Low-level laser therapy(LLLT)has been clinically utilized for many indications in medicine requiring protection from el/issue death,stimulation of healing and repair of injuries,pain reduction,swelling and inflammatio...Low-level laser therapy(LLLT)has been clinically utilized for many indications in medicine requiring protection from el/issue death,stimulation of healing and repair of injuries,pain reduction,swelling and inflammation.Presently,the use of LLLT to treat stroke,traumnatic brain injury and cognitive dysfunction are attracting growing interest.Near infrared light is capable of penetrating into the cerebral cortex,allowing noninvasive treatments to be caried out with few treatment-related adverse events.Optimization of LLLT treatment flfect is a crucial isse of this field;however,only a few experimental tests on mice for wavelength selection have been reported.We addressed this ssue by low-ost,straightforward and quantitative comparisons on light dosage distribution within visible Chinese human head by Monte Carlo modeling of near infrared light propagation.Optimized selection in wavelength,beam type and size were given based on comparisons among frequently used setups(ie,wavelengths:660,810 and 980 nm;beam type:Gaussian and flat beamn;beam diameter:2,4 and 6 cm).This study provided an fficient way for guiding the optimization of LLLT setup and selection on wavelength,beam type and size for clinical brain LLLT.展开更多
基金supported by the Research Start Fund (Grant No.Y02002010)the Central University Basic Scienti¯c Research Project Business Expenses (Grant No.ZYGX2012J114)the National Natural Science Foundation of China (Grant No.61308114).
文摘Low-level laser therapy(LLLT)has been clinically utilized for many indications in medicine requiring protection from el/issue death,stimulation of healing and repair of injuries,pain reduction,swelling and inflammation.Presently,the use of LLLT to treat stroke,traumnatic brain injury and cognitive dysfunction are attracting growing interest.Near infrared light is capable of penetrating into the cerebral cortex,allowing noninvasive treatments to be caried out with few treatment-related adverse events.Optimization of LLLT treatment flfect is a crucial isse of this field;however,only a few experimental tests on mice for wavelength selection have been reported.We addressed this ssue by low-ost,straightforward and quantitative comparisons on light dosage distribution within visible Chinese human head by Monte Carlo modeling of near infrared light propagation.Optimized selection in wavelength,beam type and size were given based on comparisons among frequently used setups(ie,wavelengths:660,810 and 980 nm;beam type:Gaussian and flat beamn;beam diameter:2,4 and 6 cm).This study provided an fficient way for guiding the optimization of LLLT setup and selection on wavelength,beam type and size for clinical brain LLLT.