设计动态时间窗口模块分割语音信号从而捕捉局部-全局信息,并通过双向序列建模捕获信号中的空间信息。考虑到文本信息对情感分析的重要性,采用基于Transformer模型的卷积神经网络捕捉文本中不同位置间的依赖关系建模较长的上下文信息,最后将两种模态进行融合得到最终的情感分类。模型在IEMOCAP数据集上的实验结果表明,相比其他主流模型具有更好的多模态情感识别效果。 展开更多
关键词 多模态情感分析 动态时间窗口 双向时间序列建模 卷积神经网络 多模态融合
在线阅读 下载PDF
基于VMD与TCN-SENet-BiLSTM网络的轴承寿命预测 被引量:4
9
作者 张发振 张清华 +3 位作者 秦宾宾 朱冠华 邓兴超 刘迪洋 《机床与液压》 北大核心 2025年第1期15-23,共9页
传统的滚动轴承剩余寿命预测方法存在缺乏明确学习机制和模型预测精度较低等问题,无法有效提取不同时序特征之间的差异所包含的重要退化信息特征。为了进一步提高预测模型精度,提出一种融合SENet注意力机制的时间卷积网络(TCN)和双向长... 传统的滚动轴承剩余寿命预测方法存在缺乏明确学习机制和模型预测精度较低等问题,无法有效提取不同时序特征之间的差异所包含的重要退化信息特征。为了进一步提高预测模型精度,提出一种融合SENet注意力机制的时间卷积网络(TCN)和双向长短时网络(BiLSTM)的剩余使用寿命预测模型。利用变分模态分解将原始信号分解为多个特征分量,使用皮尔逊相关系数对特征进行优化,得到重构后的信号作为模型输入。通过TCN-SENet-BiLSTM模型有效学习重构特征信号与轴承退化之间的复杂关系。最后,运用后处理技术输出平滑后的预测结果,并在IEEE PHM 2012数据集上进行验证。实验结果表明:相较于TCN、TCN-SENet及TCN-BiLSTM 3种模型,基于VMD与TCN-SENet-BiLSTM方法的预测结果最优,平均绝对误差(MAE)和均方根误差(RMSE)均最低。其中,工况1的3号轴承RUL预测的MAE值相比其他3种网络分别下降了36.49%、50.00%和48.35%;工况2的6号轴承RUL预测的RMSE分别下降了24.11%、33.07%和61.54%,且预测的Score值最高为0.866。实验结果验证了基于VMD与TCN-SENet-BiLSTM模型在轴承剩余使用寿命预测中的有效性。 展开更多
关键词 剩余使用寿命 轴承 时间卷积网络 双向长短时记忆网络 变分模态分解
在线阅读 下载PDF
融合注意力机制与时空图卷积网络的航空发动机剩余使用寿命预测 被引量:1
10
作者 屈超雄 夏小东 +2 位作者 张洋 何启学 李雨轩 《计算机应用》 北大核心 2025年第S1期372-376,共5页
针对航空发动机剩余使用寿命(RUL)预测方法空间特征提取不充分、时间特征利用不充分,导致RUL预测准确性较低的问题,提出一种融合注意力机制的时空图卷积网络模型GCNBL-A3T(Graph Convolutional Network combined with Bidirectional Lon... 针对航空发动机剩余使用寿命(RUL)预测方法空间特征提取不充分、时间特征利用不充分,导致RUL预测准确性较低的问题,提出一种融合注意力机制的时空图卷积网络模型GCNBL-A3T(Graph Convolutional Network combined with Bidirectional Long short-term memory and ATTenTion mechanism)。首先,使用一维卷积神经网络(1D-CNN)提取初始特征;其次,依次使用图卷积网络(GCN)和双向长短期记忆(Bi-LSTM)网络分别提取空间特征和时间特征;再次,利用自注意力机制处理特征并重新分配权重;最后,输入全连接网络获得RUL预测结果。使用商用模块化航空推进系统仿真(C-MAPSS)数据集验证所提模型的有效性。实验结果显示,与先进模型相比,所提模型的Score分数在3个数据子集上取得最小值,在1个数据子集上取得次小值;均方根误差(RMSE)在1个数据子集上取得最小值,在3个数据子集上取得次小值。消融实验结果也验证了所提模型的各模块能有效提升预测精度。 展开更多
关键词 剩余使用寿命 预测性维护 图卷积网络 时间序列 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
平衡圆周搜索的空调启动时间深度学习预测模型研究
11
作者 梁群立 徐靖 +1 位作者 赵全洲 庞伟 《暖通空调》 2025年第6期52-59,共8页
针对数据驱动建模方法只关注特征映射,没有考虑过程变量之间的长期相互依赖关系,缺乏数据之间的上下文信息,忽略了不同变量之间的重要性,从而导致预测性能欠佳问题,提出了一种结合时间卷积网络、双向门控循环单元和注意力机制的空调启... 针对数据驱动建模方法只关注特征映射,没有考虑过程变量之间的长期相互依赖关系,缺乏数据之间的上下文信息,忽略了不同变量之间的重要性,从而导致预测性能欠佳问题,提出了一种结合时间卷积网络、双向门控循环单元和注意力机制的空调启动时间预测模型,对该模型的4个重要参数进行了平衡圆周搜索,以提高该模型的预测性能。采用某卷烟厂实际运行数据进行了对比实验,结果表明:与基准模型相比,圆周搜索模型和平衡圆周搜索模型的预测性能分别提高了28.98%和37.91%;对于一些异常工况,与人工凭经验得到的启动时间相比,该预测模型获得的启动时间缩短了45%左右,从而降低了空调能耗。 展开更多
关键词 空调启动时间 时间卷积网络 双向门控循环单元 注意力机制 深度学习 平衡圆周搜索
在线阅读 下载PDF
基于VMD分解与K-shape聚类的山东大学PM_(2.5)浓度预测
12
作者 褚群微 杨文波 杨占山 《环境科学学报》 北大核心 2025年第9期86-95,共10页
为提高PM_(2.5)浓度预测的精确度,解决CEEMDAN方法中噪声添加引起的集合平均误差问题,提出了一种基于“解构与重组”概念的PM_(2.5)浓度预测模型.研究选取了山东大学2022年1月1日—2024年8月10日的污染物和气象数据,通过最大信息系数(MIC... 为提高PM_(2.5)浓度预测的精确度,解决CEEMDAN方法中噪声添加引起的集合平均误差问题,提出了一种基于“解构与重组”概念的PM_(2.5)浓度预测模型.研究选取了山东大学2022年1月1日—2024年8月10日的污染物和气象数据,通过最大信息系数(MIC)筛选特征变量.采用变分模态分解(VMD)将PM_(2.5)浓度序列分解为多个平稳本征模态分量,并利用K-shape时间聚类算法重构,去除冗余信息.重构后的分量与辅助信息输入双向卷积神经网络(BiTCN)提取特征,再通过双向门控循环单元(BiGRU)进行预测.结果表明,与传统单一模型相比,该模型在均方根误差(RMSE)、绝对误差(MAE)、平均绝对百分比误差(MAPE)和决定系数(R^(2))等指标上均有显著提升.消融实验进一步显示,加入K-shape聚类重构后,RMSE和MAE分别降至4.35和2.80,R^(2)达到0.982,表明模型具有极高的预测精度和拟合能力,可以为环境治理提供坚实的理论基础. 展开更多
关键词 PM_(2.5)浓度预测 变分模态分解(VMD) 双向时间卷积网络(bitcn) K-shape时间聚类 双向门控循环单元(BiGRU)
原文传递
基于DDTW聚类和SK TCN-GC BiGRU的分布式光伏短期功率预测
13
作者 段宏 郭成 +1 位作者 孙海东 王嵩岭 《智慧电力》 北大核心 2025年第4期71-80,共10页
针对分布式光伏短期功率的准确预测问题,提出了一种基于导数动态时间规整算法(DDTW)聚类和复合注意力预测网络(SK TCN-GC BiGRU)的短期光伏功率预测方法。首先,应用DDTW对历史数据进行相似日分析以构建针对性的训练集。其次,结合选择性... 针对分布式光伏短期功率的准确预测问题,提出了一种基于导数动态时间规整算法(DDTW)聚类和复合注意力预测网络(SK TCN-GC BiGRU)的短期光伏功率预测方法。首先,应用DDTW对历史数据进行相似日分析以构建针对性的训练集。其次,结合选择性内核网络(SKNet)和全局上下文模块(GC Block)优化TCN与BiGRU模型,分别增强提取多尺度特征和全局信息的能力。仿真结果验证了所提模型的优越性,尤其在气象条件数据波动较大的情况下,表现出较强的鲁棒性。 展开更多
关键词 短期光伏功率预测 时间卷积神经网络 双向门控循环单元 导数动态时间弯曲聚类
在线阅读 下载PDF
大体积混凝土结构变形估算模型构建研究
14
作者 张攀祥 周文豪 《中国水能及电气化》 2025年第9期10-19,共10页
为获取大体积混凝土结构变形估算的高精度模型,文章以实际工程为例,基于实测水平位移和垂直位移数据,以时间卷积神经网络模型(TCN)和双向门循环单元模型(BiGRU)为基础构建组合模型(TB),采用全局策略优化的麻雀搜索算法(MSSA)、苔藓优化... 为获取大体积混凝土结构变形估算的高精度模型,文章以实际工程为例,基于实测水平位移和垂直位移数据,以时间卷积神经网络模型(TCN)和双向门循环单元模型(BiGRU)为基础构建组合模型(TB),采用全局策略优化的麻雀搜索算法(MSSA)、苔藓优化算法(MGO)、真菌优化算法(FGO)、传统麻雀搜索算法(SSA)对TB模型进行优化,构建得出MSTB、MTB、FTB、STB模型并比较模型精度,结果表明:MSTB模型的误差指标为0.161~0.662mm,一致性指标为0.954~0.984,在所有模型中与实测值的拟合效果最优,同时误差最低且一致性最高,在模拟混凝土结构垂直位移和水平位移中均表现出了较高的精度,可用于估算大体积混凝土结构变形。 展开更多
关键词 大体积混凝土 变形 时间卷积神经网络 双向门循环单元 全局策略
在线阅读 下载PDF
采用CNN和Bidirectional GRU的时间序列分类研究 被引量:27
15
作者 张国豪 刘波 《计算机科学与探索》 CSCD 北大核心 2019年第6期916-927,共12页
时间序列数据具有非离散性、数据之间的时序相关性、特征空间维度大等特点,当前大多数分类方法需要经过复杂的数据处理或特征工程,未考虑到时间序列具有不同时间尺度特征以及序列数据之间的时序依赖。通过结合卷积神经网络和循环神经网... 时间序列数据具有非离散性、数据之间的时序相关性、特征空间维度大等特点,当前大多数分类方法需要经过复杂的数据处理或特征工程,未考虑到时间序列具有不同时间尺度特征以及序列数据之间的时序依赖。通过结合卷积神经网络和循环神经网络中的双向门控循环单元,提出了一个新的端对端深度学习神经网络模型BiGRU-FCN,不需要对数据进行复杂的预处理,并且通过不同的网络运算来获取多种特征信息,如卷积神经网络在时序信息上的空间特征以及双向循环神经网络在序列上的双向时序依赖特征,对单维时间序列进行分类。在大量的基准数据集上对模型进行实验与评估,实验结果表明,与现有的多种方法相比,所提出的模型具有更高的准确率,具有很好的分类效果。 展开更多
关键词 时间序列分类 深度学习 卷积神经网络 循环神经网络 双向门控循环单元
在线阅读 下载PDF
基于非侵入式负荷分解的家庭负荷两阶段超短期负荷预测模型 被引量:6
16
作者 李延珍 王海鑫 +2 位作者 杨子豪 陈哲 杨俊友 《电工技术学报》 EI CSCD 北大核心 2024年第11期3379-3391,共13页
精细化负荷预测为制定家庭新型需求响应策略或能效管理模式提供了可靠的指导信息与理论基础,而负荷监测系统的广泛研究与发展为家庭设备层的负荷预测提供了有力的数据支撑。基于家庭负荷智能电能表集中数据,该文提出一种集分解-预测一... 精细化负荷预测为制定家庭新型需求响应策略或能效管理模式提供了可靠的指导信息与理论基础,而负荷监测系统的广泛研究与发展为家庭设备层的负荷预测提供了有力的数据支撑。基于家庭负荷智能电能表集中数据,该文提出一种集分解-预测一体化的家庭负荷两阶段超短期负荷预测方法。该方法第一阶段提出了基于卷积神经网络(CNN)和双向门控单元(BiGRU)神经网络的非侵入式负荷分解(NILM)模型,解决了目前深度分解模型中特征提取不充分、分解精度低等问题。第二阶段构建了基于时间模式注意力机制(TPA)的时间卷积神经网络(TCN)负荷预测模型,深度挖掘NILM分解数据、集中负荷数据及日期特征等输入变量的深层交互信息,实现家庭设备层的负荷预测。算例部分通过UK-DALE数据集对所提方法进行验证,结果表明,该方法能够获得较高的分解精度和预测效果,为家庭负荷预测提供了良好的条件。 展开更多
关键词 非侵入式负荷分解 负荷预测 卷积神经网络 双向门控单元神经网络 时间卷积网络 注意力机制
在线阅读 下载PDF
基于多传感器信息融合和CNN-BIGRU-Attention模型的液压防水阀故障诊断方法 被引量:7
17
作者 肖遥 向家伟 +1 位作者 汤何胜 任燕 《机电工程》 CAS 北大核心 2024年第9期1517-1528,共12页
在建筑工程领域,尤其是在工程搅拌设备中,涉及到复杂液压工作介质,液压防水阀往往会出现不同程度的故障。此外,恶劣的工作环境和复杂的噪声背景使得对液压防水阀的故障进行诊断变得困难。为了解决这一难题,提出了一种基于多传感器信息... 在建筑工程领域,尤其是在工程搅拌设备中,涉及到复杂液压工作介质,液压防水阀往往会出现不同程度的故障。此外,恶劣的工作环境和复杂的噪声背景使得对液压防水阀的故障进行诊断变得困难。为了解决这一难题,提出了一种基于多传感器信息融合和卷积神经网络-双向门控循环单元-自注意力机制(CNN-BIGRU-Attention)模型的防水阀故障诊断方法。首先,考虑到单一传感器振动信号难以充分表达故障特征,该方法使用了3个传感器采集含噪声的振动信号,并进行了必要的预处理;其次,提取了信号的16个时域特征、5个频域特征以及3个时频域特征,并利用熵权法进行了特征融合,达到了增强特征的目的;然后,将融合的多维特征集输入到CNN-BIGRU-Attention模型中进行了特征识别;最后,利用实际的液压防水阀故障诊断实验,验证了该方法的有效性。研究结果表明:采用多传感器提取的特征更为全面,信息融合有助于捕捉更完整的隐藏数据特征,从而显著提高诊断的准确率;相较于其他特征识别方法,采用CNN-BIGRU-Attention模型的液压防水阀故障诊断准确率可分别提高6.7%、4.6%和14.2%,达到了96.86%,证明了该方法的有效性。该方法将先进的机器学习技术与实际工程应用相结合,为建筑工程问题提供了一种新颖、有效的解决方案。 展开更多
关键词 液压传动系统 液压防水阀 多传感器 滑动时间窗 TEAGER能量算子 熵权法 卷积神经网络-双向门控循环单元-自注意力机制模型
在线阅读 下载PDF
基于ResNet-TSM和BiGRU网络的移动视频感知质量评价模型 被引量:1
18
作者 杜丽娜 杨硕 +2 位作者 卓力 张菁 李嘉锋 《北京工业大学学报》 CAS CSCD 北大核心 2024年第1期18-26,共9页
考虑到卡顿、质量切换、内容特征等因素对用户体验质量的影响都会直接体现在客户端的失真视频里,提出了一种客户端的移动视频感知质量评价模型。该模型无须对每种影响因素均进行表征和度量,而是基于深度特征提取+回归的思路,直接建立失... 考虑到卡顿、质量切换、内容特征等因素对用户体验质量的影响都会直接体现在客户端的失真视频里,提出了一种客户端的移动视频感知质量评价模型。该模型无须对每种影响因素均进行表征和度量,而是基于深度特征提取+回归的思路,直接建立失真视频与平均意见分数之间的映射模型。首先,构建了ResNet-TSM网络结构,提取失真视频片段的深度时空特征;为了避免维度灾难,采用LargeVis算法对提取的深度特征进行降维,同时提升特征的表达与区分能力。然后,采用双向门控循环单元网络对视频的长时间依赖关系进行建模,得到各视频片段的打分,再利用时间平均池化方法将各片段分数进行聚合,得到整个视频的打分结果。在WaterlooSQoE-Ⅲ和LIVE-NFLX-Ⅱ数据集上的实验结果表明,提出的模型可以获得更高的预测精度。 展开更多
关键词 视频感知质量评价 平均意见分数 卷积神经网络 时间移位模块 双向门控循环单元 深度时空特征
在线阅读 下载PDF
基于CNN BiGRU RF模型的TBM掘进参数预测研究 被引量:1
19
作者 王海宾 王永涛 +3 位作者 陈黎涵 侯正涛 刘江 丁自伟 《中国煤炭》 北大核心 2024年第9期80-91,共12页
作为井下巷道掘进的新工法,全断面隧道掘进机(TBM)有显著的经济效益,对TBM的掘进参数进行预测对于确保TBM的掘进效率具有重要意义。对现场获取的TBM数据进行清洗和预处理,利用皮尔逊相关系数法对模型输入特征进行筛选,并构建基于卷积神... 作为井下巷道掘进的新工法,全断面隧道掘进机(TBM)有显著的经济效益,对TBM的掘进参数进行预测对于确保TBM的掘进效率具有重要意义。对现场获取的TBM数据进行清洗和预处理,利用皮尔逊相关系数法对模型输入特征进行筛选,并构建基于卷积神经网络(CNN)优化的双向门控循环单元(BiGRU)神经网络并通过随机森林(RF)进行集成的TBM掘进参数预测模型,实现对TBM掘进参数的预测。研究结果表明:选取与总推力和推进速率关联度最密切的刀盘转速、刀盘扭矩和贯入度作为特征参数;构建的CNN BiGRU RF模型预测掘进参数对总推力和推进速率的拟合优度R 2均值分别为0.950和0.966,均方误差MSE平均值分别为0.750和0.782,均方根误差RMSE平均值分别为0.866和0.885,平均绝对误差MAE平均值分别为1.054和1.007,并且回归评价指标MSE、RMSE、MAE相较于CNN BiGRU模型,分别降低2.497、0.966和0.386,R 2提升23.4%,证明CNN BiGRU RF模型的预测准确度和泛化性最高。该研究可为实际工程掘进参数预测提供指导,有助于推动TBM在煤矿的推广,保障TBM的施工进度。 展开更多
关键词 CNN BiGRU RF模型 TBM掘进参数 皮尔逊相关系数法 卷积神经网络 双向门控循环单元神经网络 随机森林 时间序列预测
在线阅读 下载PDF
基于注意力机制的TCN-BiGRU模型短期风电功率预测 被引量:5
20
作者 陈简 张惊雷 《天津理工大学学报》 2024年第5期69-74,共6页
随着新能源的发展,风力发电对电力系统稳定运行发挥着越来越重要的作用。但是风电是属于波动性强的不稳定能源,大规模并网会加剧电力系统的不稳定性,精准地预测短期风电功率可以提高电网运行的稳定性和准确性。提出了一种基于注意力机... 随着新能源的发展,风力发电对电力系统稳定运行发挥着越来越重要的作用。但是风电是属于波动性强的不稳定能源,大规模并网会加剧电力系统的不稳定性,精准地预测短期风电功率可以提高电网运行的稳定性和准确性。提出了一种基于注意力机制的时间卷积网络(temporal convolutional network,TCN)和双向门控循环单元(bidirectional gated recurrent unit,BiGRU)短期风电功率预测模型。利用TCN挖掘多维时间序列数据之间的关联,提取高维时序特征,残差模块加快收敛速度,建立BiGRU并在输出端引入注意力机制构建时序注意力模块,增强BiGRU对双向时序关系进行挖掘的能力,提高重要历史时序信息的影响,得到最终风电功率预测值。实验结果表明,文中模型的平均绝对值误差(mean absolute error,MAE)、平均绝对值百分比误差(mean absolute percentage error,MAPE)、决定系数(R-Square)分别为238.62,5.17和0.977,比其他单一模型和组合模型具有更高的精确度,验证了该模型具有更高效的短期风电功率预测能力。 展开更多
关键词 时间卷积网络 双向门控循环单元 风电功率 注意力机制
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部