Rock residual strength,as an important input parameter,plays an indispensable role in proposing the reasonable and scientific scheme about stope design,underground tunnel excavation and stability evaluation of deep ch...Rock residual strength,as an important input parameter,plays an indispensable role in proposing the reasonable and scientific scheme about stope design,underground tunnel excavation and stability evaluation of deep chambers.Therefore,previous residual strength models of rocks established were reviewed.And corresponding related problems were stated.Subsequently,starting from the effects of bedding and whole life-cycle evolution process,series of triaxial mechanical tests of deep bedded sandstone with five bedding angles were conducted under different confining pressures.Then,six residual strength models considering the effects of bedding and whole life-cycle evolution process were established and evaluated.Finally,a cohesion loss model for determining residual strength of deep bedded sandstone was verified.The results showed that the effects of bedding and whole life-cycle evolution process had both significant influences on the evolution characteristic of residual strength of deep bedded sandstone.Additionally,residual strength parameters:residual cohesion and residual internal friction angle of deep bedded sandstone were not constant,which both significantly changed with increasing bedding angle.Besides,the cohesion loss model was the most suitable for determining and estimating the residual strength of bedded rocks,which could provide more accurate theoretical guidance for the stability control of deep chambers.展开更多
The mechanism of bolt support is an important topic in mining engineering and slope treatment. The artificial material and loading system were self-developed to study the influence of bedding cohesion and bolt number ...The mechanism of bolt support is an important topic in mining engineering and slope treatment. The artificial material and loading system were self-developed to study the influence of bedding cohesion and bolt number on the anchoring behavior of bedded rock mass. The results show that, both peak strength and elasticity modulus increase gradually with the increase of bedding cohesion and bolt number. The axial stress–strain curve of bedded rock mass under the reinforcement of bolts presents the features of strain-softening and secondary strengthening. Finally, anchoring behavior of bedded rock mass with different bolt numbers was simulated by using FLAC3 D numerical program and the results were compared with the experimental results. This study can provide certain bases to the stability control and support design of bedded rock mass in roadway.展开更多
The quantitative determination and evaluation of rock brittleness are crucial for the estimation of excavation efficiency and the improvement of hydraulic fracturing efficiency.Therefore,a“three-stage”triaxial loadi...The quantitative determination and evaluation of rock brittleness are crucial for the estimation of excavation efficiency and the improvement of hydraulic fracturing efficiency.Therefore,a“three-stage”triaxial loading and unloading stress path is designed and proposed.Subsequently,six brittleness indices are selected.In addition,the evolution characteristics of the six brittleness indices selected are characterized based on the bedding effect and the effect of confining pressure.Then,the entropy weight method(EWM)is introduced to assign weight to the six brittleness indices,and the comprehensive brittleness index Bcis defined and evaluated.Next,the new brittleness classification standard is determined,and the brittleness differences between the two stress paths are quantified.Finally,compared with the previous evaluation methods,the rationality of the proposed comprehensive brittleness index Bcis also verified.These results indicate that the proposed brittleness index Bccan reflect the brittle characteristics of deep bedded sandstone from the perspective of the whole life-cycle evolution process.Accordingly,the method proposed seems to offer reliable evaluations of the brittleness of deep bedded sandstone in deep engineering practices,although further validation is necessary.展开更多
Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at vari...Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at various levels of depth below the surface on the variation of displacements and stresses in bedded rock slopes, four geo- mechanical model tests with artificial rainfall have been conducted. Displacements, water content as well as earth pressure in the model were monitored by means of various FBG (Fiber Bragg Grating) sensors. The results showed that the amount of displacement of a slope with a weak interlayer is 2.8 to 6.2 times larger than that of a slope without a weak interlayer during one rainfall event. Furthermore, the position of the weak interlayer in terms of depth below the surface has a significant effect on the zone of deformation in the model. In the slope with a high position weak interlayer, the recorded deformation was larger in the superficial layer of the model and smaller in the frontal portion than in the slope with a low position weak interlayer. The slope with two weak interlayers has the largest deformation at all locations of all test slopes. The slope without a weak interlayer was only saturated in its superficial layer, while the displacement decreased with depth. That was different from all slopes with a weak interlayer in which the largest displacement shifted from the superficial layer to the weak interlayer when rainfall persisted. Plastic deformation of the weak interlayer promoted the formation of cracks which caused more water to flow into the slope, thus causing larger deformation in the slope with weak interlayers. In addition, the slide thrust pressure showed a vibration phenomenon o.5 to 1 hour ahead of an abrupt increase of the deformation, which was interpreted as a predictor for rainfall-induced failure of bedded rock slopes.展开更多
The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of be...The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of bedded sandstones under identical osmotic pressure and various confining pressures were conducted.Then,the evolution curves of stress-strain,permeability and damage,macro-and mesoscopic failure characteristics were obtained.Subsequently,the mechanical behaviour was characterized,and finally the failure mechanism was revealed.The results showed that:(1)The failure of the sandstone with the bedding angle of 45°or 60°was the structure-dominant type,while that with the bedding angle of 0°,30°or 90°was the force-dominant type.(2)When the bedding angle was in the range of(0°,30°)or(45°,90°),the confining pressure played a dominant role in influencing the peak strength.However,withinβ∈(30°,45°),the bedding effect played a dominant role in the peak strength.(3)With the increase in bedding angle,the cohesion increased first,then decreased and finally increased,while the internal friction angle was the opposite.(4)When the bedding angle was 0°or 30°,the“water wedging”effect and the“bedding buckling”effect would lead to the forking or converging shear failure.When the bedding angle was 45°or 60°,the sliding friction effect would lead to the shear slipping failure.When the bedding angle was 90°,the combination of the“bedding buckling”effect and shear effect would lead to the mixed tension-shear failure.The above conclusions obtained are helpful for the prevention of water inrush disasters in water-rich roadways with different dips in coal mines.展开更多
0 INTRODUCTION Landslides occur globally and frequently,which often cause huge casualties and property losses(Cui et al.,2021).Therefore,landslide prevention is critical and challenging.Anchored slide-resistant piles ...0 INTRODUCTION Landslides occur globally and frequently,which often cause huge casualties and property losses(Cui et al.,2021).Therefore,landslide prevention is critical and challenging.Anchored slide-resistant piles are an effective support structure for a landslide with a thick sliding mass or strong thrust(Kang et al.,2009).展开更多
Reservoir-induced earthquakes(RIEs)occur frequently in the Three Gorges Reservoir Area(TGRA)and the rock mass strength of the hydro-fluctuation belt(HFB)deteriorates severely due to the reservoirinduced seismic loads....Reservoir-induced earthquakes(RIEs)occur frequently in the Three Gorges Reservoir Area(TGRA)and the rock mass strength of the hydro-fluctuation belt(HFB)deteriorates severely due to the reservoirinduced seismic loads.Three models of typical bedded rock slopes(BRSs),i.e.gently(GIS),moderately(MIS),and steeply(SIS)inclined slopes,were proposed according to field investigations.The dynamic response mechanism and stability of the BRSs,affected by the rock mass deterioration of the HFB,were investigated by the shaking table test and the universal distinct element code(UDEC)simulation.Specifically,the amplification coefficient of the peak ground acceleration(PGA)of the slope was gradually attenuated under multiple seismic loads,and the acceleration response showed obvious“surface effect”and“elevation effect”in the horizontal and vertical directions,respectively.The“S-type”cubic function and“steep-rise type”exponential function were used to characterize the cumulative damage evolution of the slope caused by microseismic waves(low seismic waves)and high seismic waves,respectively.According to the dynamic responses of the acceleration,cumulative displacement,rock pressure,pore water pressure,damping ratio,natural frequency,stability coefficient,and sliding velocity of the slope,the typical evolution processes of the dynamic cumulative damage and instability failure of the slope were generalized,and the numerical and experimental results were compared.Considering the dynamic effects of the slope height(SH),slope angle(SA),bedding plane thickness(BPT),dip angle of the bedding plane(DABP),dynamic load amplitude(DLA),dynamic load frequency(DLF),height of water level of the hydro-fluctuation belt(HWLHFB),degradation range of the hydro-fluctuation belt(DRHFB),and degradation shape of the hydro-fluctuation belt(DSHFB),the sensitivity of factors influencing the slope dynamic stability using the orthogonal analysis method(OAM)was DLA>DRHFB>SA>SH>DLF>HWLHFB>DSHFB>DABP>BPT.展开更多
To effectively simulate the fracture propagation in shale,the bedding plane(BP)effect is incorporated into the augmented virtual internal bond(AVIB)constitutive relation through BP tensor.Comparing the BP-embedded AVI...To effectively simulate the fracture propagation in shale,the bedding plane(BP)effect is incorporated into the augmented virtual internal bond(AVIB)constitutive relation through BP tensor.Comparing the BP-embedded AVIB with the theory of transverse isotropy,it is found the approach can represent the anisotropic properties induced by parallel BPs.Through the simulation example,it is found that this method can simulate the stiffness anisotropy of shale and can represent the effect of BPs on hydraulic fracture propagation direction.Compared with the BP-embedded virtual internal bond(VIB),this method can account for the various Poisson’s ratio.It provides a feasible approach to simulate the fracture propagation in shale.展开更多
Based on the theory of Fuzzy Mathematics and Expert System, this paper presents the quantitative expression method of bedded and joint bearing rock mass quality "Stratum Quality Index"(SQI for short), and al...Based on the theory of Fuzzy Mathematics and Expert System, this paper presents the quantitative expression method of bedded and joint bearing rock mass quality "Stratum Quality Index"(SQI for short), and also introduces the successful application of the method in estimating stratum movement parameters.展开更多
During the long-time operation of salt rock storage cavern,between its formations,damaged interfaces induced by discontinuous creep deformations between adjacent layers will possibly lead to serious gas leakage.In thi...During the long-time operation of salt rock storage cavern,between its formations,damaged interfaces induced by discontinuous creep deformations between adjacent layers will possibly lead to serious gas leakage.In this paper,damaged interfaces are considered as main potential leakage path:firstly in meso-level,gas flow rule along the interface is analyzed and the calculation of equivalent permeability is discussed.Then based on porous media seepage theory,gas leakage simulation model including salt rock,cavity interlayers and interface is built.With this strategy,it is possible to overcome the disadvantage of simulation burden with porous-fractured double medium.It also can provide the details of gas flowing along the damaged zones.Finally this proposal is applied to the salt cavern in Qianjian mines(East China).Under different operation pressures,gas distributions around two adjacent cavities are simulated;the evolvement of gas in the interlayers and salt rock is compared.From the results it is demonstrated that the domain of creep damage area has great influence on leakage range.And also the leakage in the interface will accelerate the development of leakage in salt rock.It is concluded that compared with observations,this new strategy provides closer answers.The simulation result proves its validity for the design and reasonable control of operating pressure and tightness evaluation of group bedded salt rock storage caverns.展开更多
A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5w...A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.展开更多
Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely us...Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely used in fields such as injection molding,die casting,and stamping dies.Adding reinforcing particles into steel is an effective means to improve its performance.Nb/18Ni300 composites were fabricated by LPBF using two kinds of Nb powders with different particle sizes,and their microstructures and properties were studied.The results show that the unmelted Nb particles are uniformly distributed in the 18Ni300 matrix and the grains are refined,which is particularly pronounced with fine Nb particles.In addition,element diffusion occurs between the particles and the matrix.The main phases of the base alloy are α-Fe and a small amount of γ-Fe.With the addition of Nb,part of the α-Fe is transformed into γ-Fe,and unmelted Nb phases appear.The addition of Nb also enhances the hardness and wear resistance of the composites but slightly reduces their tensile properties.After aging treatment,the molten pools and grain boundaries become blurred,grains are further refined,and the interfaces around the particles are thinned.The aging treatment also promotes the formation of reverted austenite.The hardness,ultimate tensile strength,and volumetric wear rate of the base alloy reach 51.9 HRC,1704 MPa,and 17.8×10^(-6) mm^(3)/(N·m),respectively.In contrast,the sample added with fine Nb particles has the highest hardness(56.1 HRC),ultimate tensile strength(1892 MPa)and yield strength(1842 MPa),and the volume wear rate of the sample added with coarse Nb particles is reduced by 90%to 1.7×10^(-6) mm^(3)/(N·m).展开更多
Copper manufactured by laser powder bed fusion(LPBF)process typically exhibits poor strength-ductility coordination,and the addition of strengthening phases is an effective way to address this issue.To explore the eff...Copper manufactured by laser powder bed fusion(LPBF)process typically exhibits poor strength-ductility coordination,and the addition of strengthening phases is an effective way to address this issue.To explore the effects of strengthening phases on Cu,Cu-carbon nanotubes(CNTs)composites were prepared using LPBF technique with Cu-CNTs mixed powder as the matrix.The formability,microstructure,mechanical properties,electrical conductivity,and thermal properties were studied.The result shows that the prepared composites have high relative density.The addition of CNTs results in inhomogeneous equiaxed grains at the edges of the molten pool and columnar grains at the center.Compared with pure copper,the overall mechanical properties of the composite are improved:tensile strength increases by 52.8%and elongation increases by 146.4%;the electrical and thermal properties are also enhanced:thermal conductivity increases by 10.8%and electrical conductivity increases by 12.7%.展开更多
The motion and deformation of soft particles are commonly encountered and important in many appli-cations.A discrete element-embedded finite element model(DEFEM)is proposed to solve soft particle motion and deformatio...The motion and deformation of soft particles are commonly encountered and important in many appli-cations.A discrete element-embedded finite element model(DEFEM)is proposed to solve soft particle motion and deformation,which combines discrete element and finite element methods.The collisional surface of soft particles is covered by several dynamical embedded discrete elements(EDEs)to model the collisional external forces of the particles.The particle deformation,motion,and rotation are inde-pendent of each other in the DEFEM.The deformation and internal forces are simulated using the finite element model,whereas the particle rotation and motion calculations are based on the discrete element model.By inheriting the advantages of existing coupling methods,the contact force and contact search between soft particles are improved with the aid of the EDE.Soft particle packing is simulated using the DEFEM for two cases:particle accumulation along a rectangular straight wall and a wall with an inclined angle.The large particle deformation in the lower layers can be simulated using current meth-ods,where the deformed particle shape is either irregular in the marginal region or nearly hexagonal in the tightly packed central region.This method can also be used to simulate the deformation,motion,and heat transfer of non-spherical soft particles.展开更多
Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,...Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,hazard quotient assessment,and geochemical analyses,such as mineral saturation index,ionic activities,and Gibbs diagrams,to investigate the hydrochemical characteristics,causes,and noncarcinogenic risks of fluoride in Red bed groundwater and geothermal water in the Guang'an area and neighboring regions.Approximately 9%of the Red bed groundwater samples contain fluoride concentrations exceeding 1 mg·L^(-1).The predominant water types identified are Cl-Na and HCO_(3)-Na,primarily influenced by evapotranspiration.Low-fluoride groundwater and high-fluoride geothermal water exhibit distinct hydrochemical types HCO_(3)-Ca and SO_(4)-Ca,respectively,which are mainly related to the weathering of carbonate,sulfate,and fluorite-containing rocks.Correlation analysis reveals that fluoride content in Red bed groundwater is positively associated with Na^(+),Cl^(-),SO_(4)^(2-),and TDS(r^(2)=0.45-0.64,p<0.01),while in geothermal water,it correlates strongly with pH,K^(+),Ca^(2+),and Mg^(2+)(r^(2)=0.52-0.80,p<0.05).Mineral saturation indices and ionic activities indicate that ion exchange processes and the dissolution of minerals such as carbonatite and fluorite are important sources of fluoride in groundwater.The enrichment of fluorine in the Red bed groundwater is linked to evaporation,cation exchange and dissolution of fluorite,caused by the lithologic characteristics of the red bed in this area.However,it exhibits minimal correlation with the geothermal water in the adjacent area.The noncarcinogenic health risk assessment indicates that 7%(n=5)of Red bed groundwater points exceed the fluoride safety limit for adults,while 12%(n=8)exceed the limit for children.These findings underscore the importance of avoiding highly fluoridated red bed groundwater as a direct drinking source and enhancing groundwater monitoring to mitigate health risks associated with elevated fluoride levels.展开更多
As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and com...As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and combustion zone was analyzed in the laboratory.The results showed that the decreased porosity of mixture resulted in the increased bed resistance by 160.56%when the bed depth increased from 600 to 1000 mm.After improving porosity of 1%by adding loosening bars with optimized size and distribution,the bed resistance decreased,and the productivity increased by 5%.The increase in bed depth increased the thickness of the wet zone from 120 to 680 mm and the resistance from 1.56 to 8.83 kPa.By using a three-stage intensive mixer and pre-adding water for granulation,the moisture of mixture was reduced by 0.6%,and the sintering productivity increased by 4%.Besides,the high bed resistance is mainly caused by the increase in the thickness of the combustion zone from 31.9 to 132.7 mm,and the bed resistance increased from 0.70 to 5.62 kPa.The bed resistance of the combustion zone at 900 mm was increased by 90.51%compared to 700 mm.After optimization of the distribution of coke breeze,the thickness of combustion zone at the lower layer decreased from 132.7 to 106.84 mm and permeability improved significantly.展开更多
Micrometer-sized,irregularly shaped Ti particles(0.5wt%and 1.0wt%)were mixed with an Al-Si-Mg-Zr matrix powder,and a novel Ti-modified Al-Si-Mg-Zr aluminum alloy was subsequently fabricated via laser-powder bed fusion...Micrometer-sized,irregularly shaped Ti particles(0.5wt%and 1.0wt%)were mixed with an Al-Si-Mg-Zr matrix powder,and a novel Ti-modified Al-Si-Mg-Zr aluminum alloy was subsequently fabricated via laser-powder bed fusion(L-PBF).The results demonstrated that the introduction of Ti particles promoted the formation of near-fully equiaxed grains in the alloy owing to the strong grain refinement of the primary(Al,Si)3(Ti,Zr)nanoparticles.Furthermore,the presence of(Al,Si)3(Ti,Zr)nanoparticles inhibited the decomposition of Si-rich cell boundaries and the precipitation of Si nanoparticles in theα-Al cells.The ultimate tensile strength(UTS),yield strength(YS),and elongation of the asbuilt 0.5wt%Ti(0.5Ti)alloy were(468±11),(350±1)MPa,and(10.0±1.4)%,respectively,which are comparable to those of the L-PBF Al-Si-Mg-Zr matrix alloy and significantly higher than those of traditional L-PBF Al-Si-Mg alloys.After direct aging treatment at 150°C,the precipitation of secondary nanoparticles notably enhanced the strength of the 0.5Ti alloy.Specifically,the 0.5Ti alloy achieved a maximum UTS of(479±11)MPa and YS of(376±10)MPa.At 250°C,the YS of the L-PBF Ti/Al-Si-Mg-Zr alloy was higher than that of the L-PBF Al-Si-Mg-Zr matrix alloy due to the retention of Si-rich cell boundaries,indicating a higher thermal stability.As the aging temperature was increased to 300°C,the dissolution of Si-rich cell boundaries,desolvation of solid-solution elements,and coarsening of nanoprecipitates led to a decrease in the UTS and YS of the alloy to below 300 and 200 MPa,respectively.However,the elongation increased significantly.展开更多
Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit fr...Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit frustrating magnetostriction coefficients when presented in bulk dimensions.It is well-established that the magnetostrictive performance of Fe-Ga alloys is intimately linked to their phase and crystal structures.In this study,various concentrations of boron(B)were doped into Fe_(81)Ga_(19) alloys via the laser-beam powder bed fusion(LPBF)technique to tailor the crystal and phase structures,thereby improving the magnetostrictive performance.The results revealed the capacity for quick solidification of the LPBF process in expediting the solid solution of B element,which increased both lattice distortion and dislocations within the Fe-Ga matrix.These factors contributed to an elevation in the density of the modified-D0_(3) phase structure.Moreover,the prepared Fe-Ga-B alloys also exhibited a(001)preferred grain orientation caused by the high thermal gradients during the LPBF process.As a result,a maximum magnetostriction coefficient of 105 ppm was achieved in the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy.In alternating magnetic fields,all the LPBF-prepared alloys showed good dynamic magnetostriction response without visible hysteresis,while the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy presented a notable enhancement of~30%in magnetostriction coefficient when compared with the Fe_(81)Ga_(19) alloy.Moreover.the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy exhibited favorable biocompatibility and osteogenesis,as confirmed by increased alkaline phosphatase(ALP)activity and the formation of mineralized nodules.These findings suggest that the B-doped Fe-Ga alloys combined with the LPBF technique hold promise for the development of bulk magnetostrictive alloys that are applicable for bone repair applications.展开更多
This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature...This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature. The microstructure contained columnar grains with (111) texture in the vertical plane (90° sample), while a large equiaxed grain with (100) texture was produced in the horizontal plane (0° sample). As for 45° sample, a large number of equiaxed grains and a few columnar grains with (111) texture can be observed. The sample produced at a 0° orientation demonstrates the highest tensile strength, whereas the 90° sample exhibits the greatest elongation. Conversely, the 45° sample displays the least favorable overall performance. As the tests temperature increased from room temperature to 600℃, the anisotropy rate of ultimate tensile strength, yield strength and ductility between 0° and 45° samples, decreased from 8.98 to 6.96%, 2.36 to 1.28%, 19.93 to 12.23%, as well as between 0° and 90° samples decreased from 4.87 to 4.03%, 11.88 to 7.21% and 14.11 to 6.89%, respectively, because of the recovery of oriented columnar grains.展开更多
基金Projects(2024YFC3013801,2022YFC3004602)supported by the National Key R&D Program of ChinaProjects(U23B2093,52034009)supported by the National Natural Science Foundation of China。
文摘Rock residual strength,as an important input parameter,plays an indispensable role in proposing the reasonable and scientific scheme about stope design,underground tunnel excavation and stability evaluation of deep chambers.Therefore,previous residual strength models of rocks established were reviewed.And corresponding related problems were stated.Subsequently,starting from the effects of bedding and whole life-cycle evolution process,series of triaxial mechanical tests of deep bedded sandstone with five bedding angles were conducted under different confining pressures.Then,six residual strength models considering the effects of bedding and whole life-cycle evolution process were established and evaluated.Finally,a cohesion loss model for determining residual strength of deep bedded sandstone was verified.The results showed that the effects of bedding and whole life-cycle evolution process had both significant influences on the evolution characteristic of residual strength of deep bedded sandstone.Additionally,residual strength parameters:residual cohesion and residual internal friction angle of deep bedded sandstone were not constant,which both significantly changed with increasing bedding angle.Besides,the cohesion loss model was the most suitable for determining and estimating the residual strength of bedded rocks,which could provide more accurate theoretical guidance for the stability control of deep chambers.
基金Financial provided by the National Key Research and Development Program of China (Grant No. 2017YFC0603001)the National Natural Science Foundation of China (Nos. 51734009 and 51704279)the Natural Science Foundation of Jiangsu Province (BK20170270)
文摘The mechanism of bolt support is an important topic in mining engineering and slope treatment. The artificial material and loading system were self-developed to study the influence of bedding cohesion and bolt number on the anchoring behavior of bedded rock mass. The results show that, both peak strength and elasticity modulus increase gradually with the increase of bedding cohesion and bolt number. The axial stress–strain curve of bedded rock mass under the reinforcement of bolts presents the features of strain-softening and secondary strengthening. Finally, anchoring behavior of bedded rock mass with different bolt numbers was simulated by using FLAC3 D numerical program and the results were compared with the experimental results. This study can provide certain bases to the stability control and support design of bedded rock mass in roadway.
基金supported by the National Natural Science Foundation of China(Nos.52034009 and 51974319)the Yue Qi Distinguished Scholar Project(No.2020JCB01)。
文摘The quantitative determination and evaluation of rock brittleness are crucial for the estimation of excavation efficiency and the improvement of hydraulic fracturing efficiency.Therefore,a“three-stage”triaxial loading and unloading stress path is designed and proposed.Subsequently,six brittleness indices are selected.In addition,the evolution characteristics of the six brittleness indices selected are characterized based on the bedding effect and the effect of confining pressure.Then,the entropy weight method(EWM)is introduced to assign weight to the six brittleness indices,and the comprehensive brittleness index Bcis defined and evaluated.Next,the new brittleness classification standard is determined,and the brittleness differences between the two stress paths are quantified.Finally,compared with the previous evaluation methods,the rationality of the proposed comprehensive brittleness index Bcis also verified.These results indicate that the proposed brittleness index Bccan reflect the brittle characteristics of deep bedded sandstone from the perspective of the whole life-cycle evolution process.Accordingly,the method proposed seems to offer reliable evaluations of the brittleness of deep bedded sandstone in deep engineering practices,although further validation is necessary.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41502299,41372306)Research Planning of Sichuan Education Department,China(Grant No.16ZB0105)
文摘Engineering experience shows that outward dipping bedded rock slopes, especially including weak interlayers, are prone to slide under rainfall conditions. To investigate the effect of inclined weak interlayers at various levels of depth below the surface on the variation of displacements and stresses in bedded rock slopes, four geo- mechanical model tests with artificial rainfall have been conducted. Displacements, water content as well as earth pressure in the model were monitored by means of various FBG (Fiber Bragg Grating) sensors. The results showed that the amount of displacement of a slope with a weak interlayer is 2.8 to 6.2 times larger than that of a slope without a weak interlayer during one rainfall event. Furthermore, the position of the weak interlayer in terms of depth below the surface has a significant effect on the zone of deformation in the model. In the slope with a high position weak interlayer, the recorded deformation was larger in the superficial layer of the model and smaller in the frontal portion than in the slope with a low position weak interlayer. The slope with two weak interlayers has the largest deformation at all locations of all test slopes. The slope without a weak interlayer was only saturated in its superficial layer, while the displacement decreased with depth. That was different from all slopes with a weak interlayer in which the largest displacement shifted from the superficial layer to the weak interlayer when rainfall persisted. Plastic deformation of the weak interlayer promoted the formation of cracks which caused more water to flow into the slope, thus causing larger deformation in the slope with weak interlayers. In addition, the slide thrust pressure showed a vibration phenomenon o.5 to 1 hour ahead of an abrupt increase of the deformation, which was interpreted as a predictor for rainfall-induced failure of bedded rock slopes.
基金supported by the National Natural Science Foundation of China(Grant Nos.52034009 and 51974319)the Yue Qi Distinguished Scholar Project(Grant No.2020JCB01).
文摘The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of bedded sandstones under identical osmotic pressure and various confining pressures were conducted.Then,the evolution curves of stress-strain,permeability and damage,macro-and mesoscopic failure characteristics were obtained.Subsequently,the mechanical behaviour was characterized,and finally the failure mechanism was revealed.The results showed that:(1)The failure of the sandstone with the bedding angle of 45°or 60°was the structure-dominant type,while that with the bedding angle of 0°,30°or 90°was the force-dominant type.(2)When the bedding angle was in the range of(0°,30°)or(45°,90°),the confining pressure played a dominant role in influencing the peak strength.However,withinβ∈(30°,45°),the bedding effect played a dominant role in the peak strength.(3)With the increase in bedding angle,the cohesion increased first,then decreased and finally increased,while the internal friction angle was the opposite.(4)When the bedding angle was 0°or 30°,the“water wedging”effect and the“bedding buckling”effect would lead to the forking or converging shear failure.When the bedding angle was 45°or 60°,the sliding friction effect would lead to the shear slipping failure.When the bedding angle was 90°,the combination of the“bedding buckling”effect and shear effect would lead to the mixed tension-shear failure.The above conclusions obtained are helpful for the prevention of water inrush disasters in water-rich roadways with different dips in coal mines.
基金supported by the National Key R&D Program of China(Nos.2017YFC1501304 and 2018YFC1507200)the National Natural Science Foundation of China(Nos.42090054,41922055,41931295,42107181)+2 种基金the Key Research and Development Program of Hubei Province of China(No.2020BCB079)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGGC09)the Research Project of China Three Gorges Corporation(No.2019073)。
文摘0 INTRODUCTION Landslides occur globally and frequently,which often cause huge casualties and property losses(Cui et al.,2021).Therefore,landslide prevention is critical and challenging.Anchored slide-resistant piles are an effective support structure for a landslide with a thick sliding mass or strong thrust(Kang et al.,2009).
基金the China Postdoctoral Science Foundation(Grant No.2023M730432)the Special Funding for Chongqing Postdoctoral Research Project(Grant No.2022CQBSHTB1010)the Chongqing Postdoctoral Science Foundation(Grant No.CSTB2023NSCQ-BHX0223).
文摘Reservoir-induced earthquakes(RIEs)occur frequently in the Three Gorges Reservoir Area(TGRA)and the rock mass strength of the hydro-fluctuation belt(HFB)deteriorates severely due to the reservoirinduced seismic loads.Three models of typical bedded rock slopes(BRSs),i.e.gently(GIS),moderately(MIS),and steeply(SIS)inclined slopes,were proposed according to field investigations.The dynamic response mechanism and stability of the BRSs,affected by the rock mass deterioration of the HFB,were investigated by the shaking table test and the universal distinct element code(UDEC)simulation.Specifically,the amplification coefficient of the peak ground acceleration(PGA)of the slope was gradually attenuated under multiple seismic loads,and the acceleration response showed obvious“surface effect”and“elevation effect”in the horizontal and vertical directions,respectively.The“S-type”cubic function and“steep-rise type”exponential function were used to characterize the cumulative damage evolution of the slope caused by microseismic waves(low seismic waves)and high seismic waves,respectively.According to the dynamic responses of the acceleration,cumulative displacement,rock pressure,pore water pressure,damping ratio,natural frequency,stability coefficient,and sliding velocity of the slope,the typical evolution processes of the dynamic cumulative damage and instability failure of the slope were generalized,and the numerical and experimental results were compared.Considering the dynamic effects of the slope height(SH),slope angle(SA),bedding plane thickness(BPT),dip angle of the bedding plane(DABP),dynamic load amplitude(DLA),dynamic load frequency(DLF),height of water level of the hydro-fluctuation belt(HWLHFB),degradation range of the hydro-fluctuation belt(DRHFB),and degradation shape of the hydro-fluctuation belt(DSHFB),the sensitivity of factors influencing the slope dynamic stability using the orthogonal analysis method(OAM)was DLA>DRHFB>SA>SH>DLF>HWLHFB>DSHFB>DABP>BPT.
基金This work is supported by the National Natural Science Foundation of China(Grant 11772190),which is gratefully acknowledged.
文摘To effectively simulate the fracture propagation in shale,the bedding plane(BP)effect is incorporated into the augmented virtual internal bond(AVIB)constitutive relation through BP tensor.Comparing the BP-embedded AVIB with the theory of transverse isotropy,it is found the approach can represent the anisotropic properties induced by parallel BPs.Through the simulation example,it is found that this method can simulate the stiffness anisotropy of shale and can represent the effect of BPs on hydraulic fracture propagation direction.Compared with the BP-embedded virtual internal bond(VIB),this method can account for the various Poisson’s ratio.It provides a feasible approach to simulate the fracture propagation in shale.
文摘Based on the theory of Fuzzy Mathematics and Expert System, this paper presents the quantitative expression method of bedded and joint bearing rock mass quality "Stratum Quality Index"(SQI for short), and also introduces the successful application of the method in estimating stratum movement parameters.
基金We acknowledge the following funds to give financial supports.They are China National Program on National natural sciences foundation of China Grant no.51104108 and 41172284,Key Basic Research Project(973 Program)Grant no.2009CB724603.
文摘During the long-time operation of salt rock storage cavern,between its formations,damaged interfaces induced by discontinuous creep deformations between adjacent layers will possibly lead to serious gas leakage.In this paper,damaged interfaces are considered as main potential leakage path:firstly in meso-level,gas flow rule along the interface is analyzed and the calculation of equivalent permeability is discussed.Then based on porous media seepage theory,gas leakage simulation model including salt rock,cavity interlayers and interface is built.With this strategy,it is possible to overcome the disadvantage of simulation burden with porous-fractured double medium.It also can provide the details of gas flowing along the damaged zones.Finally this proposal is applied to the salt cavern in Qianjian mines(East China).Under different operation pressures,gas distributions around two adjacent cavities are simulated;the evolvement of gas in the interlayers and salt rock is compared.From the results it is demonstrated that the domain of creep damage area has great influence on leakage range.And also the leakage in the interface will accelerate the development of leakage in salt rock.It is concluded that compared with observations,this new strategy provides closer answers.The simulation result proves its validity for the design and reasonable control of operating pressure and tightness evaluation of group bedded salt rock storage caverns.
基金Shaanxi Province Qin Chuangyuan“Scientist+Engineer”Team Construction Project(2022KXJ-071)2022 Qin Chuangyuan Achievement Transformation Incubation Capacity Improvement Project(2022JH-ZHFHTS-0012)+8 种基金Shaanxi Province Key Research and Development Plan-“Two Chains”Integration Key Project-Qin Chuangyuan General Window Industrial Cluster Project(2023QCY-LL-02)Xixian New Area Science and Technology Plan(2022-YXYJ-003,2022-XXCY-010)2024 Scientific Research Project of Shaanxi National Defense Industry Vocational and Technical College(Gfy24-07)Shaanxi Vocational and Technical Education Association 2024 Vocational Education Teaching Reform Research Topic(2024SZX354)National Natural Science Foundation of China(U24A20115)2024 Shaanxi Provincial Education Department Service Local Special Scientific Research Program Project-Industrialization Cultivation Project(24JC005,24JC063)Shaanxi Province“14th Five-Year Plan”Education Science Plan,2024 Project(SGH24Y3181)National Key Research and Development Program of China(2023YFB4606400)Longmen Laboratory Frontier Exploration Topics Project(LMQYTSKT003)。
文摘A dual-phase synergistic enhancement method was adopted to strengthen the Al-Mn-Mg-Sc-Zr alloy fabricated by laser powder bed fusion(LPBF)by leveraging the unique advantages of Er and TiB_(2).Spherical powders of 0.5wt%Er-1wt%TiB_(2)/Al-Mn-Mg-Sc-Zr nanocomposite were prepared using vacuum homogenization technique,and the density of samples prepared through the LPBF process reached 99.8%.The strengthening and toughening mechanisms of Er-TiB_(2)were investigated.The results show that Al_(3)Er diffraction peaks are detected by X-ray diffraction analysis,and texture strength decreases according to electron backscatter diffraction results.The added Er and TiB_(2)nano-reinforcing phases act as heterogeneous nucleation sites during the LPBF forming process,hindering grain growth and effectively refining the grains.After incorporating the Er-TiB_(2)dual-phase nano-reinforcing phases,the tensile strength and elongation at break of the LPBF-deposited samples reach 550 MPa and 18.7%,which are 13.4%and 26.4%higher than those of the matrix material,respectively.
基金Key-Area Research and Development Program of Guangdong Province(2023B0909020004)Project of Innovation Research Team in Zhongshan(CXTD2023006)+1 种基金Natural Science Foundation of Guangdong Province(2023A1515011573)Zhongshan Social Welfare Science and Technology Research Project(2024B2022)。
文摘Laser powder bed fusion(LPBF)is highly suitable for forming 18Ni300 mold steel,thanks to its excellent capability in manufacturing complex shapes and outstanding capacity for regulating microstructures.It is widely used in fields such as injection molding,die casting,and stamping dies.Adding reinforcing particles into steel is an effective means to improve its performance.Nb/18Ni300 composites were fabricated by LPBF using two kinds of Nb powders with different particle sizes,and their microstructures and properties were studied.The results show that the unmelted Nb particles are uniformly distributed in the 18Ni300 matrix and the grains are refined,which is particularly pronounced with fine Nb particles.In addition,element diffusion occurs between the particles and the matrix.The main phases of the base alloy are α-Fe and a small amount of γ-Fe.With the addition of Nb,part of the α-Fe is transformed into γ-Fe,and unmelted Nb phases appear.The addition of Nb also enhances the hardness and wear resistance of the composites but slightly reduces their tensile properties.After aging treatment,the molten pools and grain boundaries become blurred,grains are further refined,and the interfaces around the particles are thinned.The aging treatment also promotes the formation of reverted austenite.The hardness,ultimate tensile strength,and volumetric wear rate of the base alloy reach 51.9 HRC,1704 MPa,and 17.8×10^(-6) mm^(3)/(N·m),respectively.In contrast,the sample added with fine Nb particles has the highest hardness(56.1 HRC),ultimate tensile strength(1892 MPa)and yield strength(1842 MPa),and the volume wear rate of the sample added with coarse Nb particles is reduced by 90%to 1.7×10^(-6) mm^(3)/(N·m).
基金National Key Research and Development Program of China(2023YFB4606400)Supported by Longmen Laboratory Frontier Exploration Topics(LMQYTSKT003)。
文摘Copper manufactured by laser powder bed fusion(LPBF)process typically exhibits poor strength-ductility coordination,and the addition of strengthening phases is an effective way to address this issue.To explore the effects of strengthening phases on Cu,Cu-carbon nanotubes(CNTs)composites were prepared using LPBF technique with Cu-CNTs mixed powder as the matrix.The formability,microstructure,mechanical properties,electrical conductivity,and thermal properties were studied.The result shows that the prepared composites have high relative density.The addition of CNTs results in inhomogeneous equiaxed grains at the edges of the molten pool and columnar grains at the center.Compared with pure copper,the overall mechanical properties of the composite are improved:tensile strength increases by 52.8%and elongation increases by 146.4%;the electrical and thermal properties are also enhanced:thermal conductivity increases by 10.8%and electrical conductivity increases by 12.7%.
基金the support of this research by the National Science and Technology Major Project(grant No.2011ZX06901-003)the National Natural Science Foundation of China(grant No.51576211)+1 种基金the National High Technology Research and Development Program of China(863)(grant No.2014AA052701)the funds of Nuclear Power Technology Innovation Centre(grant Nos.HDLCXZX-2020-HD-022 and HDLCXZX-2021-ZH-024).
文摘The motion and deformation of soft particles are commonly encountered and important in many appli-cations.A discrete element-embedded finite element model(DEFEM)is proposed to solve soft particle motion and deformation,which combines discrete element and finite element methods.The collisional surface of soft particles is covered by several dynamical embedded discrete elements(EDEs)to model the collisional external forces of the particles.The particle deformation,motion,and rotation are inde-pendent of each other in the DEFEM.The deformation and internal forces are simulated using the finite element model,whereas the particle rotation and motion calculations are based on the discrete element model.By inheriting the advantages of existing coupling methods,the contact force and contact search between soft particles are improved with the aid of the EDE.Soft particle packing is simulated using the DEFEM for two cases:particle accumulation along a rectangular straight wall and a wall with an inclined angle.The large particle deformation in the lower layers can be simulated using current meth-ods,where the deformed particle shape is either irregular in the marginal region or nearly hexagonal in the tightly packed central region.This method can also be used to simulate the deformation,motion,and heat transfer of non-spherical soft particles.
基金supported by the China Geological Survey Project(Nos.DD20220864 and DD20243077).
文摘Understanding the levels,causes,and sources of fluoride in groundwater is critical for public health,effective water resource management,and sustainable utilization.This study employs multivariate statistical methods,hazard quotient assessment,and geochemical analyses,such as mineral saturation index,ionic activities,and Gibbs diagrams,to investigate the hydrochemical characteristics,causes,and noncarcinogenic risks of fluoride in Red bed groundwater and geothermal water in the Guang'an area and neighboring regions.Approximately 9%of the Red bed groundwater samples contain fluoride concentrations exceeding 1 mg·L^(-1).The predominant water types identified are Cl-Na and HCO_(3)-Na,primarily influenced by evapotranspiration.Low-fluoride groundwater and high-fluoride geothermal water exhibit distinct hydrochemical types HCO_(3)-Ca and SO_(4)-Ca,respectively,which are mainly related to the weathering of carbonate,sulfate,and fluorite-containing rocks.Correlation analysis reveals that fluoride content in Red bed groundwater is positively associated with Na^(+),Cl^(-),SO_(4)^(2-),and TDS(r^(2)=0.45-0.64,p<0.01),while in geothermal water,it correlates strongly with pH,K^(+),Ca^(2+),and Mg^(2+)(r^(2)=0.52-0.80,p<0.05).Mineral saturation indices and ionic activities indicate that ion exchange processes and the dissolution of minerals such as carbonatite and fluorite are important sources of fluoride in groundwater.The enrichment of fluorine in the Red bed groundwater is linked to evaporation,cation exchange and dissolution of fluorite,caused by the lithologic characteristics of the red bed in this area.However,it exhibits minimal correlation with the geothermal water in the adjacent area.The noncarcinogenic health risk assessment indicates that 7%(n=5)of Red bed groundwater points exceed the fluoride safety limit for adults,while 12%(n=8)exceed the limit for children.These findings underscore the importance of avoiding highly fluoridated red bed groundwater as a direct drinking source and enhancing groundwater monitoring to mitigate health risks associated with elevated fluoride levels.
基金supported by the Basic Science Center Project for the National Natural Science Foundation of China(No.72088101)the S&T Program of Hebei(No.23564101D).
文摘As the bed depth increases,sintering yield increases,but the productivity decreases.To reveal the reasons for the decrease in productivity and explore targeted solutions,the bed resistance of mixtures,wet zone,and combustion zone was analyzed in the laboratory.The results showed that the decreased porosity of mixture resulted in the increased bed resistance by 160.56%when the bed depth increased from 600 to 1000 mm.After improving porosity of 1%by adding loosening bars with optimized size and distribution,the bed resistance decreased,and the productivity increased by 5%.The increase in bed depth increased the thickness of the wet zone from 120 to 680 mm and the resistance from 1.56 to 8.83 kPa.By using a three-stage intensive mixer and pre-adding water for granulation,the moisture of mixture was reduced by 0.6%,and the sintering productivity increased by 4%.Besides,the high bed resistance is mainly caused by the increase in the thickness of the combustion zone from 31.9 to 132.7 mm,and the bed resistance increased from 0.70 to 5.62 kPa.The bed resistance of the combustion zone at 900 mm was increased by 90.51%compared to 700 mm.After optimization of the distribution of coke breeze,the thickness of combustion zone at the lower layer decreased from 132.7 to 106.84 mm and permeability improved significantly.
基金supported by the National Natural Science Foundation of China(Nos.52001140 and 52475361).
文摘Micrometer-sized,irregularly shaped Ti particles(0.5wt%and 1.0wt%)were mixed with an Al-Si-Mg-Zr matrix powder,and a novel Ti-modified Al-Si-Mg-Zr aluminum alloy was subsequently fabricated via laser-powder bed fusion(L-PBF).The results demonstrated that the introduction of Ti particles promoted the formation of near-fully equiaxed grains in the alloy owing to the strong grain refinement of the primary(Al,Si)3(Ti,Zr)nanoparticles.Furthermore,the presence of(Al,Si)3(Ti,Zr)nanoparticles inhibited the decomposition of Si-rich cell boundaries and the precipitation of Si nanoparticles in theα-Al cells.The ultimate tensile strength(UTS),yield strength(YS),and elongation of the asbuilt 0.5wt%Ti(0.5Ti)alloy were(468±11),(350±1)MPa,and(10.0±1.4)%,respectively,which are comparable to those of the L-PBF Al-Si-Mg-Zr matrix alloy and significantly higher than those of traditional L-PBF Al-Si-Mg alloys.After direct aging treatment at 150°C,the precipitation of secondary nanoparticles notably enhanced the strength of the 0.5Ti alloy.Specifically,the 0.5Ti alloy achieved a maximum UTS of(479±11)MPa and YS of(376±10)MPa.At 250°C,the YS of the L-PBF Ti/Al-Si-Mg-Zr alloy was higher than that of the L-PBF Al-Si-Mg-Zr matrix alloy due to the retention of Si-rich cell boundaries,indicating a higher thermal stability.As the aging temperature was increased to 300°C,the dissolution of Si-rich cell boundaries,desolvation of solid-solution elements,and coarsening of nanoprecipitates led to a decrease in the UTS and YS of the alloy to below 300 and 200 MPa,respectively.However,the elongation increased significantly.
基金supported by the National Natural Science Foundation of China(Nos.52275395,51935014,and 82072084)the Science and Technology Innovation Program of Hunan Province(No.2023RC3046)+4 种基金the Young Elite Scientists Sponsorship Program byCAST(No.2020QNRC002)the NationalKeyResearchand Development Program of China(No.2023YFB4605800)the Central South University Innovation-Driven Research Programme(No.2023CXQD023)the Jiangxi Provincial Natural Science Foundation of China(No.20224ACB204013)the Project of State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University.
文摘Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit frustrating magnetostriction coefficients when presented in bulk dimensions.It is well-established that the magnetostrictive performance of Fe-Ga alloys is intimately linked to their phase and crystal structures.In this study,various concentrations of boron(B)were doped into Fe_(81)Ga_(19) alloys via the laser-beam powder bed fusion(LPBF)technique to tailor the crystal and phase structures,thereby improving the magnetostrictive performance.The results revealed the capacity for quick solidification of the LPBF process in expediting the solid solution of B element,which increased both lattice distortion and dislocations within the Fe-Ga matrix.These factors contributed to an elevation in the density of the modified-D0_(3) phase structure.Moreover,the prepared Fe-Ga-B alloys also exhibited a(001)preferred grain orientation caused by the high thermal gradients during the LPBF process.As a result,a maximum magnetostriction coefficient of 105 ppm was achieved in the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy.In alternating magnetic fields,all the LPBF-prepared alloys showed good dynamic magnetostriction response without visible hysteresis,while the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy presented a notable enhancement of~30%in magnetostriction coefficient when compared with the Fe_(81)Ga_(19) alloy.Moreover.the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy exhibited favorable biocompatibility and osteogenesis,as confirmed by increased alkaline phosphatase(ALP)activity and the formation of mineralized nodules.These findings suggest that the B-doped Fe-Ga alloys combined with the LPBF technique hold promise for the development of bulk magnetostrictive alloys that are applicable for bone repair applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.52205140,52175129)the Outstanding Youth Foundation of Hunan Province(Grant No.2023JJ20041)the Science and Technology Innovation Program of Hunan Province(2023RC3241).
文摘This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature. The microstructure contained columnar grains with (111) texture in the vertical plane (90° sample), while a large equiaxed grain with (100) texture was produced in the horizontal plane (0° sample). As for 45° sample, a large number of equiaxed grains and a few columnar grains with (111) texture can be observed. The sample produced at a 0° orientation demonstrates the highest tensile strength, whereas the 90° sample exhibits the greatest elongation. Conversely, the 45° sample displays the least favorable overall performance. As the tests temperature increased from room temperature to 600℃, the anisotropy rate of ultimate tensile strength, yield strength and ductility between 0° and 45° samples, decreased from 8.98 to 6.96%, 2.36 to 1.28%, 19.93 to 12.23%, as well as between 0° and 90° samples decreased from 4.87 to 4.03%, 11.88 to 7.21% and 14.11 to 6.89%, respectively, because of the recovery of oriented columnar grains.