The increase in user mobility and density in modern cellular networks increases the risk of overloading certain base stations in popular locations such as shopping malls or stadiums,which can result in connection loss...The increase in user mobility and density in modern cellular networks increases the risk of overloading certain base stations in popular locations such as shopping malls or stadiums,which can result in connection loss for some users.To combat this,the traffic load of base stations should be kept as balanced as possible.In this paper,we propose an efficient load balancing-aware handover algorithm for highly dynamic beyond 5G heterogeneous networks by assigning mobile users to base stations with lighter loads when a handover is performed.The proposed algorithm is evaluated in a scenario with users having different levels of mobility,such as pedestrians and vehicles,and is shown to outperform the conventional handover mechanism,as well as another algorithm from the literature.As a secondary benefit,the overall energy consumption in the network is shown to be reduced with the proposed algorithm.展开更多
The in-band full-duplex(IBFD)mechanism is of interest in beyond 5 G systems due to its potential to enhance spectral efficiency and reduce delay.To achieve the maximum gain of IBFD systems,the significant self-interfe...The in-band full-duplex(IBFD)mechanism is of interest in beyond 5 G systems due to its potential to enhance spectral efficiency and reduce delay.To achieve the maximum gain of IBFD systems,the significant self-interference(SI)must be efficiently suppressed.The challenges of wideband selfinterference cancellation(SIC)lie in the radio frequency(RF)domain,where the performance will be limited by the hardware.This paper reviews current RF cancellation mechanisms and investigates an efficient mechanism for future wideband systems with minimum complexity.The working principle and implementation details of multi-tap cancellers are first introduced,then an optical domain-based RF canceller is reviewed,and a novel low-cost design is proposed.To minimize the cost and complexity of the canceller,the minimum required number of taps are analyzed.Simulation results show that with the commonly used 12-bits analog-to-digital converter(ADC)at the receiver,the novel optical domain-based canceller can enable efficient SIC in the 3 GPP LTE specifications compatible system within 400 MHz bandwidth.展开更多
The development of communication technology will promote the application of Internet of Things,and Beyond 5G will become a new technology promoter.At the same time,Beyond 5G will become one of the important supports f...The development of communication technology will promote the application of Internet of Things,and Beyond 5G will become a new technology promoter.At the same time,Beyond 5G will become one of the important supports for the development of edge computing technology.This paper proposes a communication task allocation algorithm based on deep reinforcement learning for vehicle-to-pedestrian communication scenarios in edge computing.Through trial and error learning of agent,the optimal spectrum and power can be determined for transmission without global information,so as to balance the communication between vehicle-to-pedestrian and vehicle-to-infrastructure.The results show that the agent can effectively improve vehicle-to-infrastructure communication rate as well as meeting the delay constraints on the vehicle-to-pedestrian link.展开更多
目前,各运营商仅在Sub-6 GHz频段建设基站,并未实现频率范围2(Frequency Range 2,FR2)的5G商业部署。相较于中国电信股份有限公司江苏分公司现网部署的3.5 GHz频段,毫米波频段较高,基站需部署更多天线来获得更多的波束增益,以弥补FR2频...目前,各运营商仅在Sub-6 GHz频段建设基站,并未实现频率范围2(Frequency Range 2,FR2)的5G商业部署。相较于中国电信股份有限公司江苏分公司现网部署的3.5 GHz频段,毫米波频段较高,基站需部署更多天线来获得更多的波束增益,以弥补FR2频段的高路径损耗。因为通信波束较窄,基站与终端只有使用最佳波束对通信才可获得较高的通信速率,所以高效的波束搜索方案必不可少。在后5G(Beyond 5G,B5G)场景下提出一种波束搜索方法,相较于遍历搜索,可在复杂度降低99.999%的同时获得较高的频谱效率。展开更多
The rapid proliferation of connected IoT(Internet of Things)devices,along with the increasing demand for 5G mobile networks and ubiquitous high-speed connectivity,poses significant challenges in the telecommunications...The rapid proliferation of connected IoT(Internet of Things)devices,along with the increasing demand for 5G mobile networks and ubiquitous high-speed connectivity,poses significant challenges in the telecommunications sector.To address these challenges,a comprehensive understanding of the integration of 5G/6G networks and LEO(Low Earth Orbit)satellite networks is required,forming the concept of“integrated networks”.Integration offers valuable advantages,including service continuity,wide-area coverage,and support for critical communications and emerging applications.This paper provides a high-level overview of the convergence of 5G/6G,LEO satellites,and IoT devices,shedding light on the technological challenges and standardization issues associated with the transition from 5G to 6G networks using NTNs(Non-Terrestrial Networks)based on LEO satellites.Furthermore,this research delves into the emerging social issues,potential possibilities,and the paradigm shift from the IoT to the IoI(Internet of Intelligence),which is poised to revolutionize the landscape of 6G wireless networks.By highlighting the interconnectedness of 5G/6G networks,LEO satellite systems,and IoT devices,it underscores the importance of leveraging these converging technologies to address environmental protection and achieve the United Nations SDGs(Sustainable Development Goals).In addition to providing valuable insights for readers seeking to comprehend the convergence of 5G/6G networks,LEO satellite systems,and IoT devices,this paper represents the outcomes of a comprehensive analysis conducted at the ECSTAR(Excellence Center of Space Technology and Research).Through an examination of technological challenges and advancements,it identifies future research directions and potential avenues for exploration at ECSTAR,thereby contributing to a broader understanding of integrated networks and their profound impact on future telecommunications systems.This research serves as a significant resource for advancing the knowledge and discourse surrounding the linkages between the convergence of these technologies,environmental protection,and the pursuit of the SDGs.展开更多
Cell-free(CF)multiple-input multiple-output(MIMO)is a promising technique to enable the vision of ubiquitous wireless connectivity for next-generation network communications.Compared to traditional co-located massive ...Cell-free(CF)multiple-input multiple-output(MIMO)is a promising technique to enable the vision of ubiquitous wireless connectivity for next-generation network communications.Compared to traditional co-located massive MIMO,CF MIMO allows geographically distributed access points(APs)to serve all users on the same time-frequency resource with spatial multiplexing techniques,resulting in better performance in terms of both spectral efficiency and coverage enhancement.However,the performance gain is achieved at the expense of deploying more APs with high cost and power consumption.To address this issue,the recently proposed reconfigurable intelligent surface(RIS)technique stands out with its unique advantages of low cost,low energy consumption and programmability.In this paper,we provide an overview of RIS-assisted CF MIMO and its interaction with advanced optimization designs and novel applications.Particularly,recent studies on typical performance metrics such as energy efficiency(EE)and spectral efficiency(SE)are surveyed.Besides,the application of RIS-assisted CF MIMO techniques in various future communication systems is also envisioned.Additionally,we briefly discuss the technical challenges and open problems for this area to inspire research direction and fully exploit its potential in meeting the demands of future wireless communication systems.展开更多
To provide global service with low latency, the broadband low earth orbits (LEO) satellite constellation based communication systems have become one of the focuses in academic and industry. To allow for wideband acces...To provide global service with low latency, the broadband low earth orbits (LEO) satellite constellation based communication systems have become one of the focuses in academic and industry. To allow for wideband access for user links, the feeder link of LEO satellite is correspondingly required to support high throughput data communications. To this end, we propose to apply line-of-sight (LoS) multiple-input multiple-output (MIMO) transmission for the feeder link to achieve spatial multiplexing by optimizing the antenna arrangement. Unlike the LoS MIMO applications for static scenarios, the movement of LEO satellites make it impractical to adjust the optimal antenna separation for all possible satellite positions. To address this issue, we propose to design the antenna placement to maximize the ergodic channel capacity during the visible region of the ground station. We first derive the closed-form probability distribution of the satellite trajectory in visible region. Based on which the ergodic channel capacity can be then calculated numerically. The antenna placement can be further optimized to maximize the ergodic channel capacity. Numerical results verify the derived probability distribution of the satellite trajectory, and show that the proposed LoS MIMO scheme can significantly increase the ergodic channel capacity compared with the existing SISO one.展开更多
Future networks communication scenarios by the 2030s will include notable applications are three-dimensional(3D)calls,haptics communications,unmanned mobility,tele-operated driving,bio-internet of things,and the Nanoi...Future networks communication scenarios by the 2030s will include notable applications are three-dimensional(3D)calls,haptics communications,unmanned mobility,tele-operated driving,bio-internet of things,and the Nanointernet of things.Unlike the current scenario in which megahertz bandwidth are sufficient to drive the audio and video components of user applications,the future networks of the 2030s will require bandwidths in several gigahertzes(GHz)(from tens of gigahertz to 1 terahertz[THz])to perform optimally.Based on the current radio frequency allocation chart,it is not possible to obtain such a wide contiguous radio spectrum below 90 GHz(0.09 THz).Interestingly,these contiguous blocks of radio spectrum are readily available in the higher electromagnetic spectrum,specifically in the Terahertz(THz)frequency band.The major contribution of this study is discussing the substantial issues and key features of THz waves,which include(i)key features and significance of THz frequency;(ii)recent regulatory;(iii)the most promising applications;and(iv)possible open research issues.These research topics were deeply investigated with the aim of providing a specific,synopsis,and encompassing conclusion.Thus,this article will be as a catalyst towards exploring new frontiers for future networks of the 2030s.展开更多
Due to the large amount of unused and unexplored spectrum resources, the so-called subTerahertz(sub-THz) frequency bands from 100 to 300 GHz are seen as promising bands for the next generation of wireless communicatio...Due to the large amount of unused and unexplored spectrum resources, the so-called subTerahertz(sub-THz) frequency bands from 100 to 300 GHz are seen as promising bands for the next generation of wireless communication systems. Channel modeling at sub-THz bands is essential for the design and deployment of future wireless communication systems. Channel measurement is a widely adopted method to obtain channel characteristics and establish mathematical channel models. Channel measurements depend on the design and construction of channel sounders. Thus, reliable channel sounding techniques and accurate channel measurements are required. In this paper, the requirements of an ideal channel sounder are discussed and the main channel sounding techniques are described for the subTHz frequency bands. The state-of-the-art sub-THz channel sounders reported in the literature and respective channel measurements are presented. Moreover, a vector network analyzer(VNA) based channel sounder, which supports frequency bands from 220 to330 GHz is presented and its performance capability and limitation are evaluated. This paper also discussed the challenge and future outlook of the sub-THz channel sounders and measurements.展开更多
With the increasing demand for high bandwidth wireless communication systems,and with a congested spectrum in the sub-6 GHz frequency bands,researchers have been looking into exploration of millimeter wave(mmWave)and ...With the increasing demand for high bandwidth wireless communication systems,and with a congested spectrum in the sub-6 GHz frequency bands,researchers have been looking into exploration of millimeter wave(mmWave)and sub-terahertz(subTHz)frequency bands.Channel modeling is essential for system design and performance evaluation of new wireless communication systems.Accurate channel modeling relies on reliable measured channel data,which is collected by high-fidelity channel sounders.Furthermore,it is of importance to understand to which extent channel parameters are frequency dependent in typical deployment scenario(including both indoor short-range and outdoor long-range scenarios).To achieve this purpose,this paper presents a stateof-art long-range 28 GHz and 300 GHz VNA-based channel sounder using optical cable solutions,which can support a measurement range up to 300 m and 600 m in principle,respectively.The design,development and validation of the long-range channel sounders at mmWave and sub-THz bands are reported,with a focus on their system principle,link budget,and backto-back measurements.Furthermore,a measurement campaign in an indoor corridor is performed using the developed 300 GHz system and 28 GHz channel sounding systems.Both measured channels at the 28 GHz and 300 GHz channels are shown to be highly sparse and specular.A higher number of Multi Path Components(MPC)are observed for the 28 GHz system,while the same main MPC are observed for both systems.展开更多
基金supported in part by the Istanbul Technical University Scientific Research Projects Coordination Unit under Grant FHD-2024-45764in part by TUBITAK 1515 Frontier R&D Laboratories Support Program for Turkcell 6GEN LAB under Grant 5229902Turkcell Technology R&D Center(Law no.5746)has partially supported this study。
文摘The increase in user mobility and density in modern cellular networks increases the risk of overloading certain base stations in popular locations such as shopping malls or stadiums,which can result in connection loss for some users.To combat this,the traffic load of base stations should be kept as balanced as possible.In this paper,we propose an efficient load balancing-aware handover algorithm for highly dynamic beyond 5G heterogeneous networks by assigning mobile users to base stations with lighter loads when a handover is performed.The proposed algorithm is evaluated in a scenario with users having different levels of mobility,such as pedestrians and vehicles,and is shown to outperform the conventional handover mechanism,as well as another algorithm from the literature.As a secondary benefit,the overall energy consumption in the network is shown to be reduced with the proposed algorithm.
基金supported by the research grant from Huawei Technologies(Sweden)ABsupported by the U.K.Engineering and Physical Sciences Research Council(EPSRC)under Grant EP/P009549/1。
文摘The in-band full-duplex(IBFD)mechanism is of interest in beyond 5 G systems due to its potential to enhance spectral efficiency and reduce delay.To achieve the maximum gain of IBFD systems,the significant self-interference(SI)must be efficiently suppressed.The challenges of wideband selfinterference cancellation(SIC)lie in the radio frequency(RF)domain,where the performance will be limited by the hardware.This paper reviews current RF cancellation mechanisms and investigates an efficient mechanism for future wideband systems with minimum complexity.The working principle and implementation details of multi-tap cancellers are first introduced,then an optical domain-based RF canceller is reviewed,and a novel low-cost design is proposed.To minimize the cost and complexity of the canceller,the minimum required number of taps are analyzed.Simulation results show that with the commonly used 12-bits analog-to-digital converter(ADC)at the receiver,the novel optical domain-based canceller can enable efficient SIC in the 3 GPP LTE specifications compatible system within 400 MHz bandwidth.
基金supported by National Natural Science Foundation of China(No.61871283)the Foundation of Pre-Research on Equipment of China(No.61400010304)Major Civil-Military Integration Project in Tianjin,China(No.18ZXJMTG00170).
文摘The development of communication technology will promote the application of Internet of Things,and Beyond 5G will become a new technology promoter.At the same time,Beyond 5G will become one of the important supports for the development of edge computing technology.This paper proposes a communication task allocation algorithm based on deep reinforcement learning for vehicle-to-pedestrian communication scenarios in edge computing.Through trial and error learning of agent,the optimal spectrum and power can be determined for transmission without global information,so as to balance the communication between vehicle-to-pedestrian and vehicle-to-infrastructure.The results show that the agent can effectively improve vehicle-to-infrastructure communication rate as well as meeting the delay constraints on the vehicle-to-pedestrian link.
文摘The rapid proliferation of connected IoT(Internet of Things)devices,along with the increasing demand for 5G mobile networks and ubiquitous high-speed connectivity,poses significant challenges in the telecommunications sector.To address these challenges,a comprehensive understanding of the integration of 5G/6G networks and LEO(Low Earth Orbit)satellite networks is required,forming the concept of“integrated networks”.Integration offers valuable advantages,including service continuity,wide-area coverage,and support for critical communications and emerging applications.This paper provides a high-level overview of the convergence of 5G/6G,LEO satellites,and IoT devices,shedding light on the technological challenges and standardization issues associated with the transition from 5G to 6G networks using NTNs(Non-Terrestrial Networks)based on LEO satellites.Furthermore,this research delves into the emerging social issues,potential possibilities,and the paradigm shift from the IoT to the IoI(Internet of Intelligence),which is poised to revolutionize the landscape of 6G wireless networks.By highlighting the interconnectedness of 5G/6G networks,LEO satellite systems,and IoT devices,it underscores the importance of leveraging these converging technologies to address environmental protection and achieve the United Nations SDGs(Sustainable Development Goals).In addition to providing valuable insights for readers seeking to comprehend the convergence of 5G/6G networks,LEO satellite systems,and IoT devices,this paper represents the outcomes of a comprehensive analysis conducted at the ECSTAR(Excellence Center of Space Technology and Research).Through an examination of technological challenges and advancements,it identifies future research directions and potential avenues for exploration at ECSTAR,thereby contributing to a broader understanding of integrated networks and their profound impact on future telecommunications systems.This research serves as a significant resource for advancing the knowledge and discourse surrounding the linkages between the convergence of these technologies,environmental protection,and the pursuit of the SDGs.
基金supported in part by ZTE Industry-University-Institute Co⁃operation Funds.
文摘Cell-free(CF)multiple-input multiple-output(MIMO)is a promising technique to enable the vision of ubiquitous wireless connectivity for next-generation network communications.Compared to traditional co-located massive MIMO,CF MIMO allows geographically distributed access points(APs)to serve all users on the same time-frequency resource with spatial multiplexing techniques,resulting in better performance in terms of both spectral efficiency and coverage enhancement.However,the performance gain is achieved at the expense of deploying more APs with high cost and power consumption.To address this issue,the recently proposed reconfigurable intelligent surface(RIS)technique stands out with its unique advantages of low cost,low energy consumption and programmability.In this paper,we provide an overview of RIS-assisted CF MIMO and its interaction with advanced optimization designs and novel applications.Particularly,recent studies on typical performance metrics such as energy efficiency(EE)and spectral efficiency(SE)are surveyed.Besides,the application of RIS-assisted CF MIMO techniques in various future communication systems is also envisioned.Additionally,we briefly discuss the technical challenges and open problems for this area to inspire research direction and fully exploit its potential in meeting the demands of future wireless communication systems.
基金supported by the National Key R&D Program of China under Grant 2019YFB1803102
文摘To provide global service with low latency, the broadband low earth orbits (LEO) satellite constellation based communication systems have become one of the focuses in academic and industry. To allow for wideband access for user links, the feeder link of LEO satellite is correspondingly required to support high throughput data communications. To this end, we propose to apply line-of-sight (LoS) multiple-input multiple-output (MIMO) transmission for the feeder link to achieve spatial multiplexing by optimizing the antenna arrangement. Unlike the LoS MIMO applications for static scenarios, the movement of LEO satellites make it impractical to adjust the optimal antenna separation for all possible satellite positions. To address this issue, we propose to design the antenna placement to maximize the ergodic channel capacity during the visible region of the ground station. We first derive the closed-form probability distribution of the satellite trajectory in visible region. Based on which the ergodic channel capacity can be then calculated numerically. The antenna placement can be further optimized to maximize the ergodic channel capacity. Numerical results verify the derived probability distribution of the satellite trajectory, and show that the proposed LoS MIMO scheme can significantly increase the ergodic channel capacity compared with the existing SISO one.
基金the Research Program through the National Research Foundation of Korea(NRF-2019R1A2C1005920).
文摘Future networks communication scenarios by the 2030s will include notable applications are three-dimensional(3D)calls,haptics communications,unmanned mobility,tele-operated driving,bio-internet of things,and the Nanointernet of things.Unlike the current scenario in which megahertz bandwidth are sufficient to drive the audio and video components of user applications,the future networks of the 2030s will require bandwidths in several gigahertzes(GHz)(from tens of gigahertz to 1 terahertz[THz])to perform optimally.Based on the current radio frequency allocation chart,it is not possible to obtain such a wide contiguous radio spectrum below 90 GHz(0.09 THz).Interestingly,these contiguous blocks of radio spectrum are readily available in the higher electromagnetic spectrum,specifically in the Terahertz(THz)frequency band.The major contribution of this study is discussing the substantial issues and key features of THz waves,which include(i)key features and significance of THz frequency;(ii)recent regulatory;(iii)the most promising applications;and(iv)possible open research issues.These research topics were deeply investigated with the aim of providing a specific,synopsis,and encompassing conclusion.Thus,this article will be as a catalyst towards exploring new frontiers for future networks of the 2030s.
基金supported by the EURAMET European Partnership on Metrology(EPM),under the 21NRM03 Metrology for Emerging Wireless Standards(MEWS)projectThe project(21NRM03 MEWS)has received funding from the EPM,co-financed from the European Union’s Horizon Europe Research and Innovation Programme,and by the Participating States。
文摘Due to the large amount of unused and unexplored spectrum resources, the so-called subTerahertz(sub-THz) frequency bands from 100 to 300 GHz are seen as promising bands for the next generation of wireless communication systems. Channel modeling at sub-THz bands is essential for the design and deployment of future wireless communication systems. Channel measurement is a widely adopted method to obtain channel characteristics and establish mathematical channel models. Channel measurements depend on the design and construction of channel sounders. Thus, reliable channel sounding techniques and accurate channel measurements are required. In this paper, the requirements of an ideal channel sounder are discussed and the main channel sounding techniques are described for the subTHz frequency bands. The state-of-the-art sub-THz channel sounders reported in the literature and respective channel measurements are presented. Moreover, a vector network analyzer(VNA) based channel sounder, which supports frequency bands from 220 to330 GHz is presented and its performance capability and limitation are evaluated. This paper also discussed the challenge and future outlook of the sub-THz channel sounders and measurements.
基金supported by EURAMET European Partnership on Metrology Programme (MEWS) and under the framework of European COST INTERACT action(CA20120)
文摘With the increasing demand for high bandwidth wireless communication systems,and with a congested spectrum in the sub-6 GHz frequency bands,researchers have been looking into exploration of millimeter wave(mmWave)and sub-terahertz(subTHz)frequency bands.Channel modeling is essential for system design and performance evaluation of new wireless communication systems.Accurate channel modeling relies on reliable measured channel data,which is collected by high-fidelity channel sounders.Furthermore,it is of importance to understand to which extent channel parameters are frequency dependent in typical deployment scenario(including both indoor short-range and outdoor long-range scenarios).To achieve this purpose,this paper presents a stateof-art long-range 28 GHz and 300 GHz VNA-based channel sounder using optical cable solutions,which can support a measurement range up to 300 m and 600 m in principle,respectively.The design,development and validation of the long-range channel sounders at mmWave and sub-THz bands are reported,with a focus on their system principle,link budget,and backto-back measurements.Furthermore,a measurement campaign in an indoor corridor is performed using the developed 300 GHz system and 28 GHz channel sounding systems.Both measured channels at the 28 GHz and 300 GHz channels are shown to be highly sparse and specular.A higher number of Multi Path Components(MPC)are observed for the 28 GHz system,while the same main MPC are observed for both systems.