In this paper, an exact solution for an uniformly loaded rectangular plate with two adjacent edges clamped, one edge simply supported and the other edge free, was given by using the concept of generalized simply suppo...In this paper, an exact solution for an uniformly loaded rectangular plate with two adjacent edges clamped, one edge simply supported and the other edge free, was given by using the concept of generalized simply supported edges and superposition method. The numerical results were given for the deflections along the free edge and bending moments along the clamped edges of a square plate.展开更多
In this paper, the bending problem of rectangular thin plates with free edges laid on tensionless Winkler foundation has been solved by employing Fourier series with supplementary terms. By assuming proper form of ser...In this paper, the bending problem of rectangular thin plates with free edges laid on tensionless Winkler foundation has been solved by employing Fourier series with supplementary terms. By assuming proper form of series for deflection, the basic differential equation with given boundary conditions can be transformed into a set of infinite algebraic equations. Because the boundary of contact region cannot bedetermined in advance, these equations are weak nonlinear ones. They can be solved by using iterative procedures.展开更多
文摘In this paper, an exact solution for an uniformly loaded rectangular plate with two adjacent edges clamped, one edge simply supported and the other edge free, was given by using the concept of generalized simply supported edges and superposition method. The numerical results were given for the deflections along the free edge and bending moments along the clamped edges of a square plate.
文摘In this paper, the bending problem of rectangular thin plates with free edges laid on tensionless Winkler foundation has been solved by employing Fourier series with supplementary terms. By assuming proper form of series for deflection, the basic differential equation with given boundary conditions can be transformed into a set of infinite algebraic equations. Because the boundary of contact region cannot bedetermined in advance, these equations are weak nonlinear ones. They can be solved by using iterative procedures.