Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an...Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an artificial method in a laboratory setting using microbial-induced carbonate precipitation(MICP)to simulate the natural process of cementation of limestone.The artificially cemented sand has a high degree of similarity with the natural weakly limestone in three aspects:(1)the mineral composition of the cemented material is also granular calcite and acicular aragonite;(2)the microstructure in interconnected open pore network can be gradually closed and contracted with cementation.The porosity reaches to approximately 9.2%;(3)both the stress-strain relationship and the unconfined strength closely resemble that of natural weakly limestone.Furthermore,both static and dynamic behaviors of artificial limestone were studied by quasi-static compression tests and Split Hopkinson Pressure Bar(SHPB)tests,finding that the unconfined strength of weakly artifical limestone exponentially increases with increasing strain rate.A rate-dependent bond strength was proposed and implemented in software to reveal the mechanism of strain rate effects.It is found that the loading velocity is too high to keep in sync with the initiation and propagation of cracks under impact loading.This delay-induced viscosity may restrict the movement of the surrounding balls,thus increasing resistance.展开更多
This study investigates how Internet media in the mobile phone influence on the cognitive and behavioral aspects of human sexuality. Sex is being deviating from socially accepted behaviors; ranging from bisexuality to...This study investigates how Internet media in the mobile phone influence on the cognitive and behavioral aspects of human sexuality. Sex is being deviating from socially accepted behaviors; ranging from bisexuality to homosexuality. Based on the qualitative methodology using particular case studies and textual analysis as well as survey research leading to quantitative methodology, this assumes of a transition of cultures as a result of the thorough impact of Internet towards society. In conclusion, lnternet implicit practices in the Mobile Phone in youth and teen societies storms a big change in sexuality, is also affecting towards the human cognitive and behavioral phases of the social life in traditional Buddhist rural village setting in Sri Lanka.展开更多
The dry impact wear behavior of bainite ductile cast iron was evaluated under three different impact loads for 30000 cycles. The strain-hardening effects beneath the contact surfaces were analyzed according to the sur...The dry impact wear behavior of bainite ductile cast iron was evaluated under three different impact loads for 30000 cycles. The strain-hardening effects beneath the contact surfaces were analyzed according to the surfaces' micro-hardness profiles. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to observe the wom surfaces. The results indicated that the material with the highest hardness was the one continuously cooled at 20℃, which exhibited the lowest wear rate under each set of test conditions. The hardness of the worn surface and the thickness of the hardened layer increased with the increases in impact load and in the number of test cycles. The better wear performance of the sample cooled at 20℃ is attributed to its finer microstructure and superior mechanical properties. All the samples underwent the transformation induced plasticity (TRIP) phenomenon after impact wear, as revealed by the fact that small amounts of retained austenite were detected by XRD.展开更多
The deformation behavior and formability of gradient nano-grained(GNG) AISI 304 stainless steel in uniaxial and biaxial states were investigated by means of tensile test and small punch test(SPT). The GNG top laye...The deformation behavior and formability of gradient nano-grained(GNG) AISI 304 stainless steel in uniaxial and biaxial states were investigated by means of tensile test and small punch test(SPT). The GNG top layer was fabricated on coarse grains(CG) AISI 304 by ultrasonic impact treatment. The results showed that the CG substrate could effectively suppress the strain localization of NC in GNG layer, and an approximate linear relationship existed between the thickness of substrate(h) and uniform true strain before necking(ε_(unif)). Grain growth of NC was observed at the stress state with high Stress triaxiality T, which led to better ductility of GNG/CG 304 in SPT, as well as similar true strain after the onset of necking(ε_(neck)) compared with coarse 304 in tensile test. Ei-values of GNG/CG 304 with different structures were nearly the same at different punch speeds, and good formability of GNG/CG 304 was demonstrated. However, punch speed and microstructure needed to be optimized to avoid much lost of membrane strain region in biaxial stress state.展开更多
A thermal-solid-liquid complex operational environment induces structural interface developing a typical coupling sliding/impact wear behavior.It results in contact damage until systems fail,which may cause significan...A thermal-solid-liquid complex operational environment induces structural interface developing a typical coupling sliding/impact wear behavior.It results in contact damage until systems fail,which may cause significant economic losses and catastrophic consequences.The key point of solving this problem is to reveal the coupling damage mechanism of the sliding/impact behavior in typical systems and life characterization under a complicate evolving environment.This has been a hot topic in the area of mechanical reliability.The main work in this paper can be concluded as follows.Firstly,the main industries in which the"sliding/impact behavior"takes place have been introduced.Then,existing studies on the wear mechanism and degree analysis are presented,which includes surface morphology analysis,wear debris analysis,and wear degree measurement.Meanwhile,existing problems in theoretical modeling and experiments in current research are summarized,so as to point out a bright direction for future research on wear prediction.They include interface contact modeling,mathematic coupling mechanism modeling,wear equation establishment,and wear life characterization,which can provide some new ideas for improving the existing studies on the sliding/impact wear behavior.展开更多
While animal models of controlled cortical impact often display short-term motor dysfunction after injury, histological examinations do not show severe cortical damage. Thus, this model requires further improvement. M...While animal models of controlled cortical impact often display short-term motor dysfunction after injury, histological examinations do not show severe cortical damage. Thus, this model requires further improvement. Mice were subjected to injury at three severities using a Pin-Point^(TM)-controlled cortical impact device to establish secondary brain injury mouse models. Twenty-four hours after injury, hematoxylin-eosin staining, Fluoro-Jade B histofluorescence, and immunohistochemistry were performed for brain slices. Compared to the uninjured side, we observed differences of histopathological findings, neuronal degeneration, and glial cell number in the CA2 and CA3 regions of the hippocampus on the injured side. The Morris water maze task and beam-walking test verified long-term(14–28 days) spatial learning/memory and motor balance. To conclude, the histopathological responses were positively correlated with the degree of damage,as were the long-term behavioral manifestations after controlled cortical impact. All animal procedures were approved by the Institutional Animal Care and Use Committee at Shanghai Jiao Tong University School of Medicine.展开更多
This work investigated the microstructure and impact behavior of Mg-4Al-5RE-xGd(RE represents La-Ce mischmetal;x=0,0.2,0.7 wt.%)alloys cast by high-pressure die casting(HPDC),permanent mold casting(PMC),and sand casti...This work investigated the microstructure and impact behavior of Mg-4Al-5RE-xGd(RE represents La-Ce mischmetal;x=0,0.2,0.7 wt.%)alloys cast by high-pressure die casting(HPDC),permanent mold casting(PMC),and sand casting(SC)techniques.The results indicated that with increasing Gd content,the grain sizes of the HPDC alloy had a slight change,but the grains of the PMC and SC alloys were significantly refined.Besides,the acicular Al_(11)RE_(3)phase was modified into the short-rod shape under the three casting conditions.The impact toughness of the studied alloy was mainly dominated by the absorbed energy during the crack initiation.With increasing Gd content,the impact toughness of the studied alloy monotonically increased due to the lower tendency of the modified second phase toward crack initiation.The impact stress was higher than the tensile stress,exhibiting a strain rate sensitivity for the mechanical response;however,the HPDC alloy had an inconsistent strain rate sensitivity during the impact event due to the transformation of the deformation mechanism from twinning to slip with increasing strain.Abundant dimples covered the fracture surface of the fine-grained HPDC alloys,indicating a typical ductile fracture.Nevertheless,due to the deficient{1012}twinning activity and the suppressed grain boundary sliding during the impact event,the HPDC alloys showed insufficient plastic deformation capacity.展开更多
Annular grooved projectiles(AGPs)have drawn ongoing concerns as an advanced penetrator for their excellent anti-rebound capability in impacting metal plates.They could become embedded solidly in the target surface dur...Annular grooved projectiles(AGPs)have drawn ongoing concerns as an advanced penetrator for their excellent anti-rebound capability in impacting metal plates.They could become embedded solidly in the target surface during low-velocity impact.In this investigation,the firm embedding behavior of AGP was observed by impact experiments.Corresponding numerical simulations provided a better understanding of this process.Experimental and numerical results indicated that the firm embedding behavior of AGP was mainly due to the filling-material in the groove rather than the friction between the projectile and target,unlike traditional shape such as conical projectile.According to observation,firm embedding process can generally be subdivided into four stages:initial-cratering stage,groove-filling stage,fillingmaterial failure stage and rebound vibration stage.Moreover,the damage mechanics of target material around crater was obtained through microscopic tests.A comparison of the cross-sectional figures between the experiment and simulation proved that the analysis and the proposed method were reasonable and feasible,which further demonstrated that the firm embedding behavior has application potential in new concept warheads.展开更多
The mechanical behavior of TiNi alloy and Cr12MoV alloy under dynamic impact loading was investigated with a self-made impact testing system. The real-time contact force was measured with a piezoelectric force sensor ...The mechanical behavior of TiNi alloy and Cr12MoV alloy under dynamic impact loading was investigated with a self-made impact testing system. The real-time contact force was measured with a piezoelectric force sensor and digital signal processing system during impact. Equations for predicting instantaneous velocity anti displacement were presented. The results showed that the TiNi alloy exhibited a plateau of maximum contact force with increasing impact height. At the plateau stage, TiNi alloy in the parent phase can absorb impact energy and keep the maximum contact force nearly identical due to its pseudoelasticity.展开更多
In automobiles, the CFRP (carbon fiber reinforced plastics) has a possibility of weight reduction in automotive structures which can contribute to improve mileage and then reduce carbon dioxide. On the other hand, t...In automobiles, the CFRP (carbon fiber reinforced plastics) has a possibility of weight reduction in automotive structures which can contribute to improve mileage and then reduce carbon dioxide. On the other hand, the safety of collision should be also made clear in the case of employing the CFRP to automotive structures. In this paper, the CFRP guarder belt equipped in the automotive door is developed and examined by an experiment and a numerical analysis for replacing the conventional steel door guarder beam. As the experimental relation of impact load to displacement for CFRP guarder belt agreed well with that of numerical result, the numerical method developed here is quite useful for estimating impact behaviors of CFRP guarder belt.展开更多
Fracture behavior of CrN coatings deposited on the surface of silicon and AISI52100 steel by different energy ion beam assisted magnetron sputtering technique (IBAMS) was studied using indentation and dynamic cycle ...Fracture behavior of CrN coatings deposited on the surface of silicon and AISI52100 steel by different energy ion beam assisted magnetron sputtering technique (IBAMS) was studied using indentation and dynamic cycle impact. It is found that, for the coatings on silicon substrate, the cracks form in the indentation corners and then propagate outward under Vickers indentation. The coating prepared using ion assisted energy of 800 eV shows the highest fracture resistance due to its compact structure. Under Rockwell indentation, only finer radial cracks are found in the CrN coating on AISI 52100 steel without ion assisting while in the condition of ion assisting energy of 800 eV, radial, lateral cracks and spalling appear in the vicinity of indentation. The fracture of CrN coatings under dynamic cycle impact is similar to fatigue. The impact fracture resistance of CrN coatings increases with the increase of ion assisting energy.展开更多
The compressive properties of epoxy with different silica nanoparticles (SiO2 nanoparticles) contents at quasi-static and high strain rates loading were investigated via experiment. This article evaluates the compress...The compressive properties of epoxy with different silica nanoparticles (SiO2 nanoparticles) contents at quasi-static and high strain rates loading were investigated via experiment. This article evaluates the compressive failure behaviors and modes at different SiO2 nanoparticles contents and different strain rates. The results indicated that the stress strain curves were sensitive to strain rate, and the compressive failure stress of composites with various SiO2 nanoparticles contents increased with the strain rates, and it increased along with SiO2 nanoparticles contents and then declined. The compressive failure stress and the compressive failure modes of the composites were apparently different from the change of SiO2 nanoparticles contents.展开更多
The counter-intuitive behaviors of pin-ended beams under the projectile impact axe investigated with ANSYS/LS-DYNA in this paper. It studies in detail their displacement-time history curves, final deformed shapes, ene...The counter-intuitive behaviors of pin-ended beams under the projectile impact axe investigated with ANSYS/LS-DYNA in this paper. It studies in detail their displacement-time history curves, final deformed shapes, energy relationships and projectile impact velocity ranges related to their counter-intuitive behaviors. The influences of the impact positions on their counterintuitive behaviors are also discussed. The results show that no matter where the impact position on the beam is, the counter-intuitive behaviors of pinned beams will occur as long as the impacting velocity lies within a proper range. Corresponding to the occurring of the counter-intuitive behaviors, the rebounding number in the displacement history curves of the beams decreases from a few times to zero with an increase of the impact velocity. The final deformation modes of the beam corresponding to the counter-intuitive behaviors will appear in symmetrical and unsymmetrical forms no matter where the impact position is; the impact velocity of the first-occurring of the counter-intuitive behaviors of the beam increases slowly with the deviation of the impact position away from the mid-span.展开更多
Enhanced damage to the full-filled fuel tank,impacted by the cold pressed and sintered PTFE/Al/W reactive material projectile(RMP)with a density of 7.8 g/cm3,is investigated experimentally and theoretically.The fuel t...Enhanced damage to the full-filled fuel tank,impacted by the cold pressed and sintered PTFE/Al/W reactive material projectile(RMP)with a density of 7.8 g/cm3,is investigated experimentally and theoretically.The fuel tank is a rectangular structure,welded by six pieces of 2024 aluminum plate with a thickness of 6 mm,and filled with RP-3 aviation kerosene.Experimental results show that the kerosene is ignited by the RMP impact at a velocity above 1062 m/s,and a novel interior ignition phenomenon which is closely related to the rupture effect of the fuel tank is observed.However,the traditional steel projectile with the same mass and dimension requires a velocity up to 1649 m/s to ignite the kerosene.Based on the experimental results,the radial pressure field is considered to be the main reason for the shear failure of weld.For mechanism considerations,the chemical energy released by the RMP enhances the hydrodynamic ram(HRAM)effect and provides additional ignition sources inside the fuel tank,thereby enhancing both rupture and ignition effects.Moreover,to further understand the enhanced ignition effect of RMP,the reactive debris temperature inside the kerosene is analyzed theoretically.The initiated reactive debris with high temperature provides effective interior ignition sources to ignite the kerosene,resulting in the enhanced ignition of the kerosene.展开更多
Single and multiple dynamic impacts tests were conducted on ultra-high performance cementitious composite (UHPCC) with various volume fractions of steel fibers (0, 1%, 2%, 3%, 4%) by using the split hopkinson pres...Single and multiple dynamic impacts tests were conducted on ultra-high performance cementitious composite (UHPCC) with various volume fractions of steel fibers (0, 1%, 2%, 3%, 4%) by using the split hopkinson pressure bar (SHPB). Besides, the ultrasonic velocity method was used to test the damage on specimens caused by dynamic impacts. For single dynamic impact, the data suggest that UHPCC obviously presents dynamic strength enhancement. With increasing of strain rate, the peak stress and peak strain increase rapidly. For multiple dynamic impacts, the results show that addition of steel fibers can obviously enhance the properties of UHPCC to resist the repeated dynamic impacts. Firstly, the number of impacts sharply increases with the increasing of volume fraction of steel fibers. Secondly, the energy absorption ability linearly increases with addition of steel fibers. Thirdly, the steel fibers can prevent the disruption phenomenon and maintain the integrity of specimen.展开更多
The methods of numerical simulation and test are combined to analyze the impact behavior of glass fiber reinforced aluminum alloy laminate(GLARE).A new failure criteria is proposed to obtain the impact failure of GLAR...The methods of numerical simulation and test are combined to analyze the impact behavior of glass fiber reinforced aluminum alloy laminate(GLARE).A new failure criteria is proposed to obtain the impact failure of GLARE,and combined with material progressive damage method by writing code of LS-DYNA.Low velocity impact test of GLARE is employed to validate the feasibility of the finite element model established.The simulation results have been shown that progressive damage finite element model established is reliable.Through the application of the finite element model established,the delamination of GLARE evolution progress is simulated,various failure modes of GLARE during impact are obtained,and the effects of stacking sequence and impactor diameter on the impact damage of GLARE are obtained.展开更多
The laser powder bed fusion(L-PBF)additively manufactured CoCrFeNi high-entropy alloy(HEA),with face-centered cubic(FCC)crystal structure,demonstrates better comprehensive mechanical properties in the building directi...The laser powder bed fusion(L-PBF)additively manufactured CoCrFeNi high-entropy alloy(HEA),with face-centered cubic(FCC)crystal structure,demonstrates better comprehensive mechanical properties in the building direction(BD).Loading quasi-static,dynamic fatigue,and dynamic separated Hopkinson press bar(SHPB)impact stress conditions along the BD of the L-PBF processed HEA exhibit intriguing mi-crostructural evolution characteristics.The L-PBF generates hierarchical dislocation grids containing nu-merous cell substructures within the HEA FCC grains,impeding dislocation motion during deformation and improving the strength.When subjected to dynamic fatigue loading,the dislocation grids restrict the mean free path of dislocations and thus trigger the activation of abundant stacking faults.Hence,nu-merous nanotwins form near the end of the fatigue life.Multiple twinning systems can also be activated under dynamic high-speed impact loading.Especially at a low temperature of 77 K,the stacking fault energy of the CoCrFeNi HEA decreases,resulting in increased activation of nanotwins,exhibiting excep-tional toughness and resistance to dynamic loads.Additional twin boundaries also impede dislocation movement for the strain hardening.These findings hold valuable implications for the study of additively manufactured HEA parts working in extreme environments.展开更多
This works presents the first fully validated and predictive capability to model the V_0-V_(100) probabilistic penetration response of a woven fabric using a yarn-level fabric finite element model. The V_0-V_(100) cur...This works presents the first fully validated and predictive capability to model the V_0-V_(100) probabilistic penetration response of a woven fabric using a yarn-level fabric finite element model. The V_0-V_(100) curve describes the probability of complete fabric penetration as a function of projectile impact velocity. The exemplar case considered in this paper comprises of a single-layer, fully-clamped, plain-weave Kevlar fabric impacted at the center by a 17-gr, 0.22 cal FSP or fragment-simulating projectile. Each warp and fill yarn in the fabric is individually modeled using 3 D finite elements and the virtual fabric microstructure is validated in detail against the experimental fabric microstructure. Material and testing sources of statistical variability including yarn strength and modulus, inter-yarn friction, precise projectile impact location, and projectile rotation are mapped into the finite element model. A series of impact simulations at varying projectile impact velocities is executed using LS-DYNA on the fabric models, with each model comprising unique mappings. The impact velocities together with the outcomes(penetration, nonpenetration) are used to generate the numerical V_0-V_(100) curve which is then validated against the experimental V_0-V_(100) curve. The numerical Vi-Vrdata(impact, residual velocities) is also validated against the experimental Vi-Vrdata. For completeness, this paper also reports the experimental characterization data and its statistical analysis used for model input, viz. the Kevlar yarn tensile strengths, moduli, and inter-yarn friction, and the experimental ballistic test data used for model validation.展开更多
Two Heracron? woven fabrics, HT600-1 and HT600-2, were fabricated with different weaving densities and their resistance to ballistic impact was investigated. While HT600-1 was inherently stronger along the weft than H...Two Heracron? woven fabrics, HT600-1 and HT600-2, were fabricated with different weaving densities and their resistance to ballistic impact was investigated. While HT600-1 was inherently stronger along the weft than HT600-2, the latter exhibited a higher tensile strength along the warp. Crimp values indicate that HT600-1, which possesses a relatively larger weft weaving density, induces an excess in the warp crimp ratio, thereby weakening the fabric along the warp. The dimensionless fiber property U*, which is defined as the product of the specific fiber toughness and the strain wave velocity, was calculated for each fabric. The U* values of HT600-1 were lower than those of HT600-2;U* values along the warp of HT600-1 were extremely low. These analyses show that HT600-2 exhibited improved ballistic properties over those of HT600-1. These findings further indicate the existence of an optimal weave that would minimize damage to both yarn and fabric. Establishing these optimal conditions can be crucial in implementing better ballistic properties into fabrics.展开更多
基金The authors would like to acknowledge the support of the National Natural Science Foundation of China(No.52279097,No.51779264)Blue and Green Project of Jiangsu Province.
文摘Natural cemented calcareous sand and limestone are highly complex and not well understood in terms of the me-chanical behavior due to the difficulty of obtaining undisturbed samples from far sea.This paper proposes an artificial method in a laboratory setting using microbial-induced carbonate precipitation(MICP)to simulate the natural process of cementation of limestone.The artificially cemented sand has a high degree of similarity with the natural weakly limestone in three aspects:(1)the mineral composition of the cemented material is also granular calcite and acicular aragonite;(2)the microstructure in interconnected open pore network can be gradually closed and contracted with cementation.The porosity reaches to approximately 9.2%;(3)both the stress-strain relationship and the unconfined strength closely resemble that of natural weakly limestone.Furthermore,both static and dynamic behaviors of artificial limestone were studied by quasi-static compression tests and Split Hopkinson Pressure Bar(SHPB)tests,finding that the unconfined strength of weakly artifical limestone exponentially increases with increasing strain rate.A rate-dependent bond strength was proposed and implemented in software to reveal the mechanism of strain rate effects.It is found that the loading velocity is too high to keep in sync with the initiation and propagation of cracks under impact loading.This delay-induced viscosity may restrict the movement of the surrounding balls,thus increasing resistance.
文摘This study investigates how Internet media in the mobile phone influence on the cognitive and behavioral aspects of human sexuality. Sex is being deviating from socially accepted behaviors; ranging from bisexuality to homosexuality. Based on the qualitative methodology using particular case studies and textual analysis as well as survey research leading to quantitative methodology, this assumes of a transition of cultures as a result of the thorough impact of Internet towards society. In conclusion, lnternet implicit practices in the Mobile Phone in youth and teen societies storms a big change in sexuality, is also affecting towards the human cognitive and behavioral phases of the social life in traditional Buddhist rural village setting in Sri Lanka.
文摘The dry impact wear behavior of bainite ductile cast iron was evaluated under three different impact loads for 30000 cycles. The strain-hardening effects beneath the contact surfaces were analyzed according to the surfaces' micro-hardness profiles. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to observe the wom surfaces. The results indicated that the material with the highest hardness was the one continuously cooled at 20℃, which exhibited the lowest wear rate under each set of test conditions. The hardness of the worn surface and the thickness of the hardened layer increased with the increases in impact load and in the number of test cycles. The better wear performance of the sample cooled at 20℃ is attributed to its finer microstructure and superior mechanical properties. All the samples underwent the transformation induced plasticity (TRIP) phenomenon after impact wear, as revealed by the fact that small amounts of retained austenite were detected by XRD.
基金Funded by the National National Natural Science Foundation of China(No.51505189)Open Project of Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment&Technology(No.FM-2015-5)
文摘The deformation behavior and formability of gradient nano-grained(GNG) AISI 304 stainless steel in uniaxial and biaxial states were investigated by means of tensile test and small punch test(SPT). The GNG top layer was fabricated on coarse grains(CG) AISI 304 by ultrasonic impact treatment. The results showed that the CG substrate could effectively suppress the strain localization of NC in GNG layer, and an approximate linear relationship existed between the thickness of substrate(h) and uniform true strain before necking(ε_(unif)). Grain growth of NC was observed at the stress state with high Stress triaxiality T, which led to better ductility of GNG/CG 304 in SPT, as well as similar true strain after the onset of necking(ε_(neck)) compared with coarse 304 in tensile test. Ei-values of GNG/CG 304 with different structures were nearly the same at different punch speeds, and good formability of GNG/CG 304 was demonstrated. However, punch speed and microstructure needed to be optimized to avoid much lost of membrane strain region in biaxial stress state.
基金supported by the National Natural Science Foundation of China(No.51675025).
文摘A thermal-solid-liquid complex operational environment induces structural interface developing a typical coupling sliding/impact wear behavior.It results in contact damage until systems fail,which may cause significant economic losses and catastrophic consequences.The key point of solving this problem is to reveal the coupling damage mechanism of the sliding/impact behavior in typical systems and life characterization under a complicate evolving environment.This has been a hot topic in the area of mechanical reliability.The main work in this paper can be concluded as follows.Firstly,the main industries in which the"sliding/impact behavior"takes place have been introduced.Then,existing studies on the wear mechanism and degree analysis are presented,which includes surface morphology analysis,wear debris analysis,and wear degree measurement.Meanwhile,existing problems in theoretical modeling and experiments in current research are summarized,so as to point out a bright direction for future research on wear prediction.They include interface contact modeling,mathematic coupling mechanism modeling,wear equation establishment,and wear life characterization,which can provide some new ideas for improving the existing studies on the sliding/impact wear behavior.
基金supported by the National Natural Science Foundation of China,No.81771332,81571184,81070990(all to CLZ)the Shanghai Key Medical Discipline for Critical Care Medicine of China,No.2017zz02017(to CLZ)+1 种基金the Key Discipline Construction Project of Pudong Health Bureau of Shanghai of China,No.PWZxk2017-23,PWYgf2018-05(both to CLZ)the Outstanding Leaders Training Program of Pudong Health Bureau of Shanghai of China,No.PWR12018-07(to CLZ)
文摘While animal models of controlled cortical impact often display short-term motor dysfunction after injury, histological examinations do not show severe cortical damage. Thus, this model requires further improvement. Mice were subjected to injury at three severities using a Pin-Point^(TM)-controlled cortical impact device to establish secondary brain injury mouse models. Twenty-four hours after injury, hematoxylin-eosin staining, Fluoro-Jade B histofluorescence, and immunohistochemistry were performed for brain slices. Compared to the uninjured side, we observed differences of histopathological findings, neuronal degeneration, and glial cell number in the CA2 and CA3 regions of the hippocampus on the injured side. The Morris water maze task and beam-walking test verified long-term(14–28 days) spatial learning/memory and motor balance. To conclude, the histopathological responses were positively correlated with the degree of damage,as were the long-term behavioral manifestations after controlled cortical impact. All animal procedures were approved by the Institutional Animal Care and Use Committee at Shanghai Jiao Tong University School of Medicine.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.U1902220,51674166,51074106 and 50674067)the National Key Research and Development Program of China(Grant No.2016YFB0301001)。
文摘This work investigated the microstructure and impact behavior of Mg-4Al-5RE-xGd(RE represents La-Ce mischmetal;x=0,0.2,0.7 wt.%)alloys cast by high-pressure die casting(HPDC),permanent mold casting(PMC),and sand casting(SC)techniques.The results indicated that with increasing Gd content,the grain sizes of the HPDC alloy had a slight change,but the grains of the PMC and SC alloys were significantly refined.Besides,the acicular Al_(11)RE_(3)phase was modified into the short-rod shape under the three casting conditions.The impact toughness of the studied alloy was mainly dominated by the absorbed energy during the crack initiation.With increasing Gd content,the impact toughness of the studied alloy monotonically increased due to the lower tendency of the modified second phase toward crack initiation.The impact stress was higher than the tensile stress,exhibiting a strain rate sensitivity for the mechanical response;however,the HPDC alloy had an inconsistent strain rate sensitivity during the impact event due to the transformation of the deformation mechanism from twinning to slip with increasing strain.Abundant dimples covered the fracture surface of the fine-grained HPDC alloys,indicating a typical ductile fracture.Nevertheless,due to the deficient{1012}twinning activity and the suppressed grain boundary sliding during the impact event,the HPDC alloys showed insufficient plastic deformation capacity.
基金financially supported by the National Natural Science Foundation of China [grant number 11472053]
文摘Annular grooved projectiles(AGPs)have drawn ongoing concerns as an advanced penetrator for their excellent anti-rebound capability in impacting metal plates.They could become embedded solidly in the target surface during low-velocity impact.In this investigation,the firm embedding behavior of AGP was observed by impact experiments.Corresponding numerical simulations provided a better understanding of this process.Experimental and numerical results indicated that the firm embedding behavior of AGP was mainly due to the filling-material in the groove rather than the friction between the projectile and target,unlike traditional shape such as conical projectile.According to observation,firm embedding process can generally be subdivided into four stages:initial-cratering stage,groove-filling stage,fillingmaterial failure stage and rebound vibration stage.Moreover,the damage mechanics of target material around crater was obtained through microscopic tests.A comparison of the cross-sectional figures between the experiment and simulation proved that the analysis and the proposed method were reasonable and feasible,which further demonstrated that the firm embedding behavior has application potential in new concept warheads.
文摘The mechanical behavior of TiNi alloy and Cr12MoV alloy under dynamic impact loading was investigated with a self-made impact testing system. The real-time contact force was measured with a piezoelectric force sensor and digital signal processing system during impact. Equations for predicting instantaneous velocity anti displacement were presented. The results showed that the TiNi alloy exhibited a plateau of maximum contact force with increasing impact height. At the plateau stage, TiNi alloy in the parent phase can absorb impact energy and keep the maximum contact force nearly identical due to its pseudoelasticity.
文摘In automobiles, the CFRP (carbon fiber reinforced plastics) has a possibility of weight reduction in automotive structures which can contribute to improve mileage and then reduce carbon dioxide. On the other hand, the safety of collision should be also made clear in the case of employing the CFRP to automotive structures. In this paper, the CFRP guarder belt equipped in the automotive door is developed and examined by an experiment and a numerical analysis for replacing the conventional steel door guarder beam. As the experimental relation of impact load to displacement for CFRP guarder belt agreed well with that of numerical result, the numerical method developed here is quite useful for estimating impact behaviors of CFRP guarder belt.
基金Funded by the National Natural Science Foundation of China(No. 50771070)Shanxi Province Science and Technology Key Projects (No. 20100321078-02)
文摘Fracture behavior of CrN coatings deposited on the surface of silicon and AISI52100 steel by different energy ion beam assisted magnetron sputtering technique (IBAMS) was studied using indentation and dynamic cycle impact. It is found that, for the coatings on silicon substrate, the cracks form in the indentation corners and then propagate outward under Vickers indentation. The coating prepared using ion assisted energy of 800 eV shows the highest fracture resistance due to its compact structure. Under Rockwell indentation, only finer radial cracks are found in the CrN coating on AISI 52100 steel without ion assisting while in the condition of ion assisting energy of 800 eV, radial, lateral cracks and spalling appear in the vicinity of indentation. The fracture of CrN coatings under dynamic cycle impact is similar to fatigue. The impact fracture resistance of CrN coatings increases with the increase of ion assisting energy.
文摘The compressive properties of epoxy with different silica nanoparticles (SiO2 nanoparticles) contents at quasi-static and high strain rates loading were investigated via experiment. This article evaluates the compressive failure behaviors and modes at different SiO2 nanoparticles contents and different strain rates. The results indicated that the stress strain curves were sensitive to strain rate, and the compressive failure stress of composites with various SiO2 nanoparticles contents increased with the strain rates, and it increased along with SiO2 nanoparticles contents and then declined. The compressive failure stress and the compressive failure modes of the composites were apparently different from the change of SiO2 nanoparticles contents.
基金Project supported by Shanxi Province Returned Scholars Fund (No.200335).
文摘The counter-intuitive behaviors of pin-ended beams under the projectile impact axe investigated with ANSYS/LS-DYNA in this paper. It studies in detail their displacement-time history curves, final deformed shapes, energy relationships and projectile impact velocity ranges related to their counter-intuitive behaviors. The influences of the impact positions on their counterintuitive behaviors are also discussed. The results show that no matter where the impact position on the beam is, the counter-intuitive behaviors of pinned beams will occur as long as the impacting velocity lies within a proper range. Corresponding to the occurring of the counter-intuitive behaviors, the rebounding number in the displacement history curves of the beams decreases from a few times to zero with an increase of the impact velocity. The final deformation modes of the beam corresponding to the counter-intuitive behaviors will appear in symmetrical and unsymmetrical forms no matter where the impact position is; the impact velocity of the first-occurring of the counter-intuitive behaviors of the beam increases slowly with the deviation of the impact position away from the mid-span.
文摘Enhanced damage to the full-filled fuel tank,impacted by the cold pressed and sintered PTFE/Al/W reactive material projectile(RMP)with a density of 7.8 g/cm3,is investigated experimentally and theoretically.The fuel tank is a rectangular structure,welded by six pieces of 2024 aluminum plate with a thickness of 6 mm,and filled with RP-3 aviation kerosene.Experimental results show that the kerosene is ignited by the RMP impact at a velocity above 1062 m/s,and a novel interior ignition phenomenon which is closely related to the rupture effect of the fuel tank is observed.However,the traditional steel projectile with the same mass and dimension requires a velocity up to 1649 m/s to ignite the kerosene.Based on the experimental results,the radial pressure field is considered to be the main reason for the shear failure of weld.For mechanism considerations,the chemical energy released by the RMP enhances the hydrodynamic ram(HRAM)effect and provides additional ignition sources inside the fuel tank,thereby enhancing both rupture and ignition effects.Moreover,to further understand the enhanced ignition effect of RMP,the reactive debris temperature inside the kerosene is analyzed theoretically.The initiated reactive debris with high temperature provides effective interior ignition sources to ignite the kerosene,resulting in the enhanced ignition of the kerosene.
基金Funded by the National Natural Science Foundation of China(51178106)the Doctoral Program of Higher Education of China(20100092110029)the Key Laboratory of Urban and Architectural Heritage Conservation,Ministry of Education,Southeast University
文摘Single and multiple dynamic impacts tests were conducted on ultra-high performance cementitious composite (UHPCC) with various volume fractions of steel fibers (0, 1%, 2%, 3%, 4%) by using the split hopkinson pressure bar (SHPB). Besides, the ultrasonic velocity method was used to test the damage on specimens caused by dynamic impacts. For single dynamic impact, the data suggest that UHPCC obviously presents dynamic strength enhancement. With increasing of strain rate, the peak stress and peak strain increase rapidly. For multiple dynamic impacts, the results show that addition of steel fibers can obviously enhance the properties of UHPCC to resist the repeated dynamic impacts. Firstly, the number of impacts sharply increases with the increasing of volume fraction of steel fibers. Secondly, the energy absorption ability linearly increases with addition of steel fibers. Thirdly, the steel fibers can prevent the disruption phenomenon and maintain the integrity of specimen.
文摘The methods of numerical simulation and test are combined to analyze the impact behavior of glass fiber reinforced aluminum alloy laminate(GLARE).A new failure criteria is proposed to obtain the impact failure of GLARE,and combined with material progressive damage method by writing code of LS-DYNA.Low velocity impact test of GLARE is employed to validate the feasibility of the finite element model established.The simulation results have been shown that progressive damage finite element model established is reliable.Through the application of the finite element model established,the delamination of GLARE evolution progress is simulated,various failure modes of GLARE during impact are obtained,and the effects of stacking sequence and impactor diameter on the impact damage of GLARE are obtained.
基金sponsored by the National Natural Science Foundation of China(Grant No.52175140)National Key R&D Program of China(Grant No.2022YFB4602102)+2 种基金Fundamental Research Funds for the Central Universities in China(Grant No.JKG01231610)Pre research project of Civil Aerospace Technology(Grant No.D020301)Equipment Pre-research Sharing Technology Key Project(Grant No.JZX7Y20210422004601).
文摘The laser powder bed fusion(L-PBF)additively manufactured CoCrFeNi high-entropy alloy(HEA),with face-centered cubic(FCC)crystal structure,demonstrates better comprehensive mechanical properties in the building direction(BD).Loading quasi-static,dynamic fatigue,and dynamic separated Hopkinson press bar(SHPB)impact stress conditions along the BD of the L-PBF processed HEA exhibit intriguing mi-crostructural evolution characteristics.The L-PBF generates hierarchical dislocation grids containing nu-merous cell substructures within the HEA FCC grains,impeding dislocation motion during deformation and improving the strength.When subjected to dynamic fatigue loading,the dislocation grids restrict the mean free path of dislocations and thus trigger the activation of abundant stacking faults.Hence,nu-merous nanotwins form near the end of the fatigue life.Multiple twinning systems can also be activated under dynamic high-speed impact loading.Especially at a low temperature of 77 K,the stacking fault energy of the CoCrFeNi HEA decreases,resulting in increased activation of nanotwins,exhibiting excep-tional toughness and resistance to dynamic loads.Additional twin boundaries also impede dislocation movement for the strain hardening.These findings hold valuable implications for the study of additively manufactured HEA parts working in extreme environments.
基金supported by Teledyne Scientific&Imaging(TS&I),Internal Research and Development(IR&D)and approved for public release under TSI-PP-17-08
文摘This works presents the first fully validated and predictive capability to model the V_0-V_(100) probabilistic penetration response of a woven fabric using a yarn-level fabric finite element model. The V_0-V_(100) curve describes the probability of complete fabric penetration as a function of projectile impact velocity. The exemplar case considered in this paper comprises of a single-layer, fully-clamped, plain-weave Kevlar fabric impacted at the center by a 17-gr, 0.22 cal FSP or fragment-simulating projectile. Each warp and fill yarn in the fabric is individually modeled using 3 D finite elements and the virtual fabric microstructure is validated in detail against the experimental fabric microstructure. Material and testing sources of statistical variability including yarn strength and modulus, inter-yarn friction, precise projectile impact location, and projectile rotation are mapped into the finite element model. A series of impact simulations at varying projectile impact velocities is executed using LS-DYNA on the fabric models, with each model comprising unique mappings. The impact velocities together with the outcomes(penetration, nonpenetration) are used to generate the numerical V_0-V_(100) curve which is then validated against the experimental V_0-V_(100) curve. The numerical Vi-Vrdata(impact, residual velocities) is also validated against the experimental Vi-Vrdata. For completeness, this paper also reports the experimental characterization data and its statistical analysis used for model input, viz. the Kevlar yarn tensile strengths, moduli, and inter-yarn friction, and the experimental ballistic test data used for model validation.
文摘Two Heracron? woven fabrics, HT600-1 and HT600-2, were fabricated with different weaving densities and their resistance to ballistic impact was investigated. While HT600-1 was inherently stronger along the weft than HT600-2, the latter exhibited a higher tensile strength along the warp. Crimp values indicate that HT600-1, which possesses a relatively larger weft weaving density, induces an excess in the warp crimp ratio, thereby weakening the fabric along the warp. The dimensionless fiber property U*, which is defined as the product of the specific fiber toughness and the strain wave velocity, was calculated for each fabric. The U* values of HT600-1 were lower than those of HT600-2;U* values along the warp of HT600-1 were extremely low. These analyses show that HT600-2 exhibited improved ballistic properties over those of HT600-1. These findings further indicate the existence of an optimal weave that would minimize damage to both yarn and fabric. Establishing these optimal conditions can be crucial in implementing better ballistic properties into fabrics.