期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Dynamic Interaction-Aware Trajectory Prediction with Bidirectional Graph Attention Network
1
作者 Jun Li Kai Xu +4 位作者 Baozhu Chen Xiaohan Yang Mengting Sun Guojun Li HaoJie Du 《Computers, Materials & Continua》 2025年第11期3349-3368,共20页
Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual inte... Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability. 展开更多
关键词 Pedestrian trajectory prediction spatio-temporal modeling bidirectional graph attention network autonomous system
在线阅读 下载PDF
Coal burst spatio‑temporal prediction method based on bidirectional long short‑term memory network
2
作者 Xu Yang Yapeng Liu +4 位作者 Anye Cao Yaoqi Liu Changbin Wang Weiwei Zhao Qiang Niu 《International Journal of Coal Science & Technology》 2025年第1期228-245,共18页
The increasingly severe state of coal burst disaster has emerged as a critical factor constraining coal mine safety production,and it has become a challenging task to enhance the accuracy of coal burst disaster predic... The increasingly severe state of coal burst disaster has emerged as a critical factor constraining coal mine safety production,and it has become a challenging task to enhance the accuracy of coal burst disaster prediction.To address the issue of insufficient exploration of the spatio-temporal characteristic of microseismic data and the challenging selection of the optimal time window size in spatio-temporal prediction,this paper integrates deep learning methods and theory to propose a novel coal burst spatio-temporal prediction method based on Bidirectional Long Short-Term Memory(Bi-LSTM)network.The method involves three main modules,including microseismic spatio-temporal characteristic indicators construction,temporal prediction model,and spatial prediction model.To validate the effectiveness of the proposed method,engineering application tests are conducted at a high-risk working face in the Ordos mining area of Inner Mongolia,focusing on 13 high-energy microseismic events with energy levels greater than 105 J.In terms of temporal prediction,the analysis indicates that the temporal prediction results consist of 10 strong predictions and 3 medium predictions,and there is no false alarm detected throughout the entire testing period.Moreover,compared to the traditional threshold-based coal burst temporal prediction method,the accuracy of the proposed method is increased by 38.5%.In terms of spatial prediction,the distribution of spatial prediction results for high-energy events comprises 6 strong hazard predictions,3 medium hazard predictions,and 4 weak hazard predictions. 展开更多
关键词 Coal burst Spatio-temporal prediction Microseismic spatio-temporal characteristic indicators bidirectional long short-term memory network
在线阅读 下载PDF
Data-Driven Method for Predicting Remaining Useful Life of Bearings Based on Multi-Layer Perception Neural Network and Bidirectional Long Short-Term Memory Network
3
作者 Yongfeng Tai Xingyu Yan +3 位作者 Xiangyi Geng Lin Mu Mingshun Jiang Faye Zhang 《Structural Durability & Health Monitoring》 2025年第2期365-383,共19页
The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through acceler... The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through accelerated life testing.In the absence of lifetime data,the hidden long-term correlation between performance degradation data is challenging to mine effectively,which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method.To address this problem,a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed.Firstly,a nonlinear health indicator(HI)calculation method based on kernel principal component analysis(KPCA)and exponential weighted moving average(EWMA)is designed.Then,using the raw vibration data and HI,a multi-layer perceptron(MLP)neural network is trained to further calculate the HI of the online bearing in real time.Furthermore,The bidirectional long short-term memory model(BiLSTM)optimized by particle swarm optimization(PSO)is used to mine the time series features of HI and predict the remaining service life.Performance verification experiments and comparative experiments are carried out on the XJTU-SY bearing open dataset.The research results indicate that this method has an excellent ability to predict future HI and remaining life. 展开更多
关键词 Remaining useful life prediction rolling bearing health indicator construction multilayer perceptron bidirectional long short-term memory network
在线阅读 下载PDF
A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection 被引量:1
4
作者 Lanyao Zhang Shichao Kan +3 位作者 Yigang Cen Xiaoling Chen Linna Zhang Yansen Huang 《Computers, Materials & Continua》 SCIE EI 2024年第2期1631-1648,共18页
Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately ... Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately evaluate sample distributions,mapping normal features to the normal distribution and anomalous features outside it.Consequently,this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network(NF-BMR).It utilizes pre-trained Convolutional Neural Networks(CNN)and normalizing flows to construct discriminative source and target domain feature spaces.Additionally,to better learn feature information in both domain spaces,we propose the Bidirectional Mapping Residual Network(BMR),which maps sample features to these two spaces for anomaly detection.The two detection spaces effectively complement each other’s deficiencies and provide a comprehensive feature evaluation from two perspectives,which leads to the improvement of detection performance.Comparative experimental results on the MVTec AD and DAGM datasets against the Bidirectional Pre-trained Feature Mapping Network(B-PFM)and other state-of-the-art methods demonstrate that the proposed approach achieves superior performance.On the MVTec AD dataset,NF-BMR achieves an average AUROC of 98.7%for all 15 categories.Especially,it achieves 100%optimal detection performance in five categories.On the DAGM dataset,the average AUROC across ten categories is 98.7%,which is very close to supervised methods. 展开更多
关键词 Anomaly detection normalizing flow source domain feature space target domain feature space bidirectional mapping residual network
在线阅读 下载PDF
Fault Detection and Fault-Tolerant Control Based on Bi-LSTM Network and SPRT for Aircraft Braking System
5
作者 Renjie Li Yaoxing Shang +4 位作者 Jinglin Cai Xiaochao Liu Lingdong Geng Pengyuan Qi Zongxia Jiao 《Chinese Journal of Mechanical Engineering》 2025年第3期12-28,共17页
The aircraft braking system is critical to ensure the safe take-off and landing of the aircraft.However,the braking system is often exposed to high temperatures and strong vibration working environments,which makes th... The aircraft braking system is critical to ensure the safe take-off and landing of the aircraft.However,the braking system is often exposed to high temperatures and strong vibration working environments,which makes the sensor prone to failure.Sensor failure has the potential to compromise aircraft safety.In order to improve the safety of the aircraft braking system,a fault detection and fault-tolerant control(FDFTC)strategy for the aircraft brake pressure sensor is designed.Firstly,a model based on a bidirectional long short-term memory(Bi-LSTM)network is constructed to estimate the brake pressure.Then,the residual sequence is obtained by comparing the measured pressure with the estimated pressure.On this basis,the improved sequential probability ratio test(SPRT)method based on mathematical statistics is applied to analyze the residual sequence to detect the fault.Finally,simulation and hardware-in-the-loop(HIL)testing results indicate that the proposed FDFTC strategy can detect sensor faults in time and efficiently complete braking when faults occur.Hence,the proposed FDFTC strategy can effectively deal with the faults of the aircraft brake pressure sensor,which is of great significance to improve the reliability and safety of the aircraft. 展开更多
关键词 Aircraft braking system Fault detection and fault-tolerant control bidirectional long short-term memory network Sequential probability ratio test
在线阅读 下载PDF
Landslide displacement prediction based on optimized empirical mode decomposition and deep bidirectional long short-term memory network 被引量:4
6
作者 ZHANG Ming-yue HAN Yang +1 位作者 YANG Ping WANG Cong-ling 《Journal of Mountain Science》 SCIE CSCD 2023年第3期637-656,共20页
There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement an... There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering. 展开更多
关键词 Landslide displacement Empirical mode decomposition Soft screening stop criteria Deep bidirectional long short-term memory neural network Xintan landslide Bazimen landslide
原文传递
An improved bidirectional generative adversarial network model for multivariate estimation of correlated and imbalanced tunnel construction parameters 被引量:1
7
作者 Yao Xiao Jia Yu +3 位作者 Guoxin Xu Dawei Tong Jiahao Yu Tuocheng Zeng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1797-1809,共13页
Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced... Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced.To solve this issue,an improved bidirectional generative adversarial network(BiGAN)model with a joint discriminator structure and zero-centered gradient penalty(0-GP)is proposed.In this model,in order to improve the capability of original BiGAN in learning imbalanced parameters,the joint discriminator separately discriminates the routine activities and risk event durations to balance their influence weights.Then,the self-attention mechanism is embedded so that the discriminator can pay more attention to the imbalanced parameters.Finally,the 0-GP is adapted for the loss of the discrimi-nator to improve its convergence and stability.A case study of a tunnel in China shows that the improved BiGAN can obtain parameter estimates consistent with the classical Gauss mixture model,without the need of tedious and complex correlation analysis.The proposed joint discriminator can increase the ability of BiGAN in estimating imbalanced construction parameters,and the 0-GP can ensure the stability and convergence of the model. 展开更多
关键词 Multivariate parameters estimation Correlated and imbalanced parameters bidirectional generative adversarial network(BiGAN) Joint discriminator Zero-centered gradient penalty(0-GP)
在线阅读 下载PDF
Seismic-inversion method for nonlinear mapping multilevel well–seismic matching based on bidirectional long short-term memory networks
8
作者 Yue You-Xi Wu Jia-Wei Chen Yi-Du 《Applied Geophysics》 SCIE CSCD 2022年第2期244-257,308,共15页
In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation... In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation pattern between logging and seismic data.A mapping relationship model between high-frequency logging data and low-frequency seismic data is established via nonlinear mapping.The seismic waveform is infinitely approximated using the logging curve in the low-frequency band to obtain a nonlinear mapping model of this scale,which then stepwise approach the logging curve in the high-frequency band.Finally,a seismic-inversion method of nonlinear mapping multilevel well–seismic matching based on the Bi-LSTM network is developed.The characteristic of this method is that by applying the multilevel well–seismic matching process,the seismic data are stepwise matched to the scale range that is consistent with the logging curve.Further,the matching operator at each level can be stably obtained to effectively overcome the problems that occur in the well–seismic matching process,such as the inconsistency in the scale of two types of data,accuracy in extracting the seismic wavelet of the well-side seismic traces,and multiplicity of solutions.Model test and practical application demonstrate that this method improves the vertical resolution of inversion results,and at the same time,the boundary and the lateral characteristics of the sand body are well maintained to improve the accuracy of thin-layer sand body prediction and achieve an improved practical application effect. 展开更多
关键词 bidirectional recurrent neural networks long short-term memory nonlinear mapping well–seismic matching seismic inversion
在线阅读 下载PDF
Multitask Weighted Adaptive Prestack Seismic Inversion
9
作者 Cheng Jian-yong Yuan San-yi +3 位作者 Sun Ao-xue Luo Chun-mei Liu Hao-jie and Wang Shang-xu 《Applied Geophysics》 2025年第2期383-396,557,共15页
Traditional deep learning methods pursue complex and single network architectures without considering the petrophysical relationship between different elastic parameters.The mathematical and statistical significance o... Traditional deep learning methods pursue complex and single network architectures without considering the petrophysical relationship between different elastic parameters.The mathematical and statistical significance of the inversion results may lead to model overfitting,especially when there are a limited number of well logs in a working area.Multitask learning provides an eff ective approach to addressing this issue.Simultaneously,learning multiple related tasks can improve a model’s generalization ability to a certain extent,thereby enhancing the performance of related tasks with an equal amount of labeled data.In this study,we propose an end-to-end multitask deep learning model that integrates a fully convolutional network and bidirectional gated recurrent unit for intelligent prestack inversion of“seismic data to elastic parameters.”The use of a Bayesian homoscedastic uncertainty-based loss function enables adaptive learning of the weight coeffi cients for diff erent elastic parameter inversion tasks,thereby reducing uncertainty during the inversion process.The proposed method combines the local feature perception of convolutional neural networks with the long-term memory of bidirectional gated recurrent networks.It maintains the rock physics constraint relationships among diff erent elastic parameters during the inversion process,demonstrating a high level of prediction accuracy.Numerical simulations and processing results of real seismic data validate the eff ectiveness and practicality of the proposed method. 展开更多
关键词 Prestack seismic inversion Multitask learning Fully convolutional neural network bidirectional gated recurrent neural network
在线阅读 下载PDF
Ultrashort-Term Power Prediction of Distributed Photovoltaic Based on Variational Mode Decomposition and Channel Attention Mechanism
10
作者 Zhebin Sun Wei Wang +6 位作者 Mingxuan Du Tao Liang Yang Liu Hailong Fan Cuiping Li Xingxu Zhu Junhui Li 《Energy Engineering》 2025年第6期2155-2175,共21页
Responding to the stochasticity and uncertainty in the power height of distributed photovoltaic power generation.This paper presents a distributed photovoltaic ultra-short-term power forecasting method based on Variat... Responding to the stochasticity and uncertainty in the power height of distributed photovoltaic power generation.This paper presents a distributed photovoltaic ultra-short-term power forecasting method based on Variational Mode Decomposition(VMD)and Channel Attention Mechanism.First,Pearson’s correlation coefficient was utilized to filter out the meteorological factors that had a high impact on historical power.Second,the distributed PV power data were decomposed into a relatively smooth power series with different fluctuation patterns using variational modal decomposition(VMD).Finally,the reconstructed distributed PV power as well as other features are input into the combined CNN-SENet-BiLSTM model.In this model,the convolutional neural network(CNN)and channel attention mechanism dynamically adjust the weights while capturing the spatial features of the input data to improve the discriminative ability of key features.The extracted data is then fed into the bidirectional long short-term memory network(BiLSTM)to capture the time-series features,and the final output is the prediction result.The verification is conducted using a dataset from a distributed photovoltaic power station in the Northwest region of China.The results show that compared with other prediction methods,the method proposed in this paper has a higher prediction accuracy,which helps to improve the proportion of distributed PV access to the grid,and can guarantee the safe and stable operation of the power grid. 展开更多
关键词 Distributed photovoltaic power channel attention mechanism convolutional neural network bidirectional long short-term memory network
在线阅读 下载PDF
Fatigue Life Prediction of Composite Materials Based on BO-CNN-BiLSTM Model and Ultrasonic Guided Waves
11
作者 Mengke Ding Jun Li +3 位作者 Dongyue Gao Guotai Zhou Borui Wang Zhanjun Wu 《Computers, Materials & Continua》 2025年第10期597-612,共16页
Throughout the composite structure’s lifespan,it is subject to a range of environmental factors,including loads,vibrations,and conditions involving heat and humidity.These factors have the potential to compromise the... Throughout the composite structure’s lifespan,it is subject to a range of environmental factors,including loads,vibrations,and conditions involving heat and humidity.These factors have the potential to compromise the integrity of the structure.The estimation of the fatigue life of composite materials is imperative for ensuring the structural integrity of these materials.In this study,a methodology is proposed for predicting the fatigue life of composites that integrates ultrasonic guided waves and machine learning modeling.The method first screens the ultrasonic guided wave signal features that are significantly affected by fatigue damage.Subsequently,a covariance analysis is conducted to reduce the redundancy of the feature matrix.Furthermore,one-hot encoding is employed to incorporate boundary conditions as features,and the resulting data undergoes preprocessing to form a sample library.A composite fatigue life prediction model has been developed,employing the aforementioned sample library as the input source and utilizing remaining life as the output metric.The model synthesizes the strengths of convolutional neural networks(CNNs)and bidirectional long short-term memory networks(BiLSTMs)while leveraging Bayesian optimization(BO)to enhance the optimization of hyperparameters.The experimental results demonstrate that the proposed BO-CNN-BiLSTM model exhibits superior performance in terms of prediction accuracy and reliability in the damage regression task when compared to both the BiLSTM and CNN-BiLSTM models. 展开更多
关键词 Structural health monitoring fatigue life prediction bidirectional long and short-term memory networks convolutional neural networks Bayesian optimization
在线阅读 下载PDF
Intelligent Detection of Abnormal Traffic Based on SCN-BiLSTM
12
作者 Lulu Zhang Xuehui Du +3 位作者 Wenjuan Wang Yu Cao Xiangyu Wu Shihao Wang 《Computers, Materials & Continua》 2025年第7期1901-1919,共19页
To address the limitations of existing abnormal traffic detection methods,such as insufficient temporal and spatial feature extraction,high false positive rate(FPR),poor generalization,and class imbalance,this study p... To address the limitations of existing abnormal traffic detection methods,such as insufficient temporal and spatial feature extraction,high false positive rate(FPR),poor generalization,and class imbalance,this study proposed an intelligent detection method that combines a Stacked Convolutional Network(SCN),Bidirectional Long Short-Term Memory(BiLSTM)network,and Equalization Loss v2(EQL v2).This method was divided into two components:a feature extraction model and a classification and detection model.First,SCN was constructed by combining a Convolutional Neural Network(CNN)with a Depthwise Separable Convolution(DSC)network to capture the abstract spatial features of traffic data.These features were then input into the BiLSTM to capture temporal dependencies.An attention mechanism was incorporated after SCN and BiLSTM to enhance the extraction of key spatiotemporal features.To address class imbalance,the classification detection model applied EQL v2 to adjust the weights of the minority classes,ensuring that they received equal focus during training.The experimental results indicated that the proposed method outperformed the existing methods in terms of accuracy,FPR,and F1-score and significantly improved the identification rate of minority classes. 展开更多
关键词 Convolutional neural network depthwise separable convolution bidirectional long and short-term memory network class imbalance abnormal traffic detection
在线阅读 下载PDF
STABC-IR:An air target intention recognition method based on bidirectional gated recurrent unit and conditional random field with space-time attention mechanism 被引量:16
13
作者 Siyuan WANG Gang WANG +3 位作者 Qiang FU Yafei SONG Jiayi LIU Sheng HE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第3期316-334,共19页
The battlefield environment is changing rapidly,and fast and accurate identification of the tactical intention of enemy targets is an important condition for gaining a decision-making advantage.The current Intention R... The battlefield environment is changing rapidly,and fast and accurate identification of the tactical intention of enemy targets is an important condition for gaining a decision-making advantage.The current Intention Recognition(IR)method for air targets has shortcomings in temporality,interpretability and back-and-forth dependency of intentions.To address these problems,this paper designs a novel air target intention recognition method named STABC-IR,which is based on Bidirectional Gated Recurrent Unit(Bi GRU)and Conditional Random Field(CRF)with Space-Time Attention mechanism(STA).First,the problem of intention recognition of air targets is described and analyzed in detail.Then,a temporal network based on Bi GRU is constructed to achieve the temporal requirement.Subsequently,STA is proposed to focus on the key parts of the features and timing information to meet certain interpretability requirements while strengthening the timing requirements.Finally,an intention transformation network based on CRF is proposed to solve the back-and-forth dependency and transformation problem by jointly modeling the tactical intention of the target at each moment.The experimental results show that the recognition accuracy of the jointly trained STABC-IR model can reach 95.7%,which is higher than other latest intention recognition methods.STABC-IR solves the problem of intention transformation for the first time and considers both temporality and interpretability,which is important for improving the tactical intention recognition capability and has reference value for the construction of command and control auxiliary decision-making system. 展开更多
关键词 bidirectional gated recurrent network Conditional random field Intention recognition Intention transformation Situation cognition Space-time attention mechanism
原文传递
LMI-based approach for global asymptotic stability analysis of continuous BAM neural networks 被引量:2
14
作者 张森林 刘妹琴 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第1期32-37,共6页
Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network mode... Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is ad- vanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs’ stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs). 展开更多
关键词 Standard neural network model (SNNM) bidirectional associative memory (BAM) neural network Linear matrix inequality (LMI) Linear differential inclusion (LDI) Global asymptotic stability
在线阅读 下载PDF
Robust asymptotic stability for BAM neural networks with time-varying delays via LMI approach
15
作者 LIU Jia ZONG Guang-deng ZHANG Yun-xi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第3期282-290,共9页
Several novel stability conditions for BAM neural networks with time-varying delays are studied.Based on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix... Several novel stability conditions for BAM neural networks with time-varying delays are studied.Based on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix inequality(LMI) conditions are established to guarantee robust asymptotic stability for given delayed BAM neural networks.These criteria can be easily verified by utilizing the recently developed algorithms for solving LMIs.A numerical example is provided to demonstrate the effectiveness and less conservatism of the main results. 展开更多
关键词 robust asymptotic stability bidirectional associative memory (BAM) neural networks timevarying delays linear matrix inequality(LMI) Lyapunov-Krasovskii functional
在线阅读 下载PDF
Infrasound Event Classification Fusion Model Based on Multiscale SE-CNN and BiLSTM 被引量:1
16
作者 Hongru Li Xihai Li +3 位作者 Xiaofeng Tan Chao Niu Jihao Liu Tianyou Liu 《Applied Geophysics》 SCIE CSCD 2024年第3期579-592,620,共15页
The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning al... The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning algorithms after artificial feature extraction.However,guaranteeing the effectiveness of the extracted features is difficult.The current trend focuses on using a convolution neural network to automatically extract features for classification.This method can be used to extract signal spatial features automatically through a convolution kernel;however,infrasound signals contain not only spatial information but also temporal information when used as a time series.These extracted temporal features are also crucial.If only a convolution neural network is used,then the time dependence of the infrasound sequence will be missed.Using long short-term memory networks can compensate for the missing time-series features but induces spatial feature information loss of the infrasound signal.A multiscale squeeze excitation–convolution neural network–bidirectional long short-term memory network infrasound event classification fusion model is proposed in this study to address these problems.This model automatically extracted temporal and spatial features,adaptively selected features,and also realized the fusion of the two types of features.Experimental results showed that the classification accuracy of the model was more than 98%,thus verifying the effectiveness and superiority of the proposed model. 展开更多
关键词 infrasound classification channel attention convolution neural network bidirectional long short-term memory network multiscale feature fusion
在线阅读 下载PDF
基于YOLOv8改进的脑癌检测算法
17
作者 王喆 赵慧俊 +2 位作者 谭超 李骏 申冲 《计算机科学》 CSCD 北大核心 2024年第S02期444-450,共7页
自动检测脑部肿瘤在磁共振成像中的位置是一个复杂、繁重的任务,需要耗费大量时间和资源。传统识别方案经常出现误解、遗漏和误导的情况,从而影响患者的治疗进度,对患者的生命安全产生影响。为了进一步提高鉴定的效果,引入了4项关键改... 自动检测脑部肿瘤在磁共振成像中的位置是一个复杂、繁重的任务,需要耗费大量时间和资源。传统识别方案经常出现误解、遗漏和误导的情况,从而影响患者的治疗进度,对患者的生命安全产生影响。为了进一步提高鉴定的效果,引入了4项关键改进措施。首先,采用了高效的多尺度注意力EMA(Efficient Multi-scale Attention),这种方法既可以对全局信息进行编码,也可以对信息进行重新校准,同时通过并行的分支输出特征进行跨维度的交互,使信息进一步聚合。其次,引入了BiFPN(Bidirectional Feature Pyramid Network)模块,并对其结构进行改进,以便缩短每一次检测所需要的时间,同时提升图像识别效果。然后采用MDPIoU损失函数和Mish激活函数进行改进,进一步提高检测的准确度。最后进行仿真实验,实验结果表明,改进的YOLOv8算法在脑癌检测中的精确率、召回率、平均精度均值均有提升,其中Precision提高了4.48%,Recall提高了2.64%,mAP@0.5提高了2.6%,mAP@0.5:0.9提高了7.0%。 展开更多
关键词 YOLOv8 脑癌 Efficient Multi-Scale Attention模块 bidirectional Feature Pyramid network结构 Missed Softplus with Identity Shortcut激活函数 Minimum Point Distance Intersection over Union损失函数
在线阅读 下载PDF
Study of A Hybrid Deep Learning Method for Forecasting the Short-Term Motion Responses of A Semi-Submersible 被引量:1
18
作者 XU Sheng JI Chun-yan 《China Ocean Engineering》 CSCD 2024年第6期917-931,共15页
Accurately predicting motion responses is a crucial component of the design process for floating offshore structures.This study introduces a hybrid model that integrates a convolutional neural network(CNN),a bidirecti... Accurately predicting motion responses is a crucial component of the design process for floating offshore structures.This study introduces a hybrid model that integrates a convolutional neural network(CNN),a bidirectional long short-term memory(BiLSTM)neural network,and an attention mechanism for forecasting the short-term motion responses of a semisubmersible.First,the motions are processed through the CNN for feature extraction.The extracted features are subsequently utilized by the BiLSTM network to forecast future motions.To enhance the predictive capability of the neural networks,an attention mechanism is integrated.In addition to the hybrid model,the BiLSTM is independently employed to forecast the motion responses of the semi-submersible,serving as benchmark results for comparison.Furthermore,both the 1D and 2D convolutions are conducted to check the influence of the convolutional dimensionality on the predicted results.The results demonstrate that the hybrid 1D CNN-BiLSTM network with an attention mechanism outperforms all other models in accurately predicting motion responses. 展开更多
关键词 short-term motion responses convolutional neural network bidirectional long short-term memory neural network attention mechanism hybrid model multi-step prediction SEMI-SUBMERSIBLE
在线阅读 下载PDF
Customizable multifunctional metasurface absorber based on bidirectional deep neural networks covering the quasi-entire terahertz band
19
作者 Zhipeng Ding Wei Su +5 位作者 Lipeng’an Ye Yuanhang Zhou Wenlong Li Riaz Ali Bin Tang Hongbing Yao 《Chinese Optics Letters》 SCIE EI CAS CSCD 2024年第6期182-190,共9页
In this work, we propose a novel approach that combines a bidirectional deep neural network(BDNN) with a multifunctional metasurface absorber(MMA) for inverse design, which can effectively address the challenge of on-... In this work, we propose a novel approach that combines a bidirectional deep neural network(BDNN) with a multifunctional metasurface absorber(MMA) for inverse design, which can effectively address the challenge of on-demand customization for absorbers. The inverse design of absorption peak frequencies can be achieved from 0.5 to 10 terahertz(THz), covering the quasi-entire THz band. Based on this, the BDNN is extended to broadband absorption, and the inverse design yields an MMA at the desired frequency. This work provides a broadly applicable approach to the custom design of multifunctional devices that can facilitate the evaluation and design of metasurfaces in electromagnetic absorption. 展开更多
关键词 TERAHERTZ inverse design bidirectional deep neural network metasurface
原文传递
Detecting the Bull’s-Eye Effect in Seismic Inversion Low-Frequency Models Using the Optimized YOLOv7 Model
20
作者 Jun Li Jia-bing Meng Pan Li 《Applied Geophysics》 SCIE CSCD 2024年第4期766-776,880,881,共13页
To detect bull’s-eye anomalies in low-frequency seismic inversion models,the study proposed an advanced method using an optimized you only look once version 7(YOLOv7)model.This model is enhanced by integrating advanc... To detect bull’s-eye anomalies in low-frequency seismic inversion models,the study proposed an advanced method using an optimized you only look once version 7(YOLOv7)model.This model is enhanced by integrating advanced modules,including the bidirectional feature pyramid network(BiFPN),weighted intersection-over-union(wise-IoU),efficient channel attention(ECA),and atrous spatial pyramid pooling(ASPP).BiFPN facilitates robust feature extraction by enabling bidirectional information fl ow across network scales,which enhances the ability of the model to capture complex patterns in seismic inversion models.Wise-IoU improves the precision and fineness of reservoir feature localization through its weighted approach to IoU.Meanwhile,ECA optimizes interactions between channels,which promotes eff ective information exchange and enhances the overall response of the model to subtle inversion details.Lastly,the ASPP module strategically addresses spatial dependencies at multiple scales,which further enhances the ability of the model to identify complex reservoir structures.By synergistically integrating these advanced modules,the proposed model not only demonstrates superior performance in detecting bull’s-eye anomalies but also marks a pioneering step in utilizing cutting-edge deep learning technologies to enhance the accuracy and reliability of seismic reservoir prediction in oil and gas exploration.The results meet scientific literature standards and provide new perspectives on methodology,which makes significant contributions to ongoing eff orts to refine accurate and efficient prediction models for oil and gas exploration. 展开更多
关键词 bull’s-eye YOLO bidirectional feature pyramid network weighted intersection-over-union atrous spatial pyramid pooling
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部