期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Fatigue Performance of Microalloyed High-strength Rebar and Analysis of Fracture Mechanism 被引量:6
1
作者 Peng-yan LU Yu LIU +3 位作者 Hua-jie WU Gang LIU Xiang MENG Yang XU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第12期1149-1155,共7页
Fatigue performance of hot-rolled ribbed-steel bar with the yield strength of 500 MPa (HRB500) was stud- ied with bend-rotating fatigue test at a stress ratio of R = -1. It is determined by staircase method that its... Fatigue performance of hot-rolled ribbed-steel bar with the yield strength of 500 MPa (HRB500) was stud- ied with bend-rotating fatigue test at a stress ratio of R = -1. It is determined by staircase method that its fatigue strength for 107 cycles is 451 MPa, which is higher than that of common carbon structural steel. This should be at- tributed to the fine-grain strengthening resulting from the high content of alloy element V and Thermo-Mechanical Control Process (TMCP). The S-N curve function is also obtained by nonlinear regression with three parameters power function. The fatigue fractures of the specimen were further analyzed with Scanning Electron Microscopy (SEM) and Energy Disperse Spectroscopy (EDS) to study the fracture mechanism. Taking into account microstruc- ture, hardness and cleanliness of the material, it implies that the fatigue fractures of HRB500 rebar all arise from surface substrates in which many brittle inclusions are contained, and that the fatigue crack propagation is principally based on the mechanism of quasi-cleavage fracture, because of the intracrystalline hard spots leading to stress con- centration and thus to the cracks. Moreover, the transient breaking area exhibits microvoid coalescence of ductile fracture due to the existing abundant inclusions. 展开更多
关键词 HRB500 bend-rotating fatigue performance fracture mechanism INCLUSION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部