Bichromatic circularly polarized fields provide a useful tool to probe the ionization dynamics.In this work, we compare the photoelectron momentum distribution in few-cycle bichromatic field of different helicities.Th...Bichromatic circularly polarized fields provide a useful tool to probe the ionization dynamics.In this work, we compare the photoelectron momentum distribution in few-cycle bichromatic field of different helicities.The spectral features are analyzed with semiclassical trajectories derived from the strong field approximation.In particular, the interference fringes in momentum distribution are investigated by tracking the ionization time and tunneling exits of released photoelectrons.Different types of trajectories that contribute to the interference fringes are elucidated.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11420101003,11604347,11827806,11874368,61675213,and 91636105)
文摘Bichromatic circularly polarized fields provide a useful tool to probe the ionization dynamics.In this work, we compare the photoelectron momentum distribution in few-cycle bichromatic field of different helicities.The spectral features are analyzed with semiclassical trajectories derived from the strong field approximation.In particular, the interference fringes in momentum distribution are investigated by tracking the ionization time and tunneling exits of released photoelectrons.Different types of trajectories that contribute to the interference fringes are elucidated.