Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced...Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced.To solve this issue,an improved bidirectional generative adversarial network(BiGAN)model with a joint discriminator structure and zero-centered gradient penalty(0-GP)is proposed.In this model,in order to improve the capability of original BiGAN in learning imbalanced parameters,the joint discriminator separately discriminates the routine activities and risk event durations to balance their influence weights.Then,the self-attention mechanism is embedded so that the discriminator can pay more attention to the imbalanced parameters.Finally,the 0-GP is adapted for the loss of the discrimi-nator to improve its convergence and stability.A case study of a tunnel in China shows that the improved BiGAN can obtain parameter estimates consistent with the classical Gauss mixture model,without the need of tedious and complex correlation analysis.The proposed joint discriminator can increase the ability of BiGAN in estimating imbalanced construction parameters,and the 0-GP can ensure the stability and convergence of the model.展开更多
At present,research on multi-label image classification mainly focuses on exploring the correlation between labels to improve the classification accuracy of multi-label images.However,in existing methods,label correla...At present,research on multi-label image classification mainly focuses on exploring the correlation between labels to improve the classification accuracy of multi-label images.However,in existing methods,label correlation is calculated based on the statistical information of the data.This label correlation is global and depends on the dataset,not suitable for all samples.In the process of extracting image features,the characteristic information of small objects in the image is easily lost,resulting in a low classification accuracy of small objects.To this end,this paper proposes a multi-label image classification model based on multiscale fusion and adaptive label correlation.The main idea is:first,the feature maps of multiple scales are fused to enhance the feature information of small objects.Semantic guidance decomposes the fusion feature map into feature vectors of each category,then adaptively mines the correlation between categories in the image through the self-attention mechanism of graph attention network,and obtains feature vectors containing category-related information for the final classification.The mean average precision of the model on the two public datasets of VOC 2007 and MS COCO 2014 reached 95.6% and 83.6%,respectively,and most of the indicators are better than those of the existing latest methods.展开更多
Working conditions of rolling bearings of wind turbine generators are complicated, and their vibration signals often show non-linear and non-stationary characteristics. In order to improve the efficiency of feature ex...Working conditions of rolling bearings of wind turbine generators are complicated, and their vibration signals often show non-linear and non-stationary characteristics. In order to improve the efficiency of feature extraction of wind turbine rolling bearings and to strengthen the feature information, a new structural element and an adaptive algorithm based on the peak energy are proposed,which are combined with spectral correlation analysis to form a fault diagnosis algorithm for wind turbine rolling bearings. The proposed method firstly addresses the problem of impulsive signal omissions that are prone to occur in the process of fault feature extraction of traditional structural elements and proposes a "W" structural element to capture more characteristic information. Then, the proposed method selects the scale of multi-scale mathematical morphology, aiming at the problem of multi-scale mathematical morphology scale selection and structural element expansion law. An adaptive algorithm based on peak energy is proposed to carry out morphological scale selection and structural element expansion by improving the computing efficiency and enhancing the feature extraction effect.Finally, the proposed method performs spectral correlation analysis in the frequency domain for an unknown signal of the extracted feature and identifies the fault based on the correlation coefficient. The method is verified by numerical examples using experimental rig bearing data and actual wind field acquisition data and compared with traditional triangular and flat structural elements. The experimental results show that the new structural elements can more effectively extract the pulses in the signal and reduce noise interference,and the fault-diagnosis algorithm can accurately identify the fault category and improve the reliability of the results.展开更多
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh...Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection.展开更多
Global positioning system(GPS)common-view observation data were processed by using the multi-scale Kalman algorithm based on a correlative structure of the discrete wavelet coefficients.Suppose that the GPS commonview...Global positioning system(GPS)common-view observation data were processed by using the multi-scale Kalman algorithm based on a correlative structure of the discrete wavelet coefficients.Suppose that the GPS commonview observation data has the 1/f fractal characteristic,the algorithm of wavelet transform was used to estimate the Hurst parameter H of GPS clock difference data.When 0<H<1,the 1/f fractal characteristic of the GPS clock difference data is a Gaussian zero-mean and non-stationary stochastic process.Thus,the discrete wavelet coefficients can be discussed in the process of estimating multi-scale Kalman coefficients.Furthermore,the discrete clock difference can be estimated.The single-channel and multi-channel common-view observation data were processed respectively.Comparisons were made between the results obtained and the Circular T data.Simulation results show that the algorithm discussed in this paper is both feasible and effective.展开更多
文章提出基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)神经网络,考虑测井曲线相关性的测井曲线预测新方法。同一口井往往可以得到反映地层与井筒属性多种测井曲线,通过分析测井曲线之间存在的相关性,根据曲线之...文章提出基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)神经网络,考虑测井曲线相关性的测井曲线预测新方法。同一口井往往可以得到反映地层与井筒属性多种测井曲线,通过分析测井曲线之间存在的相关性,根据曲线之间的相关性大小选择合适的训练样本,利用Bi-LSTM进行测井曲线预测。同时,测井曲线前后关联性强,Bi-LSTM可以考虑数据间的前后关联,从而提高测井曲线预测精度。实验结果表明,考虑曲线相关性的Bi-LSTM模型能减少样本数据,明显提高预测精度,均方误差相比单向长短期记忆神经网络方法能减小50%以上,具有很好的应用前景。展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.52279137,52009090).
文摘Estimation of construction parameters is crucial for optimizing tunnel construction schedule.Due to the influence of routine activities and occasional risk events,these parameters are usually correlated and imbalanced.To solve this issue,an improved bidirectional generative adversarial network(BiGAN)model with a joint discriminator structure and zero-centered gradient penalty(0-GP)is proposed.In this model,in order to improve the capability of original BiGAN in learning imbalanced parameters,the joint discriminator separately discriminates the routine activities and risk event durations to balance their influence weights.Then,the self-attention mechanism is embedded so that the discriminator can pay more attention to the imbalanced parameters.Finally,the 0-GP is adapted for the loss of the discrimi-nator to improve its convergence and stability.A case study of a tunnel in China shows that the improved BiGAN can obtain parameter estimates consistent with the classical Gauss mixture model,without the need of tedious and complex correlation analysis.The proposed joint discriminator can increase the ability of BiGAN in estimating imbalanced construction parameters,and the 0-GP can ensure the stability and convergence of the model.
基金the National Natural Science Foundation of China(Nos.62167005 and 61966018)the Key Research Projects of Jiangxi Provincial Department of Education(No.GJJ200302)。
文摘At present,research on multi-label image classification mainly focuses on exploring the correlation between labels to improve the classification accuracy of multi-label images.However,in existing methods,label correlation is calculated based on the statistical information of the data.This label correlation is global and depends on the dataset,not suitable for all samples.In the process of extracting image features,the characteristic information of small objects in the image is easily lost,resulting in a low classification accuracy of small objects.To this end,this paper proposes a multi-label image classification model based on multiscale fusion and adaptive label correlation.The main idea is:first,the feature maps of multiple scales are fused to enhance the feature information of small objects.Semantic guidance decomposes the fusion feature map into feature vectors of each category,then adaptively mines the correlation between categories in the image through the self-attention mechanism of graph attention network,and obtains feature vectors containing category-related information for the final classification.The mean average precision of the model on the two public datasets of VOC 2007 and MS COCO 2014 reached 95.6% and 83.6%,respectively,and most of the indicators are better than those of the existing latest methods.
基金supported by National Natural Science Foundation of China (No. 61763037)Inner Mongolia Autonomous Region Natural Science Foundation of China(No. 2019LH06007)Science and Technology Plan Project of Inner Mongolia (No. 2019,2020GG028)。
文摘Working conditions of rolling bearings of wind turbine generators are complicated, and their vibration signals often show non-linear and non-stationary characteristics. In order to improve the efficiency of feature extraction of wind turbine rolling bearings and to strengthen the feature information, a new structural element and an adaptive algorithm based on the peak energy are proposed,which are combined with spectral correlation analysis to form a fault diagnosis algorithm for wind turbine rolling bearings. The proposed method firstly addresses the problem of impulsive signal omissions that are prone to occur in the process of fault feature extraction of traditional structural elements and proposes a "W" structural element to capture more characteristic information. Then, the proposed method selects the scale of multi-scale mathematical morphology, aiming at the problem of multi-scale mathematical morphology scale selection and structural element expansion law. An adaptive algorithm based on peak energy is proposed to carry out morphological scale selection and structural element expansion by improving the computing efficiency and enhancing the feature extraction effect.Finally, the proposed method performs spectral correlation analysis in the frequency domain for an unknown signal of the extracted feature and identifies the fault based on the correlation coefficient. The method is verified by numerical examples using experimental rig bearing data and actual wind field acquisition data and compared with traditional triangular and flat structural elements. The experimental results show that the new structural elements can more effectively extract the pulses in the signal and reduce noise interference,and the fault-diagnosis algorithm can accurately identify the fault category and improve the reliability of the results.
基金Deanship of Research and Graduate Studies at King Khalid University for funding this work through Small Group Research Project under Grant Number RGP1/261/45.
文摘Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection.
基金supported by the National Natural Science Foundation of China (Grant No.60571060).
文摘Global positioning system(GPS)common-view observation data were processed by using the multi-scale Kalman algorithm based on a correlative structure of the discrete wavelet coefficients.Suppose that the GPS commonview observation data has the 1/f fractal characteristic,the algorithm of wavelet transform was used to estimate the Hurst parameter H of GPS clock difference data.When 0<H<1,the 1/f fractal characteristic of the GPS clock difference data is a Gaussian zero-mean and non-stationary stochastic process.Thus,the discrete wavelet coefficients can be discussed in the process of estimating multi-scale Kalman coefficients.Furthermore,the discrete clock difference can be estimated.The single-channel and multi-channel common-view observation data were processed respectively.Comparisons were made between the results obtained and the Circular T data.Simulation results show that the algorithm discussed in this paper is both feasible and effective.
文摘文章提出基于双向长短期记忆(bidirectional long short-term memory,Bi-LSTM)神经网络,考虑测井曲线相关性的测井曲线预测新方法。同一口井往往可以得到反映地层与井筒属性多种测井曲线,通过分析测井曲线之间存在的相关性,根据曲线之间的相关性大小选择合适的训练样本,利用Bi-LSTM进行测井曲线预测。同时,测井曲线前后关联性强,Bi-LSTM可以考虑数据间的前后关联,从而提高测井曲线预测精度。实验结果表明,考虑曲线相关性的Bi-LSTM模型能减少样本数据,明显提高预测精度,均方误差相比单向长短期记忆神经网络方法能减小50%以上,具有很好的应用前景。