The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.Howeve...The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.展开更多
This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃...This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃nian in conjunction with a scattering matrix method,the model effectively incorporates quantum confinement,strain effects,and interface states.This robust and numerically stable approach achieves exceptional agreement with experimental data,offering a reliable tool for analyzing and engineering the band structure of complex multi⁃layer systems.展开更多
Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie conditio...Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie condition.Hanging crossties usually yield unfavorable dynamic effects such as higher wheel loads,which negatively impact the serviceability and safety of railway operations.Hence,a better understanding of the mechanisms that cause hanging crossties and their effects on the ballast layer load-deformation characteristics is necessary.Since the ballast layer is a particulate medium,the discrete element method(DEM),which simulates ballast particle interactions individually,is ideal to explore the interparticle contact forces and ballast movements under dynamic wheel loading.Accurate representations of the dynamic loads from the train and track superstructure are needed for high-fidelity DEM modeling.This paper introduces an integrated modeling approach,which couples a single-crosstie DEM ballast model with a train–track–bridge(TTB)model using a proportional–integral–derivative control loop.The TTB–DEM model was validated with field measurements,and the coupled model calculates similar crosstie displacements as the TTB model.The TTB–DEM provided new insights into the ballast particle-scale behavior,which the TTB model alone cannot explore.The TTB–DEM coupling approach identified detrimental effects of hanging crossties on adjacent crossties,which were found to experience drastic vibrations and large ballast contact force concentrations.展开更多
Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implemen...Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implementation,or configuration.To guarantee the durability&robustness of the software,vulnerability identification and fixation have become crucial areas of focus for developers,cybersecurity experts and industries.This paper presents a thorough multi-phase mathematical model for efficient patch management and vulnerability detection.To uniquely model these processes,the model incorporated the notion of the learning phenomenon in describing vulnerability fixation using a logistic learning function.Furthermore,the authors have used numerical methods to approximate the solution of the proposed framework where an analytical solution is difficult to attain.The suggested systematic architecture has been demonstrated through statistical analysis using patch datasets,which offers a solid basis for the research conclusions.According to computational research,learning dynamics improves security response and results in more effective vulnerability management.The suggested model offers a systematic approach to proactive vulnerability mitigation and has important uses in risk assessment,software maintenance,and cybersecurity.This study helps create more robust software systems by increasing patch management effectiveness,which benefits developers,cybersecurity experts,and sectors looking to reduce security threats in a growing digital world.展开更多
In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a ge...In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a generalized nonlinear Stokes problem of displacement vector field related to pseudo pressure and a diffusion problem of other pseudo pressure fields.Secondly,a fully discrete multiphysics finite element method is performed to solve the reformulated system numerically.Thirdly,existence and uniqueness of the weak solution of the reformulated model and stability analysis and optimal convergence order for the multiphysics finite element method are proven theoretically.Lastly,numerical tests are given to verify the theoretical results.展开更多
The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system...The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.展开更多
WITHDRAWAL:Zhang,J.J.,Guo,Y.Q.,Qin,Z.Y.,Wei,C.T.,Hu,Q.H.,Vandeginste,V.,Miao,H.Y.,Yao,P.,and Zhang,P.F.,“Predicting Irreducible Water Saturation of Unconventional Reservoirs by Using NMR T2 Spectra:Methods of Morphol...WITHDRAWAL:Zhang,J.J.,Guo,Y.Q.,Qin,Z.Y.,Wei,C.T.,Hu,Q.H.,Vandeginste,V.,Miao,H.Y.,Yao,P.,and Zhang,P.F.,“Predicting Irreducible Water Saturation of Unconventional Reservoirs by Using NMR T2 Spectra:Methods of Morphological Division and Fractal Models”,Acta Geologica Sinica-English Edition(Accepted Article):https://doi.org/10.1111/1755-6724.15094.展开更多
Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with C...Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with CGO incidents under low gas pressure conditions.In pursuit of this objective,we have studied and established a mechanical model of the working face under abnormal stress and the excitation energy conditions of CGO,and proposed a method for predicting the risk of CGO under abnormal stress.On site application verification shows that when a strong outburst hazard level prediction is issued,there is a high possibility of outburst disasters occurring.In one of the three locations where we predicted strong outburst hazards,a small outburst occurred,and the accuracy of the prediction was higher than the traditional drilling cuttings index S and drilling cuttings gas desorption index q.Finally,we discuss the mechanism of CGO under the action of stress anomalies.Based on the analysis of stress distribution changes and energy accumulation characteristics of coal under abnormal stress,this article believes that the increase in outburst risk caused by high stress abnormal gradient is mainly due to two reasons:(1)The high stress abnormal gradient leads to an increase in the plastic zone of the coal seam.After the working face advances,it indirectly leads to an increase in the gas expansion energy that can be released from the coal seam before reaching a new stress equilibrium.(2)Abnormal stress leads to increased peak stress of coal body in front of working face.When coal body in elastic area transforms to plastic area,its failure speed is accelerated,which induces accelerated gas desorption and aggravates the risk of outburst.展开更多
We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to...We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation.展开更多
Objective:To explore the application value of a new empowerment teaching method based on Kirkpatrick’s evaluation model in teaching Chinese medicine nursing in otorhinolaryngology.Methods:60 nurses who practiced in t...Objective:To explore the application value of a new empowerment teaching method based on Kirkpatrick’s evaluation model in teaching Chinese medicine nursing in otorhinolaryngology.Methods:60 nurses who practiced in the otolaryngology department of our hospital from June 2022 to October 2024 were included in the study and equally divided into two groups using a convenient sampling method.30 nurses who chose traditional Chinese medicine skill teaching management were included in the control group,and 30 nurses who chose the new empowerment teaching method based on Kirkpatrick’s evaluation model were included in the observation group.Relevant indicators such as clinical teaching environment perception,theoretical knowledge scores of Chinese medicine nursing,and excellent rate of practical operation assessment were compared.Results:The nurses in the observation group had higher scores for clinical teaching environment perception than the control group(P<0.05).However,the midterm and final exam scores for theoretical knowledge of Chinese medicine nursing were higher in the observation group than in the control group(P<0.05).Compared with the control group,the observation group had a higher excellent rate of practical operation assessment(93.33%>73.33%)and a higher Chinese medicine nursing ability score[(215.69±19.73)points>(184.87±15.66)points](P<0.05).Conclusion:Applying the new empowerment teaching method based on Kirkpatrick’s evaluation model to Chinese medicine nursing teaching in otolaryngology can help nurses understand the theoretical knowledge of Chinese medicine nursing and optimize the clinical teaching environment,thereby promoting their practical skills and Chinese medicine nursing abilities.展开更多
In this study,a powerful thermo-hydro-mechanical(THM)coupling solution scheme for saturated poroelastic media involving brittle fracturing is developed.Under the local thermal non-equilibrium(LTNE)assumption,this sche...In this study,a powerful thermo-hydro-mechanical(THM)coupling solution scheme for saturated poroelastic media involving brittle fracturing is developed.Under the local thermal non-equilibrium(LTNE)assumption,this scheme seamlessly combines the material point method(MPM)for accurately tracking solid-phase deformation and heat transport,and the Eulerian finite element method(FEM)for effectively capturing fluid flow and heat advection-diffusion behavior.The proposed approach circumvents the substantial challenges posed by large nonlinear equation systems with the monolithic solution scheme.The staggered solution process strategically separates each physical field through explicit or implicit integration.The characteristic-based method is used to stabilize advection-dominated heat flows for efficient numerical implementation.Furthermore,a fractional step approach is employed to decompose fluid velocity and pressure,thereby suppressing pore pressure oscillation on the linear background grid.The fracturing initiation and propagation are simulated by a rate-dependent phase field model.Through a series of quasi-static and transient simulations,the exceptional performance and promising potential of the proposed model in addressing THM fracturing problems in poro-elastic media is demonstrated.展开更多
During fully mechanized caving mining of thick coal seams,a large amount of strain energy accumulates in the roof,especially when the roof is thick and hard,making it difficultfor the roof to collapse naturally.When t...During fully mechanized caving mining of thick coal seams,a large amount of strain energy accumulates in the roof,especially when the roof is thick and hard,making it difficultfor the roof to collapse naturally.When the roof eventually collapses,the accumulated energy is released instantaneously,exerting a strong impact on the roadway.To address this issue,we proposed the synergistic control method of directional comprehensive pressure relief and energy-absorbing support(PREA)for roadways with hard roofs.In this study,we developed a three-dimensional physical model test apparatus for roof cutting and pressure relief.The 122108 ventilation roadway at the Caojiatan Coal Mine,which has a thick and hard roof,was taken as the engineering example.We analyzed the evolution patterns of stress and displacement in both the stope and the roadway surrounding rocks under different schemes.The PREA reinforcement mechanism for the roadway was investigated through comparative model tests between the new and original methods.The results showed that,compared to the original method,the new method reduced surrounding rock stress by up to 60.4%,and the roadway convergence decreased by up to 52.1%.Based on these results,we proposed corresponding engineering recommendations,which can guide fieldreinforcement design and application.The results demonstrate that the PREA method effectively reduces stress and ensures the safety and stability of the roadway.展开更多
With the development of the Semantic Web,the number of ontologies grows exponentially and the semantic relationships between ontologies become more and more complex,understanding the true semantics of specific terms o...With the development of the Semantic Web,the number of ontologies grows exponentially and the semantic relationships between ontologies become more and more complex,understanding the true semantics of specific terms or concepts in an ontology is crucial for the matching task.At present,the main challenges facing ontology matching tasks based on representation learning methods are how to improve the embedding quality of ontology knowledge and how to integrate multiple features of ontology efficiently.Therefore,we propose an Ontology Matching Method Based on the Gated Graph Attention Model(OM-GGAT).Firstly,the semantic knowledge related to concepts in the ontology is encoded into vectors using the OWL2Vec^(*)method,and the relevant path information from the root node to the concept is embedded to understand better the true meaning of the concept itself and the relationship between concepts.Secondly,the ontology is transformed into the corresponding graph structure according to the semantic relation.Then,when extracting the features of the ontology graph nodes,different attention weights are assigned to each adjacent node of the central concept with the help of the attention mechanism idea.Finally,gated networks are designed to further fuse semantic and structural embedding representations efficiently.To verify the effectiveness of the proposed method,comparative experiments on matching tasks were carried out on public datasets.The results show that the OM-GGAT model can effectively improve the efficiency of ontology matching.展开更多
We present the approaches to implementing the k-√k L turbulence model within the framework of the high-order discontinuous Galerkin(DG)method.We use the DG discretization to solve the full Reynolds-averaged Navier-St...We present the approaches to implementing the k-√k L turbulence model within the framework of the high-order discontinuous Galerkin(DG)method.We use the DG discretization to solve the full Reynolds-averaged Navier-Stokes equations.In order to enhance the robustness of approaches,some effective techniques are designed.The HWENO(Hermite weighted essentially non-oscillatory)limiting strategy is adopted for stabilizing the turbulence model variable k.Modifications have been made to the model equation itself by using the auxiliary variable that is always positive.The 2nd-order derivatives of velocities required in computing the von Karman length scale are evaluated in a way to maintain the compactness of DG methods.Numerical results demonstrate that the approaches have achieved the desirable accuracy for both steady and unsteady turbulent simulations.展开更多
We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground...We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.展开更多
Using a modified subgradient extragradient algorithm, this paper proposed a novel approach to solving a supply chain network equilibrium model. The method extends the scope of optimisation and improves the accuracy at...Using a modified subgradient extragradient algorithm, this paper proposed a novel approach to solving a supply chain network equilibrium model. The method extends the scope of optimisation and improves the accuracy at each iteration by incorporating adaptive parameter selection and a more general subgradient projection operator. The advantages of the proposed method are highlighted by the proof of strong convergence presented in the paper. Several concrete examples are given to demonstrate the effectiveness of the algorithm, with comparisons illustrating its superior CPU running time compared to alternative techniques. The practical applicability of the algorithm is also demonstrated by applying it to a realistic supply chain network model.展开更多
Objective To improve the accuracy and professionalism of question-answering(QA)model in traditional Chinese medicine(TCM)lung cancer by integrating large language models with structured knowledge graphs using the know...Objective To improve the accuracy and professionalism of question-answering(QA)model in traditional Chinese medicine(TCM)lung cancer by integrating large language models with structured knowledge graphs using the knowledge graph(KG)to text-enhanced retrievalaugmented generation(KG2TRAG)method.Methods The TCM lung cancer model(TCMLCM)was constructed by fine-tuning Chat-GLM2-6B on the specialized datasets Tianchi TCM,HuangDi,and ShenNong-TCM-Dataset,as well as a TCM lung cancer KG.The KG2TRAG method was applied to enhance the knowledge retrieval,which can convert KG triples into natural language text via ChatGPT-aided linearization,leveraging large language models(LLMs)for context-aware reasoning.For a comprehensive comparison,MedicalGPT,HuatuoGPT,and BenTsao were selected as the baseline models.Performance was evaluated using bilingual evaluation understudy(BLEU),recall-oriented understudy for gisting evaluation(ROUGE),accuracy,and the domain-specific TCM-LCEval metrics,with validation from TCM oncology experts assessing answer accuracy,professionalism,and usability.Results The TCMLCM model achieved the optimal performance across all metrics,including a BLEU score of 32.15%,ROUGE-L of 59.08%,and an accuracy rate of 79.68%.Notably,in the TCM-LCEval assessment specific to the field of TCM,its performance was 3%−12%higher than that of the baseline model.Expert evaluations highlighted superior performance in accuracy and professionalism.Conclusion TCMLCM can provide an innovative solution for TCM lung cancer QA,demonstrating the feasibility of integrating structured KGs with LLMs.This work advances intelligent TCM healthcare tools and lays a foundation for future AI-driven applications in traditional medicine.展开更多
The selection and coordinated application of government innovation policies are crucial for guiding the direction of enterprise innovation and unleashing their innovation potential.However,due to the lengthy,voluminou...The selection and coordinated application of government innovation policies are crucial for guiding the direction of enterprise innovation and unleashing their innovation potential.However,due to the lengthy,voluminous,complex,and unstructured nature of regional innovation policy texts,traditional policy classification methods often overlook the reality that these texts cover multiple policy topics,leading to lack of objectivity.In contrast,topic mining technology can handle large-scale textual data,overcoming challenges such as the abundance of policy content and difficulty in classification.Although topic models can partition numerous policy texts into topics,they cannot analyze the interplay among policy topics and the impact of policy topic coordination on enterprise innovation in detail.Therefore,we propose a big data analysis scheme for policy coordination paths based on the latent Dirichlet allocation(LDA)model and the fuzzyset qualitative comparative analysis(fsQCA)method by combining topic models with qualitative comparative analysis.The LDA model was employed to derive the topic distribution of each document and the word distribution of each topic and enable automatic classi-fication through algorithms,providing reliable and objective textual classification results.Subsequently,the fsQCA method was used to analyze the coordination paths and dynamic characteristics.Finally,experimental analysis was conducted using innovation policy text data from 31 provincial-level administrative regions in China from 2012 to 2021 as research samples.The results suggest that the proposed method effectively partitions innovation policy topics and analyzes the policy configuration,driving enterprise innovation in different regions.展开更多
Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a not...Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.展开更多
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi...The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103 and 42174090)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4).
文摘The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.
文摘This study introduces a comprehensive theoretical framework for accurately calculating the electronic band-structure of strained long-wavelength InAs/GaSb type-Ⅱsuperlattices.Utilizing an eight-band k·p Hamilto⁃nian in conjunction with a scattering matrix method,the model effectively incorporates quantum confinement,strain effects,and interface states.This robust and numerically stable approach achieves exceptional agreement with experimental data,offering a reliable tool for analyzing and engineering the band structure of complex multi⁃layer systems.
基金a U.S. Federal Railroad Administration (FRA)BAA project,titled “Mitigation of Differential Movement at Railway Transitions for High-Speed Passenger Rail and Joint Passenger/Freight Corridors”the financial support provided by the China Scholarship Council (CSC),which funded Zhongyi Liu’s and Wenjing Li’s time and research efforts for this study
文摘Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie condition.Hanging crossties usually yield unfavorable dynamic effects such as higher wheel loads,which negatively impact the serviceability and safety of railway operations.Hence,a better understanding of the mechanisms that cause hanging crossties and their effects on the ballast layer load-deformation characteristics is necessary.Since the ballast layer is a particulate medium,the discrete element method(DEM),which simulates ballast particle interactions individually,is ideal to explore the interparticle contact forces and ballast movements under dynamic wheel loading.Accurate representations of the dynamic loads from the train and track superstructure are needed for high-fidelity DEM modeling.This paper introduces an integrated modeling approach,which couples a single-crosstie DEM ballast model with a train–track–bridge(TTB)model using a proportional–integral–derivative control loop.The TTB–DEM model was validated with field measurements,and the coupled model calculates similar crosstie displacements as the TTB model.The TTB–DEM provided new insights into the ballast particle-scale behavior,which the TTB model alone cannot explore.The TTB–DEM coupling approach identified detrimental effects of hanging crossties on adjacent crossties,which were found to experience drastic vibrations and large ballast contact force concentrations.
基金supported by grants received by the first author and third author from the Institute of Eminence,Delhi University,Delhi,India,as part of the Faculty Research Program via Ref.No./IoE/2024-25/12/FRP.
文摘Software systems are vulnerable to security breaches as they expand in complexity and functionality.The confidentiality,integrity,and availability of data are gravely threatened by flaws in a system’s design,implementation,or configuration.To guarantee the durability&robustness of the software,vulnerability identification and fixation have become crucial areas of focus for developers,cybersecurity experts and industries.This paper presents a thorough multi-phase mathematical model for efficient patch management and vulnerability detection.To uniquely model these processes,the model incorporated the notion of the learning phenomenon in describing vulnerability fixation using a logistic learning function.Furthermore,the authors have used numerical methods to approximate the solution of the proposed framework where an analytical solution is difficult to attain.The suggested systematic architecture has been demonstrated through statistical analysis using patch datasets,which offers a solid basis for the research conclusions.According to computational research,learning dynamics improves security response and results in more effective vulnerability management.The suggested model offers a systematic approach to proactive vulnerability mitigation and has important uses in risk assessment,software maintenance,and cybersecurity.This study helps create more robust software systems by increasing patch management effectiveness,which benefits developers,cybersecurity experts,and sectors looking to reduce security threats in a growing digital world.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12371393,11971150 and 11801143)Natural Science Foundation of Henan Province(Grant No.242300421047).
文摘In this paper,we propose a multiphysics finite element method for a nonlinear poroelasticity model with nonlinear stress-strain relation.Firstly,we reformulate the original problem into a new coupled fluid system-a generalized nonlinear Stokes problem of displacement vector field related to pseudo pressure and a diffusion problem of other pseudo pressure fields.Secondly,a fully discrete multiphysics finite element method is performed to solve the reformulated system numerically.Thirdly,existence and uniqueness of the weak solution of the reformulated model and stability analysis and optimal convergence order for the multiphysics finite element method are proven theoretically.Lastly,numerical tests are given to verify the theoretical results.
文摘The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.
文摘WITHDRAWAL:Zhang,J.J.,Guo,Y.Q.,Qin,Z.Y.,Wei,C.T.,Hu,Q.H.,Vandeginste,V.,Miao,H.Y.,Yao,P.,and Zhang,P.F.,“Predicting Irreducible Water Saturation of Unconventional Reservoirs by Using NMR T2 Spectra:Methods of Morphological Division and Fractal Models”,Acta Geologica Sinica-English Edition(Accepted Article):https://doi.org/10.1111/1755-6724.15094.
基金supported by the National Natural Science Foundation of China(52174162)the Fundamental Research Funds for the Central Universities(FRF-TP-20-002A3).
文摘Accurate prediction of coal and gas outburst(CGO)hazards is paramount in gas disaster prevention and control.This paper endeavors to overcome the constraints posed by traditional prediction indexes when dealing with CGO incidents under low gas pressure conditions.In pursuit of this objective,we have studied and established a mechanical model of the working face under abnormal stress and the excitation energy conditions of CGO,and proposed a method for predicting the risk of CGO under abnormal stress.On site application verification shows that when a strong outburst hazard level prediction is issued,there is a high possibility of outburst disasters occurring.In one of the three locations where we predicted strong outburst hazards,a small outburst occurred,and the accuracy of the prediction was higher than the traditional drilling cuttings index S and drilling cuttings gas desorption index q.Finally,we discuss the mechanism of CGO under the action of stress anomalies.Based on the analysis of stress distribution changes and energy accumulation characteristics of coal under abnormal stress,this article believes that the increase in outburst risk caused by high stress abnormal gradient is mainly due to two reasons:(1)The high stress abnormal gradient leads to an increase in the plastic zone of the coal seam.After the working face advances,it indirectly leads to an increase in the gas expansion energy that can be released from the coal seam before reaching a new stress equilibrium.(2)Abnormal stress leads to increased peak stress of coal body in front of working face.When coal body in elastic area transforms to plastic area,its failure speed is accelerated,which induces accelerated gas desorption and aggravates the risk of outburst.
基金financially supported by the Russian federal research project No.FWZZ-2022-0026“Innovative aspects of electro-dynamics in problems of exploration and oilfield geophysics”.
文摘We propose a novel workflow for fast forward modeling of well logs in axially symmetric 2D models of the nearwellbore environment.The approach integrates the finite element method with deep residual neural networks to achieve exceptional computational efficiency and accuracy.The workflow is demonstrated through the modeling of wireline electromagnetic propagation resistivity logs,where the measured responses exhibit a highly nonlinear relationship with formation properties.The motivation for this research is the need for advanced modeling al-gorithms that are fast enough for use in modern quantitative interpretation tools,where thousands of simulations may be required in iterative inversion processes.The proposed algorithm achieves a remarkable enhancement in performance,being up to 3000 times faster than the finite element method alone when utilizing a GPU.While still ensuring high accuracy,this makes it well-suited for practical applications when reliable payzone assessment is needed in complex environmental scenarios.Furthermore,the algorithm’s efficiency positions it as a promising tool for stochastic Bayesian inversion,facilitating reliable uncertainty quantification in subsurface property estimation.
文摘Objective:To explore the application value of a new empowerment teaching method based on Kirkpatrick’s evaluation model in teaching Chinese medicine nursing in otorhinolaryngology.Methods:60 nurses who practiced in the otolaryngology department of our hospital from June 2022 to October 2024 were included in the study and equally divided into two groups using a convenient sampling method.30 nurses who chose traditional Chinese medicine skill teaching management were included in the control group,and 30 nurses who chose the new empowerment teaching method based on Kirkpatrick’s evaluation model were included in the observation group.Relevant indicators such as clinical teaching environment perception,theoretical knowledge scores of Chinese medicine nursing,and excellent rate of practical operation assessment were compared.Results:The nurses in the observation group had higher scores for clinical teaching environment perception than the control group(P<0.05).However,the midterm and final exam scores for theoretical knowledge of Chinese medicine nursing were higher in the observation group than in the control group(P<0.05).Compared with the control group,the observation group had a higher excellent rate of practical operation assessment(93.33%>73.33%)and a higher Chinese medicine nursing ability score[(215.69±19.73)points>(184.87±15.66)points](P<0.05).Conclusion:Applying the new empowerment teaching method based on Kirkpatrick’s evaluation model to Chinese medicine nursing teaching in otolaryngology can help nurses understand the theoretical knowledge of Chinese medicine nursing and optimize the clinical teaching environment,thereby promoting their practical skills and Chinese medicine nursing abilities.
基金supported by National Natural Science Foundation of China(Grant No.42377149)the Research Grants Council of Hong Kong(General Research Fund Project No.17202423).
文摘In this study,a powerful thermo-hydro-mechanical(THM)coupling solution scheme for saturated poroelastic media involving brittle fracturing is developed.Under the local thermal non-equilibrium(LTNE)assumption,this scheme seamlessly combines the material point method(MPM)for accurately tracking solid-phase deformation and heat transport,and the Eulerian finite element method(FEM)for effectively capturing fluid flow and heat advection-diffusion behavior.The proposed approach circumvents the substantial challenges posed by large nonlinear equation systems with the monolithic solution scheme.The staggered solution process strategically separates each physical field through explicit or implicit integration.The characteristic-based method is used to stabilize advection-dominated heat flows for efficient numerical implementation.Furthermore,a fractional step approach is employed to decompose fluid velocity and pressure,thereby suppressing pore pressure oscillation on the linear background grid.The fracturing initiation and propagation are simulated by a rate-dependent phase field model.Through a series of quasi-static and transient simulations,the exceptional performance and promising potential of the proposed model in addressing THM fracturing problems in poro-elastic media is demonstrated.
基金supported by the National Natural Science Foundation of China(Grant Nos.U24A2088 and 42277174)the Fundamental Research Funds for the Central Universities,China(Grant No.2024JCCXSB01).
文摘During fully mechanized caving mining of thick coal seams,a large amount of strain energy accumulates in the roof,especially when the roof is thick and hard,making it difficultfor the roof to collapse naturally.When the roof eventually collapses,the accumulated energy is released instantaneously,exerting a strong impact on the roadway.To address this issue,we proposed the synergistic control method of directional comprehensive pressure relief and energy-absorbing support(PREA)for roadways with hard roofs.In this study,we developed a three-dimensional physical model test apparatus for roof cutting and pressure relief.The 122108 ventilation roadway at the Caojiatan Coal Mine,which has a thick and hard roof,was taken as the engineering example.We analyzed the evolution patterns of stress and displacement in both the stope and the roadway surrounding rocks under different schemes.The PREA reinforcement mechanism for the roadway was investigated through comparative model tests between the new and original methods.The results showed that,compared to the original method,the new method reduced surrounding rock stress by up to 60.4%,and the roadway convergence decreased by up to 52.1%.Based on these results,we proposed corresponding engineering recommendations,which can guide fieldreinforcement design and application.The results demonstrate that the PREA method effectively reduces stress and ensures the safety and stability of the roadway.
基金supported by the National Natural Science Foundation of China(grant numbers 62267005 and 42365008)the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing.
文摘With the development of the Semantic Web,the number of ontologies grows exponentially and the semantic relationships between ontologies become more and more complex,understanding the true semantics of specific terms or concepts in an ontology is crucial for the matching task.At present,the main challenges facing ontology matching tasks based on representation learning methods are how to improve the embedding quality of ontology knowledge and how to integrate multiple features of ontology efficiently.Therefore,we propose an Ontology Matching Method Based on the Gated Graph Attention Model(OM-GGAT).Firstly,the semantic knowledge related to concepts in the ontology is encoded into vectors using the OWL2Vec^(*)method,and the relevant path information from the root node to the concept is embedded to understand better the true meaning of the concept itself and the relationship between concepts.Secondly,the ontology is transformed into the corresponding graph structure according to the semantic relation.Then,when extracting the features of the ontology graph nodes,different attention weights are assigned to each adjacent node of the central concept with the help of the attention mechanism idea.Finally,gated networks are designed to further fuse semantic and structural embedding representations efficiently.To verify the effectiveness of the proposed method,comparative experiments on matching tasks were carried out on public datasets.The results show that the OM-GGAT model can effectively improve the efficiency of ontology matching.
基金supported by the National Natural Science Foundation of China(Grant Nos.92252201 and 11721202)the Fundamental Research Funds for the Central Universities.
文摘We present the approaches to implementing the k-√k L turbulence model within the framework of the high-order discontinuous Galerkin(DG)method.We use the DG discretization to solve the full Reynolds-averaged Navier-Stokes equations.In order to enhance the robustness of approaches,some effective techniques are designed.The HWENO(Hermite weighted essentially non-oscillatory)limiting strategy is adopted for stabilizing the turbulence model variable k.Modifications have been made to the model equation itself by using the auxiliary variable that is always positive.The 2nd-order derivatives of velocities required in computing the von Karman length scale are evaluated in a way to maintain the compactness of DG methods.Numerical results demonstrate that the approaches have achieved the desirable accuracy for both steady and unsteady turbulent simulations.
基金supported by the National Key R&D Program of China(No.2023YFA1606701)the National Natural Science Foundation of China(Nos.12175042,11890710,11890714,12047514,12147101,and 12347106)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)China National Key R&D Program(No.2022YFA1602402).
文摘We employed random distributions and gradient descent methods for the Generator Coordinate Method(GCM)to identify effective basis wave functions,taking halo nuclei ^(6)He and ^(6)Li as examples.By comparing the ground state(0^(+))energy of ^(6)He and the excited state(0^(+))energy of 6 Li calculated with various random distributions and manually selected generation coordinates,we found that the heavy tail characteristic of the logistic distribution better describes the features of the halo nuclei.Subsequently,the Adam algorithm from machine learning was applied to optimize the basis wave functions,indicating that a limited number of basis wave functions can approximate the converged values.These results offer some empirical insights for selecting basis wave functions and contribute to the broader application of machine learning methods in predicting effective basis wave functions.
文摘Using a modified subgradient extragradient algorithm, this paper proposed a novel approach to solving a supply chain network equilibrium model. The method extends the scope of optimisation and improves the accuracy at each iteration by incorporating adaptive parameter selection and a more general subgradient projection operator. The advantages of the proposed method are highlighted by the proof of strong convergence presented in the paper. Several concrete examples are given to demonstrate the effectiveness of the algorithm, with comparisons illustrating its superior CPU running time compared to alternative techniques. The practical applicability of the algorithm is also demonstrated by applying it to a realistic supply chain network model.
基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_2145).
文摘Objective To improve the accuracy and professionalism of question-answering(QA)model in traditional Chinese medicine(TCM)lung cancer by integrating large language models with structured knowledge graphs using the knowledge graph(KG)to text-enhanced retrievalaugmented generation(KG2TRAG)method.Methods The TCM lung cancer model(TCMLCM)was constructed by fine-tuning Chat-GLM2-6B on the specialized datasets Tianchi TCM,HuangDi,and ShenNong-TCM-Dataset,as well as a TCM lung cancer KG.The KG2TRAG method was applied to enhance the knowledge retrieval,which can convert KG triples into natural language text via ChatGPT-aided linearization,leveraging large language models(LLMs)for context-aware reasoning.For a comprehensive comparison,MedicalGPT,HuatuoGPT,and BenTsao were selected as the baseline models.Performance was evaluated using bilingual evaluation understudy(BLEU),recall-oriented understudy for gisting evaluation(ROUGE),accuracy,and the domain-specific TCM-LCEval metrics,with validation from TCM oncology experts assessing answer accuracy,professionalism,and usability.Results The TCMLCM model achieved the optimal performance across all metrics,including a BLEU score of 32.15%,ROUGE-L of 59.08%,and an accuracy rate of 79.68%.Notably,in the TCM-LCEval assessment specific to the field of TCM,its performance was 3%−12%higher than that of the baseline model.Expert evaluations highlighted superior performance in accuracy and professionalism.Conclusion TCMLCM can provide an innovative solution for TCM lung cancer QA,demonstrating the feasibility of integrating structured KGs with LLMs.This work advances intelligent TCM healthcare tools and lays a foundation for future AI-driven applications in traditional medicine.
文摘The selection and coordinated application of government innovation policies are crucial for guiding the direction of enterprise innovation and unleashing their innovation potential.However,due to the lengthy,voluminous,complex,and unstructured nature of regional innovation policy texts,traditional policy classification methods often overlook the reality that these texts cover multiple policy topics,leading to lack of objectivity.In contrast,topic mining technology can handle large-scale textual data,overcoming challenges such as the abundance of policy content and difficulty in classification.Although topic models can partition numerous policy texts into topics,they cannot analyze the interplay among policy topics and the impact of policy topic coordination on enterprise innovation in detail.Therefore,we propose a big data analysis scheme for policy coordination paths based on the latent Dirichlet allocation(LDA)model and the fuzzyset qualitative comparative analysis(fsQCA)method by combining topic models with qualitative comparative analysis.The LDA model was employed to derive the topic distribution of each document and the word distribution of each topic and enable automatic classi-fication through algorithms,providing reliable and objective textual classification results.Subsequently,the fsQCA method was used to analyze the coordination paths and dynamic characteristics.Finally,experimental analysis was conducted using innovation policy text data from 31 provincial-level administrative regions in China from 2012 to 2021 as research samples.The results suggest that the proposed method effectively partitions innovation policy topics and analyzes the policy configuration,driving enterprise innovation in different regions.
基金supported by the National Natural Science Foundation of China(42377354)the Natural Science Foundation of Hubei province(2024AFB951)the Chunhui Plan Cooperation Research Project of the Chinese Ministry of Education(202200199).
文摘Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.
基金supported by the Innovation Fund Project of the Gansu Education Department(Grant No.2021B-099).
文摘The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.