This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using th...This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using the target probability distribution map,two strategies of information fusion and information diffusion are employed to solve the problem of environmental information inconsistency caused by different UAVs searching different areas,thereby improving the coordination of UAV groups.Secondly,the task region is decomposed into several high-value sub-regions by using data clustering method.Based on this,a hierarchical search strategy is proposed,which allows precise or rough search in different probability areas by adjusting the altitude of the aircraft,thereby improving the search efficiency.Third,the Elite Dung Beetle Optimization Algorithm(EDBOA)is proposed based on bionics by accurately simulating the social behavior of dung beetles to plan paths that satisfy the UAV dynamics constraints and adapt to the mountainous terrain,where the mountain is considered as an obstacle to be avoided.Finally,the objective function for path optimization is formulated by considering factors such as coverage within the task region,smoothness of the search path,and path length.The effectiveness and superiority of the proposed schemes are verified by the simulation.展开更多
In this paper,we propose enhancements to Beetle Antennae search(BAS)algorithm,called BAS-ADAIVL to smoothen the convergence behavior and avoid trapping in localminima for a highly noin-convex objective function.We ach...In this paper,we propose enhancements to Beetle Antennae search(BAS)algorithm,called BAS-ADAIVL to smoothen the convergence behavior and avoid trapping in localminima for a highly noin-convex objective function.We achieve this by adaptively adjusting the step-size in each iteration using the adaptive moment estimation(ADAM)update rule.The proposed algorithm also increases the convergence rate in a narrow valley.A key feature of the ADAM update rule is the ability to adjust the step-size for each dimension separately instead of using the same step-size.Since ADAM is traditionally used with gradient-based optimization algorithms,therefore we first propose a gradient estimation model without the need to differentiate the objective function.Resultantly,it demonstrates excellent performance and fast convergence rate in searching for the optimum of noin-convex functions.The efficiency of the proposed algorithm was tested on three different benchmark problems,including the training of a high-dimensional neural network.The performance is compared with particle swarm optimizer(PSO)and the original BAS algorithm.展开更多
为了减小局部遮阴情况PSC(partial shading condition)下光伏系统的功率失配损失,提高最大功率点追踪MPPT(maximum power point tracking)的追踪速度和准确性,提出了基于天牛群优化BSO(beetle swarm optimiza?tion)算法的MPPT控制方法....为了减小局部遮阴情况PSC(partial shading condition)下光伏系统的功率失配损失,提高最大功率点追踪MPPT(maximum power point tracking)的追踪速度和准确性,提出了基于天牛群优化BSO(beetle swarm optimiza?tion)算法的MPPT控制方法.把由天牛须搜索BAS(beetle antennae search)借鉴粒子群的群体优化思想而得到的BSO方法应用到MPPT控制,利用天牛的个体进化和群体学习等优势来提高MPPT的追踪速度和精确度.设置了多种光照情况来作仿真验证,并用粒子群方法进行比较分析.结果表明,所提的方法追踪速度更快、精确度更高,且追踪过程更稳定、功率波动较小.展开更多
基金supported by the Natural Science Foundation of China(62273068)the Fundamental Research Funds for the Central Universities(3132023512)Dalian Science and Technology Innovation Fund(2019J12GX040).
文摘This paper aims to address the problem of multi-UAV cooperative search for multiple targets in a mountainous environment,considering the constraints of UAV dynamics and prior environmental information.Firstly,using the target probability distribution map,two strategies of information fusion and information diffusion are employed to solve the problem of environmental information inconsistency caused by different UAVs searching different areas,thereby improving the coordination of UAV groups.Secondly,the task region is decomposed into several high-value sub-regions by using data clustering method.Based on this,a hierarchical search strategy is proposed,which allows precise or rough search in different probability areas by adjusting the altitude of the aircraft,thereby improving the search efficiency.Third,the Elite Dung Beetle Optimization Algorithm(EDBOA)is proposed based on bionics by accurately simulating the social behavior of dung beetles to plan paths that satisfy the UAV dynamics constraints and adapt to the mountainous terrain,where the mountain is considered as an obstacle to be avoided.Finally,the objective function for path optimization is formulated by considering factors such as coverage within the task region,smoothness of the search path,and path length.The effectiveness and superiority of the proposed schemes are verified by the simulation.
文摘In this paper,we propose enhancements to Beetle Antennae search(BAS)algorithm,called BAS-ADAIVL to smoothen the convergence behavior and avoid trapping in localminima for a highly noin-convex objective function.We achieve this by adaptively adjusting the step-size in each iteration using the adaptive moment estimation(ADAM)update rule.The proposed algorithm also increases the convergence rate in a narrow valley.A key feature of the ADAM update rule is the ability to adjust the step-size for each dimension separately instead of using the same step-size.Since ADAM is traditionally used with gradient-based optimization algorithms,therefore we first propose a gradient estimation model without the need to differentiate the objective function.Resultantly,it demonstrates excellent performance and fast convergence rate in searching for the optimum of noin-convex functions.The efficiency of the proposed algorithm was tested on three different benchmark problems,including the training of a high-dimensional neural network.The performance is compared with particle swarm optimizer(PSO)and the original BAS algorithm.
文摘为了减小局部遮阴情况PSC(partial shading condition)下光伏系统的功率失配损失,提高最大功率点追踪MPPT(maximum power point tracking)的追踪速度和准确性,提出了基于天牛群优化BSO(beetle swarm optimiza?tion)算法的MPPT控制方法.把由天牛须搜索BAS(beetle antennae search)借鉴粒子群的群体优化思想而得到的BSO方法应用到MPPT控制,利用天牛的个体进化和群体学习等优势来提高MPPT的追踪速度和精确度.设置了多种光照情况来作仿真验证,并用粒子群方法进行比较分析.结果表明,所提的方法追踪速度更快、精确度更高,且追踪过程更稳定、功率波动较小.