期刊文献+
共找到222篇文章
< 1 2 12 >
每页显示 20 50 100
基于融合评价指标BERT-RGCN的油田评价区块调整措施推荐方法
1
作者 王梅 朱晓丽 +2 位作者 孙洪国 王海艳 濮御 《东北石油大学学报》 北大核心 2025年第5期110-120,I0008,共12页
为解决油田领域区块调整措施推荐过程中存在的样本数据稀疏和语义特征复杂等问题,提出基于融合评价指标(EI)的变换器双向编码(BERT)与关系图卷积神经网络(RGCN)的油田评价区块调整措施推荐方法(EI-BERT-RGCN方法)。根据评价指标、评价... 为解决油田领域区块调整措施推荐过程中存在的样本数据稀疏和语义特征复杂等问题,提出基于融合评价指标(EI)的变换器双向编码(BERT)与关系图卷积神经网络(RGCN)的油田评价区块调整措施推荐方法(EI-BERT-RGCN方法)。根据评价指标、评价区块及措施之间的交互信息构建异构图,利用BERT模型生成评价指标、评价区块及措施术语词向量,共同作为输入词向量,将融合评价指标信息的异构图和输入词向量放入RGCN模型训练,学习评价区块的有效表征;在某油田评价区块提供的数据集上进行实验对比。结果表明:EI-BERT-RGCN方法能够捕捉文本中隐含的复杂语义并缓解数据稀疏问题,能更好理解未观察到的评价指标与调整措施之间的潜在关系,提升节点的表示质量。EI-BERT-RGCN模型在精确率、召回率、F_(1)分数及ROC曲线下面积等评价指标上优于其他基准模型,在保持较高精确率的同时,展现更好的泛化能力和鲁棒性。该结果为油田评价区块调整措施推荐提供参考。 展开更多
关键词 异构图 变换器双向编码(bert) 预训练模型 关系图卷积神经网络(RGCN) 推荐算法 措施推荐 油田评价区块
在线阅读 下载PDF
基于BERT融合算法的病例文本结构化模型研究
2
作者 张雪 王琛琛 职宁 《中国医疗设备》 2025年第9期12-19,共8页
目的为提升临床病例文本中非结构化信息的提取效率与准确性,推动医学智能化发展,本研究提出一种基于双向编码器表示融合算法的病例文本结构化模型。方法该模型采用双向编码器进行语义表示,利用图卷积神经网络提取词语间局部依赖,融合长... 目的为提升临床病例文本中非结构化信息的提取效率与准确性,推动医学智能化发展,本研究提出一种基于双向编码器表示融合算法的病例文本结构化模型。方法该模型采用双向编码器进行语义表示,利用图卷积神经网络提取词语间局部依赖,融合长短时记忆网络建立时序关系,并引入条件随机场优化标签序列的一致性。实验选用MIMIC-Ⅲ和ClinicalSTS这2个权威临床数据集进行分析,构建五类医学文本分类任务,对比所有模型在不同结构组合下的性能表现。结果本研究所提出的病例文本结构化模型的精准度、召回率和F1得分分别为0.92、0.90和0.91,均较传统双向编码器模型提升约10%;在处理超过1000字的长文本场景时,模型效率提升达12%,表现出良好的时效性与可扩展性。结论本研究通过验证深度融合多种结构对提高病例文本结构化处理能力的有效性,为智能医学文本分析提供了理论依据。 展开更多
关键词 病例文本 长短时记忆网络 bert 图卷积神经网络 结构化模型 医学智能化
在线阅读 下载PDF
融合BERT BiLSTM CRF的城市内涝灾害风险要素识别方法研究 被引量:1
3
作者 张乐 张海龙 +1 位作者 李锋 吴敏 《安全与环境学报》 北大核心 2025年第8期3176-3188,共13页
为了实现在城市内涝舆情信息中快速、精准地识别相关风险要素,首先基于新浪微博平台,对用户评论信息及媒体发布信息进行采集、整理及标注,构建了城市内涝灾害事件语料数据集。进而针对城市内涝舆情信息格式不统一、语义复杂且风险要素... 为了实现在城市内涝舆情信息中快速、精准地识别相关风险要素,首先基于新浪微博平台,对用户评论信息及媒体发布信息进行采集、整理及标注,构建了城市内涝灾害事件语料数据集。进而针对城市内涝舆情信息格式不统一、语义复杂且风险要素识别的专业性、精准度要求较高等问题,结合自然灾害系统理论的风险要素框架,提出了一种基于双向编码器表征法-双向长短期记忆-条件随机场(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory-Conditional Random Field,BERT-BiLSTM-CRF)的识别方法,并开展了一系列模型验证试验。对比试验结果表明,该模型在准确率、召回率、F_(1)三项指标上均有较好表现,其中准确率为84.62%,召回率为86.19%,F_(1)为85.35%,优于其他对比模型。消融试验结果表明,BERT预训练模型对于该模型性能有着更为显著的影响。综合上述试验结果,可以验证该模型能够有效识别城市内涝舆情信息中的各类风险要素,进而为城市内涝灾害风险管控的数智化转型提供研究依据。 展开更多
关键词 公共安全 城市内涝 双向编码器表征法 双向长短期记忆网络 条件随机场 舆情信息 风险要素识别
原文传递
基于Bert-BiLSTM-CRF模型的中文命名实体识别 被引量:1
4
作者 龙星全 李佳 《吉林大学学报(信息科学版)》 2025年第2期384-393,共10页
针对现有的中文命名实体识别算法没有充分考虑实体识别任务的数据特征,存在中文样本数据的类别不平衡、训练数据中的噪声太大和每次模型生成数据的分布差异较大的问题,提出了一种以BERT-BiLSTM-CRF(Bidirectional Encoder Representatio... 针对现有的中文命名实体识别算法没有充分考虑实体识别任务的数据特征,存在中文样本数据的类别不平衡、训练数据中的噪声太大和每次模型生成数据的分布差异较大的问题,提出了一种以BERT-BiLSTM-CRF(Bidirectional Encoder Representations from Transformers-Bidirectional Long Short-Term Memory-Conditional Random Field)为基线改进的中文命名实体识别模型。首先在BERT-BiLSTM-CRF模型上结合P-Tuning v2技术,精确提取数据特征,然后使用3个损失函数包括聚焦损失(Focal Loss)、标签平滑(Label Smoothing)和KL Loss(Kullback-Leibler divergence loss)作为正则项参与损失计算。实验结果表明,改进的模型在Weibo、Resume和MSRA(Microsoft Research Asia)数据集上的F 1得分分别为71.13%、96.31%、95.90%,验证了所提算法具有更好的性能,并且在不同的下游任务中,所提算法易于与其他的神经网络结合与扩展。 展开更多
关键词 中文命名实体识别 bert-BiLSTM-CRF模型 P-Tuning v2技术 损失函数
在线阅读 下载PDF
基于BERT和Bi-LSTM的题目难度预测:知识点标签增强模型
5
作者 叶航 柴春来 +2 位作者 张思赟 陈东烁 吴霁航 《计算机应用》 北大核心 2025年第S1期37-42,共6页
目前在高校C语言编程课程中,使用客观评价的题目难度考验学生的学习情况是非常重要的手段。目前大部分难度评估方法都针对特有科目和特有题型,而对中文编程题目的难度评估存在不足。因此,提出一种融合题目文本和知识点标签的基于BERT(Bi... 目前在高校C语言编程课程中,使用客观评价的题目难度考验学生的学习情况是非常重要的手段。目前大部分难度评估方法都针对特有科目和特有题型,而对中文编程题目的难度评估存在不足。因此,提出一种融合题目文本和知识点标签的基于BERT(Bidirectional Encoder Representations from Transformers)和双向长短时记忆(Bi-LSTM)模型的C语言题目难度预测模型FTKB-BiLSTM(Fusion of Title and Knowledge based on BERT and Bi-LSTM)。首先,利用BERT的中文预训练模型获得题目文本和知识点的词向量;其次,融合模块将融合后的信息通过BERT处理得到文本的信息表示,并输入Bi-LSTM模型中学习其中的序列信息,提取更丰富的特征;最后,把经Bi-LSTM模型得到的特征表示通过全连接层并经过Softmax函数处理得到题目难度分类结果。在Leetcode中文数据集和ZjgsuOJ平台数据集上的实验结果表明,相较于XLNet等主流的深度学习模型,所提模型的准确率更优,具有较强的分类能力。 展开更多
关键词 自然语言处理 深度学习 题目难度预测 bert 预训练模型
在线阅读 下载PDF
基于IWOA-BERT的磨煤机故障预警
6
作者 段明达 张胜 《振动与冲击》 北大核心 2025年第11期288-294,共7页
实现磨煤机的故障预警技术可以降低事故发生率,针对其运行中随机扰动多,且故障早期阶段不易判断的特点,提出了一种基于改进鲸鱼算法优化BERT(bidirectional encoder representations from transformers)模型的故障预警方法。首先,通过... 实现磨煤机的故障预警技术可以降低事故发生率,针对其运行中随机扰动多,且故障早期阶段不易判断的特点,提出了一种基于改进鲸鱼算法优化BERT(bidirectional encoder representations from transformers)模型的故障预警方法。首先,通过改进传统鲸鱼算法的收敛因子和引入高斯变异算子来增强算法的寻优能力;其次,选取与磨煤机故障相关的特征参数作为建模变量,利用改进鲸鱼算法优化BERT模型的超参数,建立故障预警模型;然后,计算正常状态数据中每个滑动窗口的相似度均值,选取最小值乘以阈值系数确定预警阈值;最后,根据专家系统推理预警时刻的故障类型并给出检修指导。将所提方法应用于某350 MW机组磨煤机的运行中,结果表明模型的预测准确率高,且能提前24 s给出预警信息,为工程应用提供了参考。 展开更多
关键词 磨煤机 故障预警 bert算法 改进鲸鱼优化算法(IWOA) 专家系统
在线阅读 下载PDF
基于BERT-BiLSTM-CRF的工业控制协议逆向工程
7
作者 连莲 李素敏 +1 位作者 宗学军 何戡 《沈阳工业大学学报》 北大核心 2025年第5期609-616,共8页
【目的】工业控制协议解析是工业互联网安全中的关键环节,但传统方法存在普适性差和准确率低的问题,导致协议解析效率低下,难以满足实际工业场景中对高精度和高适应性解析的需求。【方法】提出一种基于深度学习模型的工业控制协议逆向... 【目的】工业控制协议解析是工业互联网安全中的关键环节,但传统方法存在普适性差和准确率低的问题,导致协议解析效率低下,难以满足实际工业场景中对高精度和高适应性解析的需求。【方法】提出一种基于深度学习模型的工业控制协议逆向解析方法,通过结合BERT预训练模型、双向长短期记忆网络(BiLSTM)和条件随机场(CRF),提升协议解析的普适性和准确率,为工业控制系统的安全分析和漏洞挖掘提供技术支持。首先,利用BERT预训练模型对工业控制协议数据进行动态词向量编码,将协议数据转化为高维向量,以捕捉协议数据的语义信息。BERT预训练模型通过其强大的上下文理解能力,能够有效处理复杂且多样的协议数据。其次,采用双向长短期记忆网络对协议数据之间的关系以及协议数据与标签数据之间的关联性进行建模。双向长短期记忆网络能够捕获协议数据中的长距离依赖关系,从而更好地理解协议的结构和语义。最后,引入条件随机场作为约束条件,对工业控制协议的格式和语义进行最优预测。条件随机场通过引入标签之间的转移概率,进一步提高了预测的准确性和一致性。通过BERT预训练模型、双向长短期记忆网络和条件随机场的结合,实现了对工业控制协议的格式提取和语义分析。此外,本文方法还针对大规模协议数据进行了优化,确保其在处理复杂工业场景时的高效性和稳定性。【结果】针对三种典型工业控制协议展开实验,结果表明本文方法在格式提取和语义分析上的精度均超过96%,较传统方法有所提升,在不同协议上均表现出高适应性和准确性,能够有效识别字段边界与语义信息。【结论】本文方法显著提升了工业控制协议解析的普适性和准确率,为工业控制系统的安全分析提供了可靠的技术支持。未来将进一步优化模型,拓展应用场景,提升方法的实用性。 展开更多
关键词 工业控制协议 协议逆向工程 bert预训练模型 双向长短期记忆网络 条件随机场 词向量 格式提取 语义分析
在线阅读 下载PDF
BERT与BiLSTM融合技术在客户诉求数据治理中的应用研究
8
作者 李艳艳 徐梦舟 +2 位作者 严佳梅 周晶 张展鹏 《智能物联技术》 2025年第3期62-67,共6页
聚焦国家电网客服中心客户诉求数据治理中存在的效率低、人工依赖性强等问题,提出基于Transformer的双向编码器表征(Bidirectional Encoder Representations from Transformer,BERT)和双向长短时记忆(Bi-directional Long Short-Term Me... 聚焦国家电网客服中心客户诉求数据治理中存在的效率低、人工依赖性强等问题,提出基于Transformer的双向编码器表征(Bidirectional Encoder Representations from Transformer,BERT)和双向长短时记忆(Bi-directional Long Short-Term Memory,BiLSTM)融合技术的多阶段联合数据治理框架。通过构建有效性判断、语义增强、诉求监测及业务场景分类等核心模块,形成覆盖数据预处理、语义分析、分类预测及诉求应用的全链路治理体系。结果验表明,提出的BERT与BiLSTM融合技术具有较好的性能指标。所提框架通过动态语义特征提取与上下文建模的协同机制,实现客户诉求的细粒度分类和风险点识别,验证基于BERT和BiLSTM的融合模型在电力企业文本类数据处理和应用中的适用性和有效性,为构建自动化数据治理体系提供了更丰富的解决方案。 展开更多
关键词 基于Transformer的双向编码器表征(bert) 双向长短时记忆(BiLSTM) 数据治理 客户诉求分类 多模型融合
在线阅读 下载PDF
基于BERT_DPCNN的牛类疾病问句分类研究
9
作者 黄双斌 王梅嘉 高浏洋 《智能计算机与应用》 2025年第3期140-144,共5页
为帮助养殖户实现牛类养殖的精准、科学化管理,基于BERT、TextCNN、TextRNN模型,研究牛类疾病的问句分类方法,为构建面向牛类疾病的问答系统提供技术支撑。通过设计爬虫获取惠农网、百度贴吧等原始数据,并对数据进行预处理,获取了包含5... 为帮助养殖户实现牛类养殖的精准、科学化管理,基于BERT、TextCNN、TextRNN模型,研究牛类疾病的问句分类方法,为构建面向牛类疾病的问答系统提供技术支撑。通过设计爬虫获取惠农网、百度贴吧等原始数据,并对数据进行预处理,获取了包含5056条数据的数据集,将数据进一步划分为定义、预防、病因、症状、治疗和诊断共6类,以构建牛类疾病分类语料库。实验表明,BERT模型在6类精度有4类不弱于其他模型,在不同大小的数据集上预训练BERT模型在加权F1值上均优于TextCNN和TextRNN模型,与BERT其他变种模型进行了实验对比,BERT_DPCNN模型比BERT模型加权F1值高0.3%,考虑问答系统问句分类精确度要求高,选取BERT_DPCNN模型作为问句分类模型。 展开更多
关键词 自然语言处理 bert 牛类疾病 问答系统 问句分类
在线阅读 下载PDF
基于NSMFO-BERT算法的电力系统多目标优化经济调度研究
10
作者 曾浩政 殷林飞 《综合智慧能源》 2025年第4期98-106,共9页
随着大量可再生能源并网,传统电力系统模型已难以满足现代电力系统的复杂需求。为适应多种能源类型协同发电的趋势,构建了一种以火力发电为主、可再生能源为辅的新型电力系统模型。由于新型电力系统的发电成本和碳排放量目标面临着多目... 随着大量可再生能源并网,传统电力系统模型已难以满足现代电力系统的复杂需求。为适应多种能源类型协同发电的趋势,构建了一种以火力发电为主、可再生能源为辅的新型电力系统模型。由于新型电力系统的发电成本和碳排放量目标面临着多目标权衡的挑战,需要一种智能优化方法动态调整各发电单元的输出,并充分利用各类能源的优势。因此,提出了一种非支配飞蛾扑火优化–双向编码器表示转换器优化算法(NSMFO-BERT)。BERT作为一种大模型,擅长处理复杂的数据关系,通过学习NSMFO优化得到的发电机组有功功率与负荷预测之间的关系,并快速生成大量发电机组的调度策略。仿真结果表明,与NSMFO、多目标灰狼算法和多目标蚁狮算法相比,NSMFO-BERT能够找到发电成本和碳排放量目标值更低的帕累托曲线,且其计算速度分别比上述其他算法快69.3%,61.4%和90.9%,具有较强的泛化能力,适用于处理大规模的电力系统调度问题。 展开更多
关键词 双向编码器表示转换器 非支配飞蛾扑火优化算法 大模型 新型电力系统 发电成本 碳排放量
在线阅读 下载PDF
基于BERT实现基础医学专业术语智能提取系统 被引量:3
11
作者 李冬梅 朱朝阳 +4 位作者 李丽 邹玲 危晓莉 陈张一 彭慧琴 《基础医学教育》 2024年第11期1002-1007,共6页
在生成式人工智能的推动下,因材施教的个性化学习是现代教育的必然趋势。基于知识图谱的个性化学习路径是目前普遍采用的方式。在知识图谱的构建中,对专业术语的精准提取是最基础的工作,但仅靠人工完成,存在工作量大、易遗漏、不能及时... 在生成式人工智能的推动下,因材施教的个性化学习是现代教育的必然趋势。基于知识图谱的个性化学习路径是目前普遍采用的方式。在知识图谱的构建中,对专业术语的精准提取是最基础的工作,但仅靠人工完成,存在工作量大、易遗漏、不能及时更新的问题。文章通过自行设计标注的数据集medBaseDt,在开源预训练大模型BERT的基础上进行微调,训练完成termBERT模型,并设计开发了基础医学专业术语智能提取系统。该系统在组织学与胚胎学和病理学等教材中进行推理应用,专业术语提取准确率达到94.5±1.16%,取得了非常好的效果。通过该系统,教师能快速获取指定教材内容的专业词汇,快速完成知识图谱的设计。同时,该项技术也为后续研发AI智能构建知识图谱、智能生成试题和个性化学习打下了扎实的基础。 展开更多
关键词 基础医学 教学改革 人工智能 大语言模型 bert 微调
暂未订购
基于BERT与生成对抗的民航陆空通话意图挖掘 被引量:3
12
作者 马兰 孟诗君 吴志军 《系统工程与电子技术》 EI CSCD 北大核心 2024年第2期740-750,共11页
针对民航陆空通话领域语料难以获取、实体分布不均,以及意图信息提取中实体规范不足且准确率有待提升等问题,为了更好地提取陆空通话意图信息,提出一种融合本体的基于双向转换编码器(bidirectional encoder representations from transf... 针对民航陆空通话领域语料难以获取、实体分布不均,以及意图信息提取中实体规范不足且准确率有待提升等问题,为了更好地提取陆空通话意图信息,提出一种融合本体的基于双向转换编码器(bidirectional encoder representations from transformers,BERT)与生成对抗网络(generative adversarial network,GAN)的陆空通话意图信息挖掘方法,并引入航班池信息对提取的部分信息进行校验修正,形成空中交通管制(air traffic control,ATC)系统可理解的结构化信息。首先,使用改进的GAN模型进行陆空通话智能文本生成,可有效进行数据增强,平衡各类实体信息分布并扩充数据集;然后,根据欧洲单一天空空中交通管理项目定义的本体规则进行意图的分类与标注;之后,通过BERT预训练模型生成字向量并解决一词多义问题,利用双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络双向编码提取上下句语义特征,同时将该语义特征送入条件随机场(conditional random field,CRF)模型进行推理预测,学习标签的依赖关系并加以约束,以获取全局最优结果;最后,根据编辑距离(edit distance,ED)算法进行意图信息合理性校验与修正。对比实验结果表明,所提方法的宏平均F_(1)值达到了98.75%,在民航陆空通话数据集上的意图挖掘性能优于其他主流模型,为其加入数字化进程奠定了基础。 展开更多
关键词 民航陆空通话 信息提取 生成对抗网络 本体 双向转换编码器
在线阅读 下载PDF
利用BERT和覆盖率机制改进的HiNT文本检索模型 被引量:4
13
作者 邸剑 刘骏华 曹锦纲 《智能系统学报》 CSCD 北大核心 2024年第3期719-727,共9页
为有效提升文本语义检索的准确度,本文针对当前文本检索模型衡量查询和文档的相关性时不能很好地解决文本歧义和一词多义等问题,提出一种基于改进的分层神经匹配模型(hierarchical neural matching model,HiNT)。该模型先对文档的各个... 为有效提升文本语义检索的准确度,本文针对当前文本检索模型衡量查询和文档的相关性时不能很好地解决文本歧义和一词多义等问题,提出一种基于改进的分层神经匹配模型(hierarchical neural matching model,HiNT)。该模型先对文档的各个段提取关键主题词,然后用基于变换器的双向编码器(bidirectional encoder representations from transformers,BERT)模型将其编码为多个稠密的语义向量,再利用引入覆盖率机制的局部匹配层进行处理,使模型可以根据文档的局部段级别粒度和全局文档级别粒度进行相关性计算,提高检索的准确率。本文提出的模型在MS MARCO和webtext2019zh数据集上与多个检索模型进行对比,取得了最优结果,验证了本文提出模型的有效性。 展开更多
关键词 基于变换器的双向编码器 分层神经匹配模型 覆盖率机制 文本检索 语义表示 特征提取 自然语言处理 相似度 多粒度
在线阅读 下载PDF
融合汉字输入法的BERT与BLCG的长文本分类研究 被引量:3
14
作者 杨文涛 雷雨琦 +1 位作者 李星月 郑天成 《计算机工程与应用》 CSCD 北大核心 2024年第9期196-202,共7页
现有的中文长文本分类模型中,没有考虑汉字读音、笔画等特征信息,因此不能充分表示中文语义;同时,长文本中常常包含大量与目标主题无关的信息,甚至部分文本与其他主题相关,导致模型误判。为此,提出了一种融合汉字输入法的BERT(BERT fuse... 现有的中文长文本分类模型中,没有考虑汉字读音、笔画等特征信息,因此不能充分表示中文语义;同时,长文本中常常包含大量与目标主题无关的信息,甚至部分文本与其他主题相关,导致模型误判。为此,提出了一种融合汉字输入法的BERT(BERT fused Chinese input methods,CIMBERT)、带有门控机制的长短期记忆卷积网络(BiLSTM fused CNN with gating mechanism,BLCG)相结合的文本分类方法。该方法使用BERT模型进行文本的向量表示,在BERT模型的输入向量中,采用了拼音和五笔两种常用的汉字输入法,增强了汉字的语义信息。建立了BLCG模型进行文本特征提取,该模型使用双向长短期记忆网络(BiLSTM)进行全局特征提取、卷积神经网络(CNN)进行局部特征提取,并通过门控机制(gating mechanism)动态融合全局特征和局部特征,解决了部分文本与目标主题无关导致模型误判的问题。在THUCNews数据集与Sogou语料库上对该方法进行了验证,其准确率为97.63%、95.43%,F1-score为97.68%、95.49%,优于其他文本分类模型。 展开更多
关键词 长文本分类 bert模型 卷积神经网络 长短期记忆网络 门控机制
在线阅读 下载PDF
融合BERT和双向长短时记忆网络的中文反讽识别研究 被引量:1
15
作者 王旭阳 戚楠 魏申酉 《计算机工程与应用》 CSCD 北大核心 2024年第20期153-159,共7页
用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和... 用户对微博热点话题进行评论时会使用反语、讽刺的修辞手法,其本身带有一定的情感倾向会对情感分析结果造成一定影响。因此该文主要针对中文微博评论进行反讽识别,构建了一个包含反语、讽刺和非反讽的三分类数据集,提出一个基于BERT和双向长短时记忆网络(BiLSTM)的模型BERT_BiLSTM。该模型通过BERT生成含有上下文信息的动态字向量,输入BiLSTM提取文本的深层反讽特征,在全连接层传入softmax对文本进行反讽识别。实验结果表示,在二分类和三分类数据集上,提出的BERT_BiLSTM模型与现有主流模型相比准确率和F1值均有明显提高。 展开更多
关键词 反讽识别 bert 特征提取 双向长短时记忆网络(BiLSTM)
在线阅读 下载PDF
基于BERT+CNN_BiLSTM的列控车载设备故障诊断 被引量:1
16
作者 陈永刚 贾水兰 +2 位作者 朱键 韩思成 熊文祥 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第1期120-127,共8页
列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型... 列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型。首先,使用来自变换器的双向编码器表征量(Bidirectional encoder representations from transformers,BERT)模型将应用事件日志(Application event log,AElog)转换为计算机能够识别的可以挖掘语义信息的文本向量表示。其次,分别利用卷积神经网络(Convolutional neural network,CNN)和双向长短时记忆网络(Bidirectional long short-term memory,BiLSTM)提取故障特征并进行组合,从而增强空间和时序能力。最后,利用Softmax实现列控车载设备的故障分类与诊断。实验中,选取一列实际运行的列车为研究对象,以运行过程中产生的AElog日志作为实验数据来验证BERT+CNN_BiLSTM模型的性能。与传统机器学习算法、BERT+BiLSTM模型和BERT+CNN模型相比,BERT+CNN_BiLSTM模型的准确率、召回率和F1分别为92.27%、91.03%和91.64%,表明该模型在高速列车控制系统故障诊断中性能优良。 展开更多
关键词 车载设备 故障诊断 来自变换器的双向编码器表征量 应用事件日志 双向长短时记忆网络 卷积神经网络
在线阅读 下载PDF
BTM-BERT模型在民航机务维修安全隐患自动分类中的应用
17
作者 陈芳 张亚博 《安全与环境学报》 CAS CSCD 北大核心 2024年第11期4366-4373,共8页
为界定民航机务维修安全隐患类别,实现安全隐患数据的自动分类,首先,利用构建的机务维修停用词库对安全隐患记录语料进行预处理。其次,运用词对主题模型(Biterm Topic Model,BTM)提取主题和关键词,确定了“员工未按规定对工作现场进行... 为界定民航机务维修安全隐患类别,实现安全隐患数据的自动分类,首先,利用构建的机务维修停用词库对安全隐患记录语料进行预处理。其次,运用词对主题模型(Biterm Topic Model,BTM)提取主题和关键词,确定了“员工未按规定对工作现场进行监管”等12类安全隐患。最后,根据BTM主题模型标注的数据集对算法进行微调,构建了基于变换器的双向编码(Bidirectional Encoder Representations from Transformers,BERT)算法的机务维修安全隐患记录自动分类模型,并与传统的分类算法进行对比。结果表明:所构建的模型可以实现民航机务维修安全隐患自动分类,其效果远高于传统机器学习支持向量机算法的效果,构建的分类模型的精确率、召回率和F 1较文本卷积神经网络算法分别提升了0.12、0.14和0.14,总体准确率达到了93%。 展开更多
关键词 安全工程 机务维修 词对主题模型(BTM) 基于变换器的双向编码(bert) 安全隐患 文本分类
原文传递
知识增强的BERT短文本分类算法 被引量:3
18
作者 傅薛林 金红 +2 位作者 郑玮浩 张奕 陶小梅 《计算机工程与设计》 北大核心 2024年第7期2027-2033,共7页
为解决短文本信息不全且缺乏领域知识导致关键信息难以充分挖掘而造成的深度学习模型分类性能不足等问题,提出一种知识增强的双向编码器表示转换器(BERT)短文本分类算法(KE-BERT)。提出一种建模短文本与领域知识的方法,通过知识图谱进... 为解决短文本信息不全且缺乏领域知识导致关键信息难以充分挖掘而造成的深度学习模型分类性能不足等问题,提出一种知识增强的双向编码器表示转换器(BERT)短文本分类算法(KE-BERT)。提出一种建模短文本与领域知识的方法,通过知识图谱进行领域知识的引入;提出一种知识适配器,通过知识适配器在BERT的各个编码层之间进行知识增强。通过在公开的短文本数据集上,将KE-BERT与其它深度学习模型相比较,该模型的F1均值和准确率均值达到93.46%和91.26%,结果表明了所提模型性能表现良好。 展开更多
关键词 短文本分类 深度学习 双向编码器表示转换器 知识图谱 领域知识 知识适配器 知识增强
在线阅读 下载PDF
基于MacBERT与对抗训练的机器阅读理解模型 被引量:1
19
作者 周昭辰 方清茂 +2 位作者 吴晓红 胡平 何小海 《计算机工程》 CAS CSCD 北大核心 2024年第5期41-50,共10页
机器阅读理解旨在让机器像人类一样理解自然语言文本,并据此进行问答任务。近年来,随着深度学习和大规模数据集的发展,机器阅读理解引起了广泛关注,但是在实际应用中输入的问题通常包含各种噪声和干扰,这些噪声和干扰会影响模型的预测... 机器阅读理解旨在让机器像人类一样理解自然语言文本,并据此进行问答任务。近年来,随着深度学习和大规模数据集的发展,机器阅读理解引起了广泛关注,但是在实际应用中输入的问题通常包含各种噪声和干扰,这些噪声和干扰会影响模型的预测结果。为了提高模型的泛化能力和鲁棒性,提出一种基于掩码校正的来自Transformer的双向编码器表示(Mac BERT)与对抗训练(AT)的机器阅读理解模型。首先利用Mac BERT对输入的问题和文本进行词嵌入转化为向量表示;然后根据原始样本反向传播的梯度变化在原始词向量上添加微小扰动生成对抗样本;最后将原始样本和对抗样本输入双向长短期记忆(Bi LSTM)网络进一步提取文本的上下文特征,输出预测答案。实验结果表明,该模型在简体中文数据集CMRC2018上的F1值和精准匹配(EM)值分别较基线模型提高了1.39和3.85个百分点,在繁体中文数据集DRCD上的F1值和EM值分别较基线模型提高了1.22和1.71个百分点,在英文数据集SQu ADv1.1上的F1值和EM值分别较基线模型提高了2.86和1.85个百分点,优于已有的大部分机器阅读理解模型,并且在真实问答结果上与基线模型进行对比,结果验证了该模型具有更强的鲁棒性和泛化能力,在输入的问题存在噪声的情况下性能更好。 展开更多
关键词 机器阅读理解 对抗训练 预训练模型 掩码校正的来自Transformer的双向编码器表示 双向长短期记忆网络
在线阅读 下载PDF
ALBERT预训练模型在医疗文书命名实体识别中的应用研究
20
作者 庞秋奔 李银 《信息与电脑》 2024年第6期152-156,共5页
中文电子病历命名实体识别主要是研究电子病历病程记录文书数据集,文章提出对医疗手术麻醉文书数据集进行命名实体识别的研究。利用轻量级来自Transformer的双向编码器表示(A Lite Bidirectional Encoder Representation from Transform... 中文电子病历命名实体识别主要是研究电子病历病程记录文书数据集,文章提出对医疗手术麻醉文书数据集进行命名实体识别的研究。利用轻量级来自Transformer的双向编码器表示(A Lite Bidirectional Encoder Representation from Transformers,ALBERT)预训练模型微调数据集和Tranfomers中的trainer训练器训练模型的方法,实现在医疗手术麻醉文书上识别手术麻醉事件命名实体与获取复杂麻醉医疗质量控制指标值。文章为医疗手术麻醉文书命名实体识别提供了可借鉴的思路,并且为计算复杂麻醉医疗质量控制指标值提供了一种新的解决方案。 展开更多
关键词 命名实体识别 轻量级来自Transformer的双向编码器表示(ALbert)模型 transformers 麻醉医疗质量控制指标 医疗手术麻醉文书
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部