期刊文献+
共找到327篇文章
< 1 2 17 >
每页显示 20 50 100
基于改进Transformer的持续血糖浓度预测模型
1
作者 徐鹤 杨丹丹 +1 位作者 刘思行 季一木 《数据采集与处理》 北大核心 2025年第4期1065-1081,共17页
糖尿病是一种普遍存在的慢性疾病,做好血糖控制对糖尿病的预防具有重要作用。然而,持续血糖监测(Continuous glucose monitoring,CGM)过程中数据的不确定性显著增加了血糖预测的难度。因此,提出一种新的基于深度学习的血糖浓度预测模型... 糖尿病是一种普遍存在的慢性疾病,做好血糖控制对糖尿病的预防具有重要作用。然而,持续血糖监测(Continuous glucose monitoring,CGM)过程中数据的不确定性显著增加了血糖预测的难度。因此,提出一种新的基于深度学习的血糖浓度预测模型,旨在提高模型对传感器提取数据的适应性。在该模型中,堆叠式降噪自编码器(Stacked denoising auto encoder,SDAE)被嵌入Transformer编码器的结构中,实现对输入数据的重构去噪和特征提取;然后,采用混合位置编码策略替代原来的单一绝对位置编码嵌入,同时将轻量级解码器引入Transformer模型中,替代原始结构复杂的解码器,聚合来自不同层次的特征信息,同时获取局部和全局特征;最后,通过搭建的SDAE-改进Transformer网络对CGM数据序列并行化训练,更全面地捕捉数据中的时序模式和复杂关联,提高预测性能。实验结果表明,该模型相较于传统方法在血糖预测任务中取得了显著的性能提升,证实了其在处理CGM数据时的有效性和鲁棒性。 展开更多
关键词 持续血糖监测 神经网络 堆叠降噪自编码器 transformER 注意力机制
在线阅读 下载PDF
基于DRSN-Transformer编码器的域自适应辐射源个体识别方法研究
2
作者 张冠杰 李艳斌 +1 位作者 畅鑫 闫红超 《河北工业科技》 2025年第4期303-313,共11页
为了使深度神经网络能够准确识别不同传输信道的辐射源个体,提出了一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)融合Transformer编码器的域自适应个体识别方法。采用DRSN软阈值模块自动去掉I/Q接收信号中的噪声,利... 为了使深度神经网络能够准确识别不同传输信道的辐射源个体,提出了一种基于深度残差收缩网络(deep residual shrinkage network,DRSN)融合Transformer编码器的域自适应个体识别方法。采用DRSN软阈值模块自动去掉I/Q接收信号中的噪声,利用Transformer编码器进一步提取信号中各符号间的依赖特征,使用域自适应对抗学习方法将不同域的目标信号映射为相同分布的目标特征,使得DRSN-Transformer编码器网络模型能够准确提取与信道无关的射频指纹特征(radio frequency fingerprint,RFF),实现信道变化时目标辐射源个体的精准识别,并利用调制器畸变信号模型进行了仿真试验。结果表明:与ResNet和DRSN网络模型相比,所提DRSN-Transformer网络模型的平均识别准确率分别提升了2.98个百分点和1.65个百分点;采用域自适应对抗学习方法的DRSN-Transformer编码器网络模型能够有效降低源域和目标域信号特征分布的不一致性,与传统方法训练的DRSN-Transformer编码器网络模型相比,在信噪比为27 dB时,识别准确率提升了20.73个百分点,显著改善了信道变化时的辐射源个体识别性能。与传统学习方法相比,所提方法虽然增加了特征提取网络与域判别网络的对抗训练过程,但训练完成的特征提取网络能够准确提取与信道变化无关的指纹特征,在辐射源个体识别领域具有一定的应用价值。 展开更多
关键词 计算机神经网络 深度残差收缩网络 transformer编码器 域对抗神经网络 特定辐射源识别 信道自适应
在线阅读 下载PDF
增强双流Transformer的柴油发动机剩余寿命预测模型 被引量:1
3
作者 张曦 杨颖 +2 位作者 陈超君 王春风 杨磊 《汽车工程》 北大核心 2025年第2期292-300,325,共10页
基于Transformer的模型在剩余使用寿命(remaining useful life,RUL)预测方面取得了显著的进展。然而,现有Transformer模型主要存在以下不足:模型在提取局部特征方面有所欠缺,且没有同时考虑输入特征的不同时间和不同空间的重要性。针对... 基于Transformer的模型在剩余使用寿命(remaining useful life,RUL)预测方面取得了显著的进展。然而,现有Transformer模型主要存在以下不足:模型在提取局部特征方面有所欠缺,且没有同时考虑输入特征的不同时间和不同空间的重要性。针对以上问题,提出一种增强的双流Transformer模型,通过局部特征提取模块和交互融合模块对模型进行增强。首先,通过局部特征提取模块分别在时间流和空间流提取局部特征,以弥补Transformer在局部特征提取方面的不足。然后,使用双流Transformer分别在时间和空间维度提取长期依赖,增强双流分支的互补学习。最后,构建交互融合模块,通过双线性融合方法捕获流级交互,进一步提升预测效果。使用多个模型在某柴油发动机制造商两个真实的数据集上进行实验,其结果表明评价指标RMSE和Score至少分别降低3.23%和5.89%。 展开更多
关键词 剩余使用寿命预测 transformer编码器 卷积神经网络 特征融合 滑动窗口
在线阅读 下载PDF
基于时空Transformer-encoder的跨社交网络用户匹配方法
4
作者 张洋 马强 《计算机应用研究》 CSCD 北大核心 2024年第12期3742-3748,共7页
针对目前基于签到时空数据的跨社交网络用户匹配方法未充分利用时空信息之间的耦合关系,导致时空数据特征提取困难,匹配准确率下降的问题,提出了一种基于时空Transformer-encoder的跨社交网络用户匹配方法。该方法通过网格映射将签到时... 针对目前基于签到时空数据的跨社交网络用户匹配方法未充分利用时空信息之间的耦合关系,导致时空数据特征提取困难,匹配准确率下降的问题,提出了一种基于时空Transformer-encoder的跨社交网络用户匹配方法。该方法通过网格映射将签到时空信息转换为序列数据,生成签到序列;利用序列嵌入层将离散的签到序列映射到连续高维空间;然后借助多头注意力机制和卷积神经网络提取高维签到特征,并利用卷积神经网络实现优化多头注意力模块权重变换和特征融合;最后利用前馈神经网络实现分类,输出用户匹配得分。在两组真实社交网络用户数据集上进行大量用户匹配实验,与现有方法相比,准确率提升了0.40~10.53百分点,F_(1)值提升了0.43~9.5百分点。这验证了所提方法能够有效提取用户签到耦合特征,并提高用户匹配的性能。 展开更多
关键词 跨社交网络 用户匹配 transformer-encoder 卷积神经网络
在线阅读 下载PDF
Graph Transformer技术与研究进展:从基础理论到前沿应用 被引量:2
5
作者 游浩 丁苍峰 +2 位作者 马乐荣 延照耀 曹璐 《计算机应用研究》 北大核心 2025年第4期975-986,共12页
图数据处理是一种用于分析和操作图结构数据的方法,广泛应用于各个领域。Graph Transformer作为一种直接学习图结构数据的模型框架,结合了Transformer的自注意力机制和图神经网络的方法,是一种新型模型。通过捕捉节点间的全局依赖关系... 图数据处理是一种用于分析和操作图结构数据的方法,广泛应用于各个领域。Graph Transformer作为一种直接学习图结构数据的模型框架,结合了Transformer的自注意力机制和图神经网络的方法,是一种新型模型。通过捕捉节点间的全局依赖关系和精确编码图的拓扑结构,Graph Transformer在节点分类、链接预测和图生成等任务中展现出卓越的性能和准确性。通过引入自注意力机制,Graph Transformer能够有效捕捉节点和边的局部及全局信息,显著提升模型效率和性能。深入探讨Graph Transformer模型,涵盖其发展背景、基本原理和详细结构,并从注意力机制、模块架构和复杂图处理能力(包括超图、动态图)三个角度进行细分分析。全面介绍Graph Transformer的应用现状和未来发展趋势,并探讨其存在的问题和挑战,提出可能的改进方法和思路,以推动该领域的研究和应用进一步发展。 展开更多
关键词 图神经网络 Graph transformer 图表示学习 节点分类
在线阅读 下载PDF
Enhanced Topic-Aware Summarization Using Statistical Graph Neural Networks
6
作者 Ayesha Khaliq Salman Afsar Awan +2 位作者 Fahad Ahmad Muhammad Azam Zia Muhammad Zafar Iqbal 《Computers, Materials & Continua》 SCIE EI 2024年第8期3221-3242,共22页
The rapid expansion of online content and big data has precipitated an urgent need for efficient summarization techniques to swiftly comprehend vast textual documents without compromising their original integrity.Curr... The rapid expansion of online content and big data has precipitated an urgent need for efficient summarization techniques to swiftly comprehend vast textual documents without compromising their original integrity.Current approaches in Extractive Text Summarization(ETS)leverage the modeling of inter-sentence relationships,a task of paramount importance in producing coherent summaries.This study introduces an innovative model that integrates Graph Attention Networks(GATs)with Transformer-based Bidirectional Encoder Representa-tions from Transformers(BERT)and Latent Dirichlet Allocation(LDA),further enhanced by Term Frequency-Inverse Document Frequency(TF-IDF)values,to improve sentence selection by capturing comprehensive topical information.Our approach constructs a graph with nodes representing sentences,words,and topics,thereby elevating the interconnectivity and enabling a more refined understanding of text structures.This model is stretched to Multi-Document Summarization(MDS)from Single-Document Summarization,offering significant improvements over existing models such as THGS-GMM and Topic-GraphSum,as demonstrated by empirical evaluations on benchmark news datasets like Cable News Network(CNN)/Daily Mail(DM)and Multi-News.The results consistently demonstrate superior performance,showcasing the model’s robustness in handling complex summarization tasks across single and multi-document contexts.This research not only advances the integration of BERT and LDA within a GATs but also emphasizes our model’s capacity to effectively manage global information and adapt to diverse summarization challenges. 展开更多
关键词 SUMMARIZATION graph attention network bidirectional encoder representations from transformers Latent Dirichlet Allocation term frequency-inverse document frequency
在线阅读 下载PDF
基于MSCSO-Transformer-BiLSTM的短期电力负荷预测
7
作者 张翾 李红月 《佳木斯大学学报(自然科学版)》 2025年第11期15-20,共6页
针对传统预测模型超参数难以选取及无法有效捕捉电力负荷数据全局特征的问题,提出一种基于改进沙猫群算法(MSCSO)优化Transformer编码器与双向长短期记忆网络(BiLSTM)解码器的组合模型。为克服沙猫群算法(SCSO)在种群初始化及处理高维... 针对传统预测模型超参数难以选取及无法有效捕捉电力负荷数据全局特征的问题,提出一种基于改进沙猫群算法(MSCSO)优化Transformer编码器与双向长短期记忆网络(BiLSTM)解码器的组合模型。为克服沙猫群算法(SCSO)在种群初始化及处理高维复杂问题上存在的不足,利用SPM混沌映射、Levy飞行策略、透镜成像反向学习与麻雀预警机制对SCSO的3个主要阶段进行改进,并利用MSCSO对Transformer-BiLSTM模型的超参数进行寻优,以提升模型的预测精度和训练效率。通过与原始SCSO、灰狼算法、麻雀算法、鹈鹕算法的寻优对比测试,证明MSCSO的优越性。最后,在福建某市真实电力负荷数据集上对预测模型进行算例仿真分析,结果表明:预测结果的MAE,RMSE,R~2分别达到118.643 MW,167.555 MW与0.987,均优于其他对比模型,验证了模型在超参数选择及电力负荷预测方面的优良性能。 展开更多
关键词 短期电力负荷预测 transformer架构 双向长短期记忆神经网络 改进沙猫群算法
在线阅读 下载PDF
Traditional Chinese Medicine Synonymous Term Conversion:A Bidirectional Encoder Representations from Transformers-Based Model for Converting Synonymous Terms in Traditional Chinese Medicine
8
作者 Lu Zhou Chao-Yong Wu +10 位作者 Xi-Ting Wang Shuang-Qiao Liu Yi-Zhuo Zhang Yue-Meng Sun Jian Cui Cai-Yan Li Hui-Min Yuan Yan Sun Feng-Jie Zheng Feng-Qin Xu Yu-Hang Li 《World Journal of Traditional Chinese Medicine》 CAS CSCD 2023年第2期224-233,共10页
Background:The medical records of traditional Chinese medicine(TCM)contain numerous synonymous terms with different descriptions,which is not conducive to computer-aided data mining of TCM.However,there is a lack of m... Background:The medical records of traditional Chinese medicine(TCM)contain numerous synonymous terms with different descriptions,which is not conducive to computer-aided data mining of TCM.However,there is a lack of models available to normalize synonymous TCM terms.Therefore,construction of a synonymous term conversion(STC)model for normalizing synonymous TCM terms is necessary.Methods:Based on the neural networks of bidirectional encoder representations from transformers(BERT),four types of TCM STC models were designed:Models based on BERT and text classification,text sequence generation,named entity recognition,and text matching.The superior STC model was selected on the basis of its performance in converting synonymous terms.Moreover,three misjudgment inspection methods for the conversion results of the STC model based on inconsistency were proposed to find incorrect term conversion:Neuron random deactivation,output comparison of multiple isomorphic models,and output comparison of multiple heterogeneous models(OCMH).Results:The classification-based STC model outperformed the other STC task models.It achieved F1 scores of 0.91,0.91,and 0.83 for performing symptoms,patterns,and treatments STC tasks,respectively.The OCMH method showed the best performance in misjudgment inspection,with wrong detection rates of 0.80,0.84,and 0.90 in the term conversion results for symptoms,patterns,and treatments,respectively.Conclusion:The TCM STC model based on classification achieved superior performance in converting synonymous terms for symptoms,patterns,and treatments.The misjudgment inspection method based on OCMH showed superior performance in identifying incorrect outputs. 展开更多
关键词 bidirectional encoder representations from transformers misjudgment inspection synonymous term conversion traditional Chinesem edicine
原文传递
基于Transformer的多尺度遥感语义分割网络 被引量:7
9
作者 邵凯 王明政 王光宇 《智能系统学报》 CSCD 北大核心 2024年第4期920-929,共10页
为了提升遥感图像语义分割效果,本文针对分割目标类间方差小、类内方差大的特点,从全局上下文信息和多尺度语义特征2个关键点提出一种基于Transformer的多尺度遥感语义分割网络(muliti-scale Transformer network,MSTNet)。其由编码器... 为了提升遥感图像语义分割效果,本文针对分割目标类间方差小、类内方差大的特点,从全局上下文信息和多尺度语义特征2个关键点提出一种基于Transformer的多尺度遥感语义分割网络(muliti-scale Transformer network,MSTNet)。其由编码器和解码器2个部分组成,编码器包含基于Transformer改进的视觉注意网络(visual attention network,VAN)主干和基于空洞空间金字塔池化(atrous spatial pyramid pooling, ASPP)结构改进的多尺度语义特征提取模块(multi-scale semantic feature extraction module, MSFEM)。解码器采用轻量级多层感知器(multi-layer perception,MLP)配合编码器设计,充分分析所提取的包含全局上下文信息和多尺度表示的语义特征。MSTNet在2个高分辨率遥感语义分割数据集ISPRS Potsdam和LoveDA上进行验证,平均交并比(mIoU)分别达到79.50%和54.12%,平均F1-score(m F1)分别达到87.46%和69.34%,实验结果验证了本文所提方法有效提升了遥感图像语义分割的效果。 展开更多
关键词 遥感图像 语义分割 卷积神经网络 transformER 全局上下文信息 多尺度感受野 编码器 解码器
在线阅读 下载PDF
基于Transformer的高效自适应语义分割网络 被引量:2
10
作者 张海波 蔡磊 +2 位作者 任俊平 王汝言 刘富 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第6期1205-1214,共10页
基于Transformer的语义分割网络存在2个问题:分辨率变化引起的分割精度显著下降,自注意力机制计算复杂度过高。为此,利用零值填充的卷积可保留位置信息的特性,提出自适应卷积位置编码模块;利用自注意力计算中特定矩阵的维度可相互抵消... 基于Transformer的语义分割网络存在2个问题:分辨率变化引起的分割精度显著下降,自注意力机制计算复杂度过高。为此,利用零值填充的卷积可保留位置信息的特性,提出自适应卷积位置编码模块;利用自注意力计算中特定矩阵的维度可相互抵消的特性,提出降低自注意力计算量的联合重采样自注意力模块;设计用于融合不同阶段特征图的解码器,构造能够自适应不同分辨率输入的高效分割网络EA-Former. EA-Former在数据集ADE20K、Cityscapes上的最优平均交并比分别为51.0%、83.9%.与主流分割算法相比,EA-Former能够以更低的计算复杂度得到具有竞争力的分割精度,由输入分辨率变化引起的分割性能下降问题得以缓解. 展开更多
关键词 语义分割 transformER 自注意力 位置编码 神经网络
在线阅读 下载PDF
基于Transformer和多尺度CNN的图像去模糊 被引量:4
11
作者 李现国 李滨 《计算机工程》 CAS CSCD 北大核心 2023年第9期226-233,245,共9页
卷积神经网络(CNN)单独应用于图像去模糊时感受野受限,Transformer能有效缓解这一问题但计算复杂度随输入图像空间分辨率的增加呈2次方增长。为此,提出一种基于Transformer和多尺度CNN的图像去模糊网络(T-MIMO-UNet)。利用多尺度CNN提... 卷积神经网络(CNN)单独应用于图像去模糊时感受野受限,Transformer能有效缓解这一问题但计算复杂度随输入图像空间分辨率的增加呈2次方增长。为此,提出一种基于Transformer和多尺度CNN的图像去模糊网络(T-MIMO-UNet)。利用多尺度CNN提取空间特征,并嵌入Transformer全局特性捕获远程像素信息。设计局部增强Transformer模块、局部多头自注意力计算网络和增强前馈网络,采用窗口的方式进行局部逐块多头自注意力计算,通过增加深度可分离卷积层,加强不同窗口之间的信息交互。在GoPro测试数据集上的实验结果表明,T-MIMO-UNet的峰值信噪比相比于MIMO-UNet、DeepDeblur、DeblurGAN、SRN网络分别提升了0.39 dB、2.89 dB、3.42 dB、1.86 dB,参数量相比于MPRNet减少了1/2,能有效解决动态场景下的图像模糊问题。 展开更多
关键词 图像去模糊 多尺度卷积神经网络 transformer编码器 多头自注意力 增强前馈网络
在线阅读 下载PDF
基于改良Transformer算法的冠心病证候要素诊断处方模型分析 被引量:8
12
作者 李洪峥 王阶 +5 位作者 郭雨晨 张振鹏 李剑楠 李谦一 董艳 杜强 《中国实验方剂学杂志》 CAS CSCD 北大核心 2023年第1期148-154,共7页
目的:利用改良Transformer算法构建冠心病中医证候诊断、方药推荐模型。方法:以冠心病证候要素为关键环节,基于临证诊疗思路“症状-证候要素-证候-治法-方剂-药物(剂量)”搭建基本逻辑,综合运用多头注意力机制、复合词向量、随机失活形... 目的:利用改良Transformer算法构建冠心病中医证候诊断、方药推荐模型。方法:以冠心病证候要素为关键环节,基于临证诊疗思路“症状-证候要素-证候-治法-方剂-药物(剂量)”搭建基本逻辑,综合运用多头注意力机制、复合词向量、随机失活形成改良Transformer算法,模拟临床医师临证思路,形成具备冠心病中医证候要素判断、证候诊断、方药推荐、可更新迭代功能的智能化模型。模型建立后,选择8030例临床病例诊疗数据作为训练集进行模型训练,随机筛选100例基于真实临床病例的中医开方数据进行测试,比较模型输出方药与临床医师方药,对模型进行定性评价。结果:加入多头注意力机制的改良Transformer算法使模型准确率有更大的提升,模型在主要证候的判断、主要方剂的选择上与临床医师一致,在药物加减上有一定提升空间。结论:改良Transformer模型可提高冠心病证候要素、主要证候、处方、用药的准确率,较为准确、稳定地输出主要证候和方药建议,是中医智能化发展的体现。 展开更多
关键词 冠心病 中医药(TCM) 证候要素 机器学习 注意力机制 双向transformer编码表达(BERT) 人工智能(AI)
原文传递
基于Transformer神经网络的滚动轴承故障类型识别 被引量:18
13
作者 邱大伟 刘子辰 +3 位作者 周一青 龙隆 谭雯雯 曹欢 《高技术通讯》 EI CAS 2021年第1期1-11,共11页
工程应用中的滚动轴承故障类型识别要求同时具有较高的识别准确度和时间效率,基于上述需求提出基于Transformer神经网络的滚动轴承故障类型识别方法。所提方法结合小波包变换时频域能量特征和快速傅里叶变换频域特征生成满足Transforme... 工程应用中的滚动轴承故障类型识别要求同时具有较高的识别准确度和时间效率,基于上述需求提出基于Transformer神经网络的滚动轴承故障类型识别方法。所提方法结合小波包变换时频域能量特征和快速傅里叶变换频域特征生成满足Transformer神经网络的输入样本矩阵,解决Transformer神经网络的输入问题。同时,提出应用于滚动轴承故障类型识别的归一化位置编码方法,解决Transformer神经网络在滚动轴承故障分析领域的位置编码问题。在此基础上,提出Transformer神经网络双向输入样本矩阵处理机制和算法训练过程中错误样本权重增强机制,提升所提方法的鲁棒性。使用KAt数据中心的滚动轴承数据集验证所提方法的识别性能,与现有常用深度学习方法相比,所提方法在时间效率和准确度性能上均有一定的优势,其中,准确度能够提升11%以上,单个样本的平均处理时间小于1 ms。 展开更多
关键词 滚动轴承 故障类型识别 transformer神经网络 前向特征矩阵 后向特征矩阵 归一化位置编码 权重增强
在线阅读 下载PDF
一种基于Transformer编码器与LSTM的飞机轨迹预测方法 被引量:4
14
作者 李明阳 鲁之君 +1 位作者 曹东晶 曹世翔 《航天返回与遥感》 CSCD 北大核心 2024年第2期163-176,共14页
为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和... 为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。 展开更多
关键词 轨迹预测 transformer编码器 神经网络 飞机目标 transformer-encoder-LSTM模型
在线阅读 下载PDF
基于改进Transformer模型的运动想象脑电分类方法研究 被引量:3
15
作者 刘月峰 刘好峰 +2 位作者 王越 刘博 暴祥 《计量学报》 CSCD 北大核心 2023年第7期1147-1153,共7页
运动想象(MI)脑电信号本身是由一组较长且连续的特征值组成的信号序列,传统Transformer模型无法捕捉较长序列之间的依赖,设置固定长度的序列又会产生碎片化问题,因此有待进一步调整和优化。针对上述问题,在传统Transformer模型中加入了... 运动想象(MI)脑电信号本身是由一组较长且连续的特征值组成的信号序列,传统Transformer模型无法捕捉较长序列之间的依赖,设置固定长度的序列又会产生碎片化问题,因此有待进一步调整和优化。针对上述问题,在传统Transformer模型中加入了片段重用的循环机制和重用之前片段信息的相对位置编码机制,使Transformer模型能够学习更长特征序列的特征信息,同时解决重用片段之间的位置编码信息错乱和重用等问题。然后,通过并行多分支CNN进一步捕捉脑电局部特征。最后,利用竞赛数据集2008 BCI-Competition 2A对改进的Transformer模型性能进行评估。结果表明,在不做任何人工特征提取的前提下,对于四分类数据集,改进Transformer模型的平均准确率和kappa值分别为94.27%和87.34%。 展开更多
关键词 计量学 脑电信号 运动想象 脑机接口 卷积神经网络 transformer模型 片段循环机制 相对位置编码
在线阅读 下载PDF
引入 Transformer 和尺度融合的动物骨骼关键点检测模型构建 被引量:16
16
作者 张飞宇 王美丽 王正超 《农业工程学报》 EI CAS CSCD 北大核心 2021年第23期179-185,共7页
动物的姿态和行为与其自身的健康状况有着密切联系,检测动物骨骼关键点是进行动物姿态识别、异常行为分析的前提。针对现有的关键点检测方法对动物骨骼的识别准确率低、鲁棒性差等问题,该研究提出了一种引入Transformer编码器的动物骨... 动物的姿态和行为与其自身的健康状况有着密切联系,检测动物骨骼关键点是进行动物姿态识别、异常行为分析的前提。针对现有的关键点检测方法对动物骨骼的识别准确率低、鲁棒性差等问题,该研究提出了一种引入Transformer编码器的动物骨骼关键点检测模型。首先,在HRNet网络的特征提取层中引入改进的Transformer编码器,用于捕捉关键点之间的空间约束关系,在小规模的羊数据集上有较优的检测性能。其次,引入多尺度信息融合模块,提高模型在不同维度特征上的学习能力,让模型可以适用于更多的实际场景。为了验证模型的有效性和泛化性,该研究采集并标注了羊的骨骼关键点数据集,并加入东北虎数据集ATRW共同作为训练集。试验结果表明,在羊和东北虎关键点数据集上,该模型分别取得77.1%和89.7%的准确率,均优于对比模型且计算量更小,单张图像检测时间为14 ms,满足实时检测的需求。使用牛、马等数据集进行跨域测试均能较好地检测出骨骼关键点,并分析了Transformer编码器的可解释性。该研究可为精确检测动物骨骼关键点提供一种有效的技术支持。 展开更多
关键词 识别 动物 骨骼 卷积神经网络 关键点检测 注意力机制 transformer编码器
在线阅读 下载PDF
基于Transformer时间特征聚合的步态识别模型 被引量:9
17
作者 邓帆 曾渊 +3 位作者 刘博文 姜博源 钟重阳 夏时洪 《计算机应用》 CSCD 北大核心 2023年第S01期15-18,共4页
步态识别是最有前途的基于视频生物识别技术之一。目前,大多数步态识别方法更着重于提升神经网络提取空间特征的能力,而忽视在时间维度上特征的聚合。针对步态识别中缺乏时间维度特征提取能力的问题,提出了一种基于Transformer时间特征... 步态识别是最有前途的基于视频生物识别技术之一。目前,大多数步态识别方法更着重于提升神经网络提取空间特征的能力,而忽视在时间维度上特征的聚合。针对步态识别中缺乏时间维度特征提取能力的问题,提出了一种基于Transformer时间特征聚合的步态识别模型。首先,步态剪影序列通过卷积神经网络提取特征,与位置编码结合;然后,在时间维度上使用Transformer编码器聚合时间特征;最后,连接线性分类层实现步态识别。在最流行的步态识别数据集CASIA-B上进行实验,所提模型比GaitSet模型识别准确度在NM#5-6上提升了3.4个百分点,BG#1-2上提升了1.5个百分点,CL#1-2上提升了11.6个百分点。实验结果表明,Transformer提升了网络对时间维度特征的聚合能力,并且降低了模型对外套和携带物的敏感性。 展开更多
关键词 步态识别 神经网络 特征提取 transformER 位置编码
在线阅读 下载PDF
基于Transformer和多特征融合的DGA域名检测方法 被引量:15
18
作者 余子丞 凌捷 《计算机工程与科学》 CSCD 北大核心 2023年第8期1416-1423,共8页
针对域名生成算法生成的恶意域名隐蔽性高,现有方法在恶意域名检测上准确率不高的问题,提出一种基于Transformer和多特征融合的DGA域名检测方法。该方法使用Transformer编码器捕获域名字符的全局信息,通过并行深度卷积神经网络获取不同... 针对域名生成算法生成的恶意域名隐蔽性高,现有方法在恶意域名检测上准确率不高的问题,提出一种基于Transformer和多特征融合的DGA域名检测方法。该方法使用Transformer编码器捕获域名字符的全局信息,通过并行深度卷积神经网络获取不同粒度的长距离上下文特征,同时引入双向长短期记忆网络BiLSTM和自注意力机制Self-Attention结合浅层CNN得到浅层时空特征,融合长距离上下文特征和浅层时空特征进行DGA域名检测。实验结果表明,所提方法在恶意域名检测方法上有更好的性能。相对于CNN、LSTM、L-PCAL和SW-DRN,所提方法在二分类实验中准确率分别提升了1.72%,1.10%,0.75%和0.34%;在多分类实验中准确率分别提升了1.75%,1.29%,0.88%和0.83%。 展开更多
关键词 域名生成算法 transformer模型 深度卷积神经网络 双向长短期记忆网络 自注意力机制
在线阅读 下载PDF
Graph Transformers研究进展综述 被引量:3
19
作者 周诚辰 于千城 +2 位作者 张丽丝 胡智勇 赵明智 《计算机工程与应用》 CSCD 北大核心 2024年第14期37-49,共13页
随着图结构数据在各种实际场景中的广泛应用,对其进行有效建模和处理的需求日益增加。Graph Transformers(GTs)作为一类使用Transformers处理图数据的模型,能够有效缓解传统图神经网络(GNN)中存在的过平滑和过挤压等问题,因此可以学习... 随着图结构数据在各种实际场景中的广泛应用,对其进行有效建模和处理的需求日益增加。Graph Transformers(GTs)作为一类使用Transformers处理图数据的模型,能够有效缓解传统图神经网络(GNN)中存在的过平滑和过挤压等问题,因此可以学习到更好的特征表示。根据对近年来GTs相关文献的研究,将现有的模型架构分为两类:第一类通过绝对编码和相对编码向Transformers中加入图的位置和结构信息,以增强Transformers对图结构数据的理解和处理能力;第二类根据不同的方式(串行、交替、并行)将GNN与Transformers进行结合,以充分利用两者的优势。介绍了GTs在信息安全、药物发现和知识图谱等领域的应用,对比总结了不同用途的模型及其优缺点。最后,从可扩展性、复杂图、更好的结合方式等方面分析了GTs未来研究面临的挑战。 展开更多
关键词 Graph transformers(GTs) 图神经网络 图表示学习 异构图
在线阅读 下载PDF
基于CNN-Transformer网络融合模型的动态肌肉疲劳状态识别研究 被引量:2
20
作者 刘景轩 陶庆 +3 位作者 赵暮超 胡学政 马金旭 袁陆 《陕西科技大学学报》 北大核心 2024年第2期208-215,共8页
为了解决现有的肌肉疲劳状态分类较少以及识别准确率不高的问题,提出一种基于表面肌电信号的CNN-Transformer肌肉疲劳识别模型,实现了动态肌肉疲劳的准确分类.该模型将传统的卷积神经网络与Transformer编码器模块相结合,相比单一卷积神... 为了解决现有的肌肉疲劳状态分类较少以及识别准确率不高的问题,提出一种基于表面肌电信号的CNN-Transformer肌肉疲劳识别模型,实现了动态肌肉疲劳的准确分类.该模型将传统的卷积神经网络与Transformer编码器模块相结合,相比单一卷积神经网络模型有更好的全局信息捕捉能力,对运动性肌肉疲劳识别具有更好的分类精度.首先,对15名健康受试者进行肘关节屈伸运动疲劳实验并基于疲劳程度划分了四种状态;其次,将获取的表面肌电信号数据进行预处理,并提取近似熵和排列熵两个非线性特征作为机器学习的特征输入;最后,利用原始表面肌电信号数据构建CNN-Transformer识别模型,与卷积神经网络、Transformer、随机森林模型进行比较.结果表明,在识别肌肉疲劳状态准确率方面CNN-Transformer模型比卷积神经网络、Transformer和随机森林模型分别高出2.89%、5.48%、7.24%,可见该模型具有良好的分类效果. 展开更多
关键词 表面肌电信号 动态肌肉疲劳 卷积神经网络 transformer编码器
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部