期刊文献+
共找到523篇文章
< 1 2 27 >
每页显示 20 50 100
Hypersonic reentry trajectory planning by using hybrid fractional-order particle swarm optimization and gravitational search algorithm 被引量:10
1
作者 Khurram SHAHZAD SANA Weiduo HU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第1期50-67,共18页
This paper proposes a novel hybrid algorithm called Fractional-order Particle Swarm optimization Gravitational Search Algorithm(FPSOGSA)and applies it to the trajectory planning of the hypersonic lifting reentry fligh... This paper proposes a novel hybrid algorithm called Fractional-order Particle Swarm optimization Gravitational Search Algorithm(FPSOGSA)and applies it to the trajectory planning of the hypersonic lifting reentry flight vehicles.The proposed method is used to calculate the control profiles to achieve the two objectives,namely a smoother trajectory and enforcement of the path constraints with terminal accuracy.The smoothness of the trajectory is achieved by scheduling the bank angle with the aid of a modified scheme known as a Quasi-Equilibrium Glide(QEG)scheme.The aerodynamic load factor and the dynamic pressure path constraints are enforced by further planning of the bank angle with the help of a constraint enforcement scheme.The maximum heating rate path constraint is enforced through the angle of attack parameterization.The Common Aero Vehicle(CAV)flight vehicle is used for the simulation purpose to test and compare the proposed method with that of the standard Particle Swarm Optimization(PSO)method and the standard Gravitational Search Algorithm(GSA).The simulation results confirm the efficiency of the proposed FPSOGSA method over the standard PSO and the GSA methods by showing its better convergence and computation efficiency. 展开更多
关键词 FRACTIONAL-ORDER Gravitational search algorithm particle swarm optimization Reentry gliding vehicle Trajectory optimization
原文传递
Development of hybrid optimization algorithm for structures furnished with seismic damper devices using the particle swarm optimization method and gravitational search algorithm 被引量:2
2
作者 Najad Ayyash Farzad Hejazi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期455-474,共20页
Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and ther... Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration. 展开更多
关键词 hybrid optimization algorithm STRUCTURES EARTHQUAKE seismic damper devices particle swarm optimization method gravitational search algorithm
在线阅读 下载PDF
Optimal Energy Consumption Optimization in a Smart House by Considering Electric Vehicles and Demand Response via a Hybrid Gravitational Search and Particle Swarm Optimization Algorithm
3
作者 Rongxin Zhang Chengying Yang Xuetao Li 《Energy Engineering》 EI 2022年第6期2489-2511,共23页
Buildings are the main energy consumers across the world,especially in urban communities.Building smartization,or the smartification of housing,therefore,is a major step towards energy grid smartization too.By control... Buildings are the main energy consumers across the world,especially in urban communities.Building smartization,or the smartification of housing,therefore,is a major step towards energy grid smartization too.By controlling the energy consumption of lighting,heating,and cooling systems,energy consumption can be optimized.All or some part of the energy consumed in future smart buildings must be supplied by renewable energy sources(RES),which mitigates environmental impacts and reduces peak demand for electrical energy.In this paper,a new optimization algorithm is applied to solve the optimal energy consumption problem by considering the electric vehicles and demand response in smart homes.In this way,large power stations that work with fossil fuels will no longer be developed.The current study modeled and evaluated the performance of a smart house in the presence of electric vehicles(EVs)with bidirectional power exchangeability with the power grid,an energy storage system(ESS),and solar panels.Additionally,the solar RES and ESS for predicting solar-generated power prediction uncertainty have been considered in this work.Different case studies,including the sales of electrical energy resulting from PV panels’generated power to the power grid,time-variable loads such as washing machines,and different demand response(DR)strategies based on energy price variations were taken into account to assess the economic and technical effects of EVs,BESS,and solar panels.The proposed model was simulated in MATLAB.A hybrid particle swarm optimization(PSO)and gravitational search(GS)algorithm were utilized for optimization.Scenario generation and reduction were performed via LHS and backward methods,respectively.Obtained results demonstrate that the proposed model minimizes the energy supply cost by considering the stochastic time of use(STOU)loads,EV,ESS,and PV system.Based on the results,the proposed model markedly reduced the electricity costs of the smart house. 展开更多
关键词 Energy management smart house particle swarm optimization algorithm gravitational search algorithm demand response electric vehicle
在线阅读 下载PDF
Optimization of Thermal Aware VLSI Non-Slicing Floorplanning Using Hybrid Particle Swarm Optimization Algorithm-Harmony Search Algorithm
4
作者 Sivaranjani Paramasivam Senthilkumar Athappan +1 位作者 Eswari Devi Natrajan Maheswaran Shanmugam 《Circuits and Systems》 2016年第5期562-573,共12页
Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimat... Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimating the positions and shapes of the modules. A high packing density, small feature size and high clock frequency make the Integrated Circuit (IC) to dissipate large amount of heat. So, in this paper, a methodology is presented to distribute the temperature of the module on the layout while simultaneously optimizing the total area and wirelength by using a hybrid Particle Swarm Optimization-Harmony Search (HPSOHS) algorithm. This hybrid algorithm employs diversification technique (PSO) to obtain global optima and intensification strategy (HS) to achieve the best solution at the local level and Modified Corner List algorithm (MCL) for floorplan representation. A thermal modelling tool called hotspot tool is integrated with the proposed algorithm to obtain the temperature at the block level. The proposed algorithm is illustrated using Microelectronics Centre of North Carolina (MCNC) benchmark circuits. The results obtained are compared with the solutions derived from other stochastic algorithms and the proposed algorithm provides better solution. 展开更多
关键词 VLSI Non-Slicing Floorplan Modified Corner List (MCL) algorithm Hybrid particle swarm optimization-Harmony search algorithm (HPSOHS)
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
5
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
A Hybrid Optimizer Based On Firefly Algorithm And Particle Swarm Optimization Algorithm
6
作者 Xuewen Xia Ling Gui 《江西公路科技》 2020年第1期55-73,共19页
As two widely used evolutionary algorithms,particle swarm optimization(PSO)and firefly algorithm(FA)have been successfully applied to diverse difficult applications.And extensive experiments verify their own merits an... As two widely used evolutionary algorithms,particle swarm optimization(PSO)and firefly algorithm(FA)have been successfully applied to diverse difficult applications.And extensive experiments verify their own merits and characteristics.To efficiently utilize different advantages of PSO and FA,three novel operators are proposed in a hybrid optimizer based on the two algorithms,named as FAPSO in this paper.Firstly,the population of FAPSO is divided into two sub-populations selecting FA and PSO as their basic algorithm to carry out the optimization process,respectively.To exchange the information of the two sub-populations and then efficiently utilize the merits of PSO and FA,the sub-populations share their own optimal solutions while they have stagnated more than a predefined threshold.Secondly,each dimension of the search space is divided into many small-sized sub-regions,based on which much historical knowledge is recorded to help the current best solution to carry out a detecting operator.The purposeful detecting operator enables the population to find a more promising sub-region,and then jumps out of a possible local optimum.Lastly,a classical local search strategy,i.e.,BFGS QuasiNewton method,is introduced to improve the exploitative capability of FAPSO.Extensive simulations upon different functions demonstrate that FAPSO is not only outperforms the two basic algorithm,i.e.,FA and PSO,but also surpasses some state-of-the-art variants of FA and PSO,as well as two hybrid algorithms. 展开更多
关键词 FIREFLY algorithm particle swarm optimization KNOWLEDGE-BASED detecting Local search OPERATOR
在线阅读 下载PDF
Modified particle swarm optimization-based antenna tilt angle adjusting scheme for LTE coverage optimization 被引量:6
7
作者 潘如君 蒋慧琳 +3 位作者 裴氏莺 李沛 潘志文 刘楠 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期443-449,共7页
In order to solve the challenging coverage problem that the long term evolution( LTE) networks are facing, a coverage optimization scheme by adjusting the antenna tilt angle( ATA) of evolved Node B( e NB) is pro... In order to solve the challenging coverage problem that the long term evolution( LTE) networks are facing, a coverage optimization scheme by adjusting the antenna tilt angle( ATA) of evolved Node B( e NB) is proposed based on the modified particle swarm optimization( MPSO) algorithm.The number of mobile stations( MSs) served by e NBs, which is obtained based on the reference signal received power(RSRP) measured from the MS, is used as the metric for coverage optimization, and the coverage problem is optimized by maximizing the number of served MSs. In the MPSO algorithm, a swarm of particles known as the set of ATAs is available; the fitness function is defined as the total number of the served MSs; and the evolution velocity corresponds to the ATAs adjustment scale for each iteration cycle. Simulation results showthat compared with the fixed ATA, the number of served MSs by e NBs is significantly increased by 7. 2%, the quality of the received signal is considerably improved by 20 d Bm, and, particularly, the system throughput is also effectively increased by 55 Mbit / s. 展开更多
关键词 long term evolution(LTE) networks antenna tilt angle coverage optimization modified particle swarm optimization algorithm
在线阅读 下载PDF
BAS-ADAM:An ADAM Based Approach to Improve the Performance of Beetle Antennae Search Optimizer 被引量:32
8
作者 Ameer Hamza Khan Xinwei Cao +2 位作者 Shuai Li Vasilios N.Katsikis Liefa Liao 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第2期461-471,共11页
In this paper,we propose enhancements to Beetle Antennae search(BAS)algorithm,called BAS-ADAIVL to smoothen the convergence behavior and avoid trapping in localminima for a highly noin-convex objective function.We ach... In this paper,we propose enhancements to Beetle Antennae search(BAS)algorithm,called BAS-ADAIVL to smoothen the convergence behavior and avoid trapping in localminima for a highly noin-convex objective function.We achieve this by adaptively adjusting the step-size in each iteration using the adaptive moment estimation(ADAM)update rule.The proposed algorithm also increases the convergence rate in a narrow valley.A key feature of the ADAM update rule is the ability to adjust the step-size for each dimension separately instead of using the same step-size.Since ADAM is traditionally used with gradient-based optimization algorithms,therefore we first propose a gradient estimation model without the need to differentiate the objective function.Resultantly,it demonstrates excellent performance and fast convergence rate in searching for the optimum of noin-convex functions.The efficiency of the proposed algorithm was tested on three different benchmark problems,including the training of a high-dimensional neural network.The performance is compared with particle swarm optimizer(PSO)and the original BAS algorithm. 展开更多
关键词 Adaptive moment estimation(ADAM) beetle antennae search(BAM) gradient estimation metaheuristic optimization nature-inspired algorithms neural network
在线阅读 下载PDF
Enhanced Butterfly Optimization Algorithm for Large-Scale Optimization Problems 被引量:1
9
作者 Yu Li Xiaomei Yu Jingsen Liu 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第2期554-570,共17页
To solve large-scale optimization problems,Fragrance coefficient and variant Particle Swarm local search Butterfly Optimization Algorithm(FPSBOA)is proposed.In the position update stage of Butterfly Optimization Algor... To solve large-scale optimization problems,Fragrance coefficient and variant Particle Swarm local search Butterfly Optimization Algorithm(FPSBOA)is proposed.In the position update stage of Butterfly Optimization Algorithm(BOA),the fragrance coefficient is designed to balance the exploration and exploitation of BOA.The variant particle swarm local search strategy is proposed to improve the local search ability of the current optimal butterfly and prevent the algorithm from falling into local optimality.192000-dimensional functions and 201000-dimensional CEC 2010 large-scale functions are used to verify FPSBOA for complex large-scale optimization problems.The experimental results are statistically analyzed by Friedman test and Wilcoxon rank-sum test.All attained results demonstrated that FPSBOA can better solve more challenging scientific and industrial real-world problems with thousands of variables.Finally,four mechanical engineering problems and one ten-dimensional process synthesis and design problem are applied to FPSBOA,which shows FPSBOA has the feasibility and effectiveness in real-world application problems. 展开更多
关键词 Butterfy optimization algorithm Fragrance coefcient Variant particle swarm local search Large-scale optimization problems Real-world application problems
在线阅读 下载PDF
Binary Gravitational Search based Algorithm for Optimum Siting and Sizing of DG and Shunt Capacitors in Radial Distribution Systems
10
作者 N. A. Khan S. Ghosh S. P. Ghoshal 《Energy and Power Engineering》 2013年第4期1005-1010,共6页
This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a no... This paper presents a binary gravitational search algorithm (BGSA) is applied to solve the problem of optimal allotment of DG sets and Shunt capacitors in radial distribution systems. The problem is formulated as a nonlinear constrained single-objective optimization problem where the total line loss (TLL) and the total voltage deviations (TVD) are to be minimized separately by incorporating optimal placement of DG units and shunt capacitors with constraints which include limits on voltage, sizes of installed capacitors and DG. This BGSA is applied on the balanced IEEE 10 Bus distribution network and the results are compared with conventional binary particle swarm optimization. 展开更多
关键词 Normal Load Flow Radial Distribution System Distributed Generation SHUNT Capacitors BINARY particle swarm optimization BINARY GRAVITATIONAL search algorithm TOTAL line Loss TOTAL Voltage Deviation
在线阅读 下载PDF
Optimization Algorithms for Sidelobes SSL Reduction: A Comparative Study
11
作者 Mohsen Denden Aymen Alhamdan 《Journal of Computer and Communications》 2024年第7期120-132,共13页
The development of new technologies in smart cities is often hailed as it becomes a necessity to solve many problems like energy consumption and transportation. Wireless networks are part of these technologies but imp... The development of new technologies in smart cities is often hailed as it becomes a necessity to solve many problems like energy consumption and transportation. Wireless networks are part of these technologies but implementation of several antennas, using different frequency bandwidths for many applications might introduce a negative effect on human health security. In wireless networks, most antennas generate sidelobes SSL. SSL causes interference and can be an additional resource for RF power that can affect human being health. This paper aims to study algorithms that can reduce SSL. The study concerns typical uniform linear antenna arrays. Different optimum side lobe level reduction algorithms are presented. Genetic algorithm GA, Chebyshev, and Particle Swarm Optimization algorithm are used in the optimization process. A comparative study between the indicated algorithms in terms of stability, precision, and running time is shown. Results show that using these algorithms in optimizing antenna parameters can reduce SSL. A comparison of these algorithms is carried out and results show the difference between them in terms of running time and SSL reduction Level. 展开更多
关键词 SSL Radio Wave Interference SAR Linear Antenna Arrays Genetic algorithm CHEBYSHEV particle swarm optimization
在线阅读 下载PDF
Application of SVM and PCA-CS algorithms for prediction of strip crown in hot strip rolling 被引量:17
12
作者 JI Ya-feng SONG Le-bao +3 位作者 SUN Jie PENG Wen LI Hua-ying MA Li-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2333-2344,共12页
To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance... To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance the quality of product in hot strip rolling.Meanwhile,for enriching data information and ensuring data quality,experimental data were collected from a hot-rolled plant to set up prediction models,as well as the prediction performance of models was evaluated by calculating multiple indicators.Furthermore,the traditional SVM model and the combined prediction models with particle swarm optimization(PSO)algorithm and the principal component analysis combined with cuckoo search(PCA-CS)optimization strategies are presented to make a comparison.Besides,the prediction performance comparisons of the three models are discussed.Finally,the experimental results revealed that the PCA-CS-SVM model has the highest prediction accuracy and the fastest convergence speed.Furthermore,the root mean squared error(RMSE)of PCA-CS-SVM model is 2.04μm,and 98.15%of prediction data have an absolute error of less than 4.5μm.Especially,the results also proved that PCA-CS-SVM model not only satisfies precision requirement but also has certain guiding significance for the actual production of hot strip rolling. 展开更多
关键词 strip crown support vector machine principal component analysis cuckoo search algorithm particle swarm optimization algorithm
在线阅读 下载PDF
UAV safe route planning based on PSO-BAS algorithm 被引量:6
13
作者 ZHANG Honghong GAN Xusheng +1 位作者 LI Shuangfeng CHEN Zhiyuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1151-1160,共10页
In order to solve the current situation that unmanned aerial vehicles(UAVs)ignore safety indicators and cannot guarantee safe operation when operating in low-altitude airspace,a UAV route planning method that consider... In order to solve the current situation that unmanned aerial vehicles(UAVs)ignore safety indicators and cannot guarantee safe operation when operating in low-altitude airspace,a UAV route planning method that considers regional risk assessment is proposed.Firstly,the low-altitude airspace is discretized based on rasterization,and then the UAV operating characteristics and environmental characteristics are combined to quantify the risk value in the low-altitude airspace to obtain a 3D risk map.The path risk value is taken as the cost,the particle swarm optimization-beetle antennae search(PSO-BAS)algorithm is used to plan the spatial 3D route,and it effectively reduces the generated path redundancy.Finally,cubic B-spline curve is used to smooth the planned discrete path.A flyable path with continuous curvature and pitch angle is generated.The simulation results show that the generated path can exchange for a path with a lower risk value at a lower path cost.At the same time,the path redundancy is low,and the curvature and pitch angle continuously change.It is a flyable path that meets the UAV performance constraints. 展开更多
关键词 unmanned aerial vehicle(UAV) low-attitude airspace mission planning risk assessment particle swarm optimization beetle antennae search(BAS) cubic B-spline
在线阅读 下载PDF
Accurate Classification of EEG Signals Using Neural Networks Trained by Hybrid Populationphysic-based Algorithm 被引量:4
14
作者 Sajjad Afrakhteh Mohammad-Reza Mosavi +1 位作者 Mohammad Khishe Ahmad Ayatollahi 《International Journal of Automation and computing》 EI CSCD 2020年第1期108-122,共15页
A brain-computer interface(BCI)system is one of the most effective ways that translates brain signals into output commands.Different imagery activities can be classified based on the changes inμandβrhythms and their... A brain-computer interface(BCI)system is one of the most effective ways that translates brain signals into output commands.Different imagery activities can be classified based on the changes inμandβrhythms and their spatial distributions.Multi-layer perceptron neural networks(MLP-NNs)are commonly used for classification.Training such MLP-NNs has great importance in a way that has attracted many researchers to this field recently.Conventional methods for training NNs,such as gradient descent and recursive methods,have some disadvantages including low accuracy,slow convergence speed and trapping in local minimums.In this paper,in order to overcome these issues,the MLP-NN trained by a hybrid population-physics-based algorithm,the combination of particle swarm optimization and gravitational search algorithm(PSOGSA),is proposed for our classification problem.To show the advantages of using PSOGSA that trains NNs,this algorithm is compared with other meta-heuristic algorithms such as particle swarm optimization(PSO),gravitational search algorithm(GSA)and new versions of PSO.The metrics that are discussed in this paper are the speed of convergence and classification accuracy metrics.The results show that the proposed algorithm in most subjects of encephalography(EEG)dataset has very better or acceptable performance compared to others. 展开更多
关键词 Brain-computer interface(BCI) CLASSIFICATION electroencephalography(EEG) gravitational search algorithm(GSA) multi-layer perceptron neural network(MLP-NN) particle swarm optimization
原文传递
A hybrid constriction coefficientbased particle swarm optimization and gravitational search algorithm for training multi-layer perceptron 被引量:2
15
作者 Sajad Ahmad Rather P.Shanthi Bala 《International Journal of Intelligent Computing and Cybernetics》 EI 2020年第2期129-165,共37页
Purpose-In this paper,a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm(CPSOGSA)has been employed for training MLP to overcom... Purpose-In this paper,a newly proposed hybridization algorithm namely constriction coefficient-based particle swarm optimization and gravitational search algorithm(CPSOGSA)has been employed for training MLP to overcome sensitivity to initialization,premature convergence,and stagnation in local optima problems of MLP.Design/methodology/approach-In this study,the exploration of the search space is carried out by gravitational search algorithm(GSA)and optimization of candidate solutions,i.e.exploitation is performed by particle swarm optimization(PSO).For training the multi-layer perceptron(MLP),CPSOGSA uses sigmoid fitness function for finding the proper combination of connection weights and neural biases to minimize the error.Secondly,a matrix encoding strategy is utilized for providing one to one correspondence between weights and biases of MLP and agents of CPSOGSA.Findings-The experimental findings convey that CPSOGSA is a better MLP trainer as compared to other stochastic algorithms because it provides superior results in terms of resolving stagnation in local optima and convergence speed problems.Besides,it gives the best results for breast cancer,heart,sine function and sigmoid function datasets as compared to other participating algorithms.Moreover,CPSOGSA also provides very competitive results for other datasets.Originality/value-The CPSOGSA performed effectively in overcoming stagnation in local optima problem and increasing the overall convergence speed of MLP.Basically,CPSOGSA is a hybrid optimization algorithm which has powerful characteristics of global exploration capability and high local exploitation power.In the research literature,a little work is available where CPSO and GSA have been utilized for training MLP.The only related research paper was given by Mirjalili et al.,in 2012.They have used standard PSO and GSA for training simple FNNs.However,the work employed only three datasets and used the MSE performance metric for evaluating the efficiency of the algorithms.In this paper,eight different standard datasets and five performance metrics have been utilized for investigating the efficiency of CPSOGSA in training MLPs.In addition,a non-parametric pair-wise statistical test namely the Wilcoxon rank-sum test has been carried out at a 5%significance level to statistically validate the simulation results.Besides,eight state-of-the-art metaheuristic algorithms were employed for comparative analysis of the experimental results to further raise the authenticity of the experimental setup. 展开更多
关键词 Neural network Feedforward neural network(FNN) Gravitational search algorithm(GSA) particle swarm optimization(PSO) HYBRIDIZATION CPSOGSA Multi-layer perceptron(MLP)
在线阅读 下载PDF
基于禁忌搜索与粒子群优化算法的地下水污染源信息辨识
16
作者 徐津 伍梦天 +3 位作者 李凯 王玲玲 朱海 王明辉 《河海大学学报(自然科学版)》 北大核心 2026年第1期36-42,共7页
为准确辨识地下水污染源位置、污染物释放过程等关键信息,采用模拟-优化理论框架,将需要同步辨识多种污染源信息的地下水反演问题概化为包含离散型、连续型变量的混合变量优化问题,并提出了一种基于禁忌搜索与粒子群优化算法的两阶段组... 为准确辨识地下水污染源位置、污染物释放过程等关键信息,采用模拟-优化理论框架,将需要同步辨识多种污染源信息的地下水反演问题概化为包含离散型、连续型变量的混合变量优化问题,并提出了一种基于禁忌搜索与粒子群优化算法的两阶段组合优化(TS-PSO)算法,该算法采用禁忌搜索策略确定污染源位置,利用粒子群优化算法识别污染物的释放强度及释放过程。算例验证结果表明:与传统演化算法(GA、PSO算法)相比,TS-PSO算法的求解效率更高,计算结果更可靠,计算精度更高;对于多个污染源的反演问题,TS-PSO算法可快速、有效地辨识污染源位置、污染物释放强度和释放过程。 展开更多
关键词 地下水污染 信息辨识 优化算法 禁忌搜索 粒子群优化算法
在线阅读 下载PDF
Pattern synthesis of antennas based on a modified particle swarm optimization algorithm
17
作者 JIN Ronghong YUAN Zhihao +2 位作者 GENG Junping FAN Yu LI Jiajing 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2007年第4期454-458,共5页
In order to overcome the drawbacks of standard particle swarm optimization(PSO)algorithm,such as prematurity and easily trapping in local optimum,a modified PSO algorithm is proposed,in which special techniques,as glo... In order to overcome the drawbacks of standard particle swarm optimization(PSO)algorithm,such as prematurity and easily trapping in local optimum,a modified PSO algorithm is proposed,in which special techniques,as global best perturbation and inertia weight jump threshold are adopted.The convergence speed and accuracy of the algo-rithm are improved.The test by some benchmark problems shows that the proposed algorithm achieves relatively higher performance.Thereafter,the applications of the modified PSO in the radiation pattern synthesis of antenna arrays are presented. 展开更多
关键词 particle swarm optimization(PSO)algorithm premature convergence array antennas patterns synthesis
原文传递
基于Grid-Search_PSO优化SVM回归预测矿井涌水量 被引量:14
18
作者 刘佳 施龙青 +1 位作者 韩进 滕超 《煤炭技术》 CAS 北大核心 2015年第8期184-186,共3页
为了解决矿井涌水量预测难题,在Grid-Search_PSO优化SVM参数的基础上,采用SVM非线性回归预测法,对大海则煤矿1999~2008年7月份的矿井涌水量进行了预测。分析对比SVM回归预测法和ARIMA时间序列预测法预测结果的数据误差,发现SVM回归法预... 为了解决矿井涌水量预测难题,在Grid-Search_PSO优化SVM参数的基础上,采用SVM非线性回归预测法,对大海则煤矿1999~2008年7月份的矿井涌水量进行了预测。分析对比SVM回归预测法和ARIMA时间序列预测法预测结果的数据误差,发现SVM回归法预测值与实测值之间的偏差比ARIMA时间序列法要小很多。可见在影响矿井涌水量各种因素值具备的情况下,SVM非线性回归预测所建立的模型能够更准确地预测矿井的涌水量,在矿井安全生产中具有很大的应用价值。 展开更多
关键词 支持向量机 网格搜索法 粒子群优化算法 矿井涌水量 非线性回归预测 大海则煤矿
原文传递
Grid-Search和PSO优化的SVM在Shibor回归预测中的应用研究 被引量:1
19
作者 张剑 王波 《经济数学》 2017年第2期84-88,共5页
作为一种动态和非稳定时间序列,Shibor发展变化是随机波动的,难以准确预测Shibor的波动性.支持向量机(SVM)在回归预测非线性时间序列方面有很好地预测效果,SVM的预测精度和泛化能力的核心是参数的优化选择,分别用网格搜索法(Grid-Search... 作为一种动态和非稳定时间序列,Shibor发展变化是随机波动的,难以准确预测Shibor的波动性.支持向量机(SVM)在回归预测非线性时间序列方面有很好地预测效果,SVM的预测精度和泛化能力的核心是参数的优化选择,分别用网格搜索法(Grid-Search)和粒子群(PSO)算法来优化SVM的参数c和g.从而将参数优化后的SVM非线性回归预测法与基于传统ARIMA时间序列预测结果进行对比分析.实验表明,优化后的SVM回归预测方法比ARIMA时间序列方法更精确,在实际中具有很大的应用价值. 展开更多
关键词 机器学习 非线性回归预测 支持向量机 网格搜索法 粒子群算法 SHIBOR
在线阅读 下载PDF
A multi-dimensional tabu search algorithm for the optimization of process planning 被引量:6
20
作者 LIAN KunLei ZHANG ChaoYong +1 位作者 SHAO XinYu ZENG YaoHui 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第12期3211-3219,共9页
Computer-aided process planning (CAPP) is an essential component of computer integrated manufacturing (CIM) system. A good process plan can be obtained by optimizing two elements, namely, operation sequence and th... Computer-aided process planning (CAPP) is an essential component of computer integrated manufacturing (CIM) system. A good process plan can be obtained by optimizing two elements, namely, operation sequence and the machining parameters of machine, tool and tool access direction (TAD) for each operation. This paper proposes a novel optimization strategy for process planning that considers different dimensions of the problem in parallel. A multi-dimensional tabu search (MDTS) algo-rithm based on this strategy is developed to optimize the four dimensions of a process plan, namely, operation sequence (OperSeq), machine sequence (MacSeq), tool sequence (TooISeq) and tool approach direction sequence (TADSeq), sequentially and iteratively. In order to improve its efficiency and stability, tabu search, which is incorporated into the proposed MDTS al- gorithm, is used to optimize each component of a process plan, and some neighbourhood strategies for different components are presented for this tabu search algorithm. The proposed MDTS algorithm is employed to test four parts with different numbers of operations taken from the literature and compared with the existing algorithms like genetic algorithm (GA), simulated annealing (SA), tabu search (TS) and particle swarm optimization (PSO). Experimental results show that the developed algo-rithm outperforms these algorithms in terms of solution quality and efficiency. 展开更多
关键词 process planning cooperative tabu search genetic algorithm simulated annealing particle swarm optimization
原文传递
上一页 1 2 27 下一页 到第
使用帮助 返回顶部