The issue of water molecule activity in aqueous zinc-ion batteries presents a significant challenge.During the charging and discharging process,the strong polarity of water molecules tends to cause the dissolution of ...The issue of water molecule activity in aqueous zinc-ion batteries presents a significant challenge.During the charging and discharging process,the strong polarity of water molecules tends to cause the dissolution of cathode materials,which reduces the cycle stability and specific capacity,consequently limiting the practical application of zinc-ion batteries.In this work,hydroxypropylβ-cyclodextrin(HP-β-CD),a special stereo cyclic organic molecule with hydrophobic inner cavity and hydrophilic outer cavity,is used as the intercalator for hydrated vanadium oxide(VOH)to enlarge the layer spacing and enhance the hydrophobicity of the cathode material.The larger interlayer spacing(13.9Å)of HP-β-CD-VOH is beneficial for improving ion mobility and the intrinsic electrochemical reaction kinetics.HP-β-CD-VOH delivers a discharge capacity of 336.7 mAh g^(-1)at 0.2 A g^(-1)and high-rate capability(242 mAh g^(-1)at 5 A g^(-1)).Due to the hydrophobic property of HP-β-CD in the interlayer pillar,the vanadium dissolution effect of polar water molecules can be reduced during charge and discharge;HP-β-CDVOH demonstrates sustained high efficiency and extended cycle longevity,maintaining a remarkable durability of 6000 cycles at a current density of 10 A g^(-1).This study presents an effective strategy for developing high-performance aqueous zinc-ion battery cathode materials.展开更多
基金financially supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJQN202300759)the Vanadium Titanium Materials Engineering Technology Research Center Foundation Project of Sichuan(No.2022FTGC07)+5 种基金the National Key R&D Program of China(No.2023YFC3009500)the National Natural Science Foundation of China(No.22379103)the Science and Technology Projects of Suzhou City(No.SYC2022043)the Campus Science Fund Project of Chongqing Jiaotong University(Nos.2020020086 and 2020023032)the Graduate Tutor Team Construction Project of Chongqing(No.JDDSTD2022006)the Graduate Student Research Innovation Project of Chongqing(No.2024S0110)
文摘The issue of water molecule activity in aqueous zinc-ion batteries presents a significant challenge.During the charging and discharging process,the strong polarity of water molecules tends to cause the dissolution of cathode materials,which reduces the cycle stability and specific capacity,consequently limiting the practical application of zinc-ion batteries.In this work,hydroxypropylβ-cyclodextrin(HP-β-CD),a special stereo cyclic organic molecule with hydrophobic inner cavity and hydrophilic outer cavity,is used as the intercalator for hydrated vanadium oxide(VOH)to enlarge the layer spacing and enhance the hydrophobicity of the cathode material.The larger interlayer spacing(13.9Å)of HP-β-CD-VOH is beneficial for improving ion mobility and the intrinsic electrochemical reaction kinetics.HP-β-CD-VOH delivers a discharge capacity of 336.7 mAh g^(-1)at 0.2 A g^(-1)and high-rate capability(242 mAh g^(-1)at 5 A g^(-1)).Due to the hydrophobic property of HP-β-CD in the interlayer pillar,the vanadium dissolution effect of polar water molecules can be reduced during charge and discharge;HP-β-CDVOH demonstrates sustained high efficiency and extended cycle longevity,maintaining a remarkable durability of 6000 cycles at a current density of 10 A g^(-1).This study presents an effective strategy for developing high-performance aqueous zinc-ion battery cathode materials.