A test system is developed for the BESIII ETOF/MRPC beam tests of data acquisition, environment monitoring and automatic control. The software framework is based on the CAMAC bus, VME bus and Serial Port,which are res...A test system is developed for the BESIII ETOF/MRPC beam tests of data acquisition, environment monitoring and automatic control. The software framework is based on the CAMAC bus, VME bus and Serial Port,which are responsible for communications with the detectors. The monitor system works well in the beam test.展开更多
A prototype multi-gap resistive plate chamber (MRPC) with a 2 × 6 gap structure is developed for the upgrading of the endcap time-of-flight (ETOF) detector in the Beijing Spectrometer (BESⅢ ). The prototyp...A prototype multi-gap resistive plate chamber (MRPC) with a 2 × 6 gap structure is developed for the upgrading of the endcap time-of-flight (ETOF) detector in the Beijing Spectrometer (BESⅢ ). The prototype MRPC is tested in the E3 beam line of the Beijing Electron Positron Collider (BEPC) with secondary charged particles (π and p, etc) of 600 MeV/c. The test results show that the time resolution of the MRPC can reach 50 ps and that the detection efficiency is greater than 98%.展开更多
By the end of 2021, China's high-speed railway had operated more than 40,000 kilometers, and the transportation network of four vertical and four horizontal high-speed railway lines had basically taken shape. In o...By the end of 2021, China's high-speed railway had operated more than 40,000 kilometers, and the transportation network of four vertical and four horizontal high-speed railway lines had basically taken shape. In order to meet the needs of China's high-speed railway construction, China Railway Corporation launched a major scientific research project "Research on Key Technologies for the Construction of Long-span Simply Supported Beams for High-speed Railways" in 2016. Beijing Railway Fangshan Bridge Co., Ltd. is mainly responsible for the manufacture of 40-meter full-scale test beams, and template assembly is an important factor affecting the quality of the test beams. The summary of formwork assembling construction technology for 40-meter full-scale test beam can provide technical guarantee for formwork assembling construction for the production of high-speed railway long-span simply supported beam in the future.展开更多
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat...A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.展开更多
Wood beam-column frame is a popular structural system in United States and in ancient China. Chinese wood beam-column frame structures showed better seismic resistance properties than the US ones.The tenon joint is on...Wood beam-column frame is a popular structural system in United States and in ancient China. Chinese wood beam-column frame structures showed better seismic resistance properties than the US ones.The tenon joint is one of the reasons.This study performed monotonic and cyclic pushover tests to understand the behavior of Chinese tenon joints versus the behavior of the commonly used US wood beam-column connections. The test results indicate that the typical US wood beam-column connection is very strong under monotonic loads.The ancient Chinese tenon joint has the best behavior under cyclic loads.展开更多
The electron beam welding-brazing being used to join 5A06 Al alloy to TC4 Ti alloy decreases the formation of brittle intermetallic compound.Experiments were carried out to study the influence of electron beam welding...The electron beam welding-brazing being used to join 5A06 Al alloy to TC4 Ti alloy decreases the formation of brittle intermetallic compound.Experiments were carried out to study the influence of electron beam welding parameters on the tensile strength of welds,based on an orthogonal test and analysis method.The welding parameters include beam current,welding speed,scanning figure,scanning frequency,figure size,beam offset and focus current.The optimum parameters for3 mm 5A06 Al alloy and 2 mm TC4 alloy were as follows:acceleration voltage was 60 kV,beam current was 11 mA,welding speed was 600 mm/min,focus current was 0 mA,scan figure was O,scanning frequency was 1 000 Hz and beam offset was 0.5 mm.The results show that the joints were with good appearance and quality welded by the optimum parameters.The successful joints could be gained and the maximum tensile strength of Al/Ti dissimilar alloy joints could be up to 222.61 MPa using electron beam welding-brazing.展开更多
The performance of concrete beams repaired with epoxy mortar was investigated by constructing twelve beam specimens.All the beam specimens were subjected to a constant current for accelerated corrosion.Six specimens w...The performance of concrete beams repaired with epoxy mortar was investigated by constructing twelve beam specimens.All the beam specimens were subjected to a constant current for accelerated corrosion.Six specimens were corroded without subsequent reparation as a control group,and the other six beam specimens were corroded and repaired utilizing epoxy mortar.All specimens were tested to failure.During test process,we focused on the failure pattern of beam specimens,structural cracks,mid-deflections,bearing capacity,and probed into the influence of corrosion degree and repair of epoxy mortar on the performance of beam specimens.It was observed that corrosion-repaired beams in the loading test were in a bending failure pattern.It is obvious that cracking loads and bending stiffness of repaired beams and corrosion-repaired beams were larger than those of unrepaired beams and secondly-corroded beams.When the mass loss of main steel bars was smaller than 10%,the bearing capacity of the repaired beams was similar to that of the unrepaired beams.When the mass loss of main steel bars was larger than 10%,the bearing capacity of the repaired beams increased significantly compared with that of the unrepaired beams.展开更多
To meet the requirement of fire endurance for concrete structures strengthened with CFRP sheets, this study develops an inorganic adhesive whose strength at 600 ℃ is not lower than that at normal room temperature. Th...To meet the requirement of fire endurance for concrete structures strengthened with CFRP sheets, this study develops an inorganic adhesive whose strength at 600 ℃ is not lower than that at normal room temperature. The inorganic adhesive is then used to bond CFRP sheets on reinforced concrete beams in order to strengthen them. The fire protection of the CFRP sheets is done using the thick-type fireproofing coatings for tunnel ( TFCT) and steel structure ( TFCSS) respectively. Four specimens are tested in the furnace together. Specimens are exposed to fire for 1. 5 h in according to the ISO834 standard fire curve,and then naturally cooled for 1 h. In the tests,the largest displacements at the mid-span positions of specimens are only from 1 /1400 to 1 /318 of actual span corresponding to the highest temperatures from 300 ℃ to 470 ℃. After the specimens are naturally cooled to the normal temperature and the fireproofing coatings are then removed,it can be seen that the CFRP sheets keep in a good state,which indicates that CFRP sheets can be tightly bonded on the concrete and work well together with the concrete beams during and after fire. Besides,the tests also verify that the fire performance of TFCT is superior to TFCSS for the strengthened beams.展开更多
Conventional X-ray tube-based cone-beam computed tomography(CX-CBCT) systems have great potential in industrial applications. Such systems can rapidly obtain a three-dimensional(3D) image of an object.Conventional X-r...Conventional X-ray tube-based cone-beam computed tomography(CX-CBCT) systems have great potential in industrial applications. Such systems can rapidly obtain a three-dimensional(3D) image of an object.Conventional X-ray tubes fulfill the requirements for industrial applications, because of their high tube voltage and power. Continuous improvements have been made to CX-CBCT systems, such as imaging time shortening,acquisition strategy optimization, and imaging software development, etc. In this study, a CX-CBCT system is developed. Additionally, some improvements to the CX-CBCT system are proposed based on the hardware conditions of the X-ray tube and detector. A near-detector(ND)geometry condition is employed to obtain a sharper image and larger detection area. An improved acquisition strategy is proposed to simplify operations and reduce total imaging time. In the ND geometry condition, a simplified method called FBP slice stacking(SS-FBP) is proposed, which can be applied to 3D image reconstruction. SS-FBP is timesaving relative to traditional methods. Furthermore, imaging software for the CX-CBCT system is developed in the MATLAB environment. Several imaging experiments were performed. The results suggest that the CX-CBCT system works properly, and that the above improvements are feasible and practical.展开更多
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate...A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.展开更多
A full-scale composite floor plate was tested to investigate the flexural behavior and in-plane effects of the floor slab in a grillage of composite beams that reduces the tendency for longitudinal splitting of the co...A full-scale composite floor plate was tested to investigate the flexural behavior and in-plane effects of the floor slab in a grillage of composite beams that reduces the tendency for longitudinal splitting of the concrete slab along the line of the primary beams. This is important in cases where the steel decking is discontinuous when it is orientated parallel to the beams. In this case, it is important to demonstrate that the amount of transverse reinforcement required to transfer local forces from the shear connectors can be reduced relative to the requirements of Eurocode 4. The mechanism under study involved in-plane compression forces being developed in the slab due to the restraining action of the floor plate, which was held in position by the peripheral composite beams;while the secondary beams acted as transverse ties to resist the forces in the floor plate that would otherwise lead to splitting of the slab along the line of the primary beams. The tendency for cracking along the center line of the primary beam and at the peripheral beams was closely monitored. This is the first large floor plate test that has been carried out under laboratory conditions since the Cardington tests in the early 1990s, although those tests were not carried out to failure. This floor plate test was designed so that the longitudinal force transferred by the primary beams was relatively high (i.e., it was designed for full shear connection), but the transverse reinforcement was taken as the minimum of 0.2% of the concrete area. The test confirmed that the primary beams reached their plastic bending resistance despite the discontinuous decking and transverse reinforcement at the minimum percentage given in Eurocode 4. Based on this test, a reduction factor due to shear connectors at edge beams without U-bars is proposed.展开更多
Today, dosimeters are used generally for dosimetry of the diagnostic X-ray beam. Ionization chambers are appropriate instruments for monitoring and also the dosimetry of X-ray beam in medical diagnostic equipment. The...Today, dosimeters are used generally for dosimetry of the diagnostic X-ray beam. Ionization chambers are appropriate instruments for monitoring and also the dosimetry of X-ray beam in medical diagnostic equipment. The present work introduces design and investigation of a new ring-shaped monitor chamber with a PMMA body, graphite-coated PMMA windows (0.5 mm thick), a special graphite-foil central electrode (0.1 mm thick, 0.7 g/cm3 dense) that creating two sensitive volumes and a central hole for crossing the radiation beam with less attenuation. The results of performance tests conducted at the Nuclear Science and Technology Research Institute, AEOI in Karaj- Iran proved the high short and long-term stability, the very low leakage current, the low directional dependence and very high ion collection efficiency through the special design of the collecting electrode. Moreover, the FLUKA Monte Carlo simulations certified the negligible effect of central electrode on this new ring-shaped monitor chamber. According to the results of the performance tests, the new monitor chamber can be used as a standard dosimeter in order to monitor X-ray beam in primary standard dosimetry laboratories.展开更多
In the past few decades,the navigation performance of ships and structures in ice-covered waters has not been fully studied,especially the influence of ice mechanical properties on icebreaking ability.Ice bending stre...In the past few decades,the navigation performance of ships and structures in ice-covered waters has not been fully studied,especially the influence of ice mechanical properties on icebreaking ability.Ice bending strength is a key ice parameter for predicting ship ice loads,and accurate ice bending strength is also the key to scaling model tests results to real ship.However,numerical simulation studies on model ice bending strength of ice tanks are often neglected.In this paper,an explicit finite element method model is used to simulate the ice cantilever beam test,and the failure load and bending strength of the ice are obtained.In this model,the Tsai-Wu failure criterion is used as the material constitutive model,and the required simulation parameters are obtained from the model ice test in ice tank.Parameter sensitivity analysis shows that the cantilever beam size of the model ice has a significant effect on the flexural strength.The results show that proper rounding at the root of the cantilever beam is beneficial to reduce stress concentration and obtain more accurate bending strength;the thickness,width and length of the cantilever beam should conform to a certain ratio,and consistent with the ITTC recommended reference.Therefore,the results of this study can promote model ice experiments and numerical studies and provide ice strength data support for ship design and polar ship maneuvering.展开更多
基金Supported by the State Key program of National Natural Science of China(No.10979003)National Natural Science Foundation of China(No.10775181)China Postdoctoral Science Foundation(No.20090460521)
文摘A test system is developed for the BESIII ETOF/MRPC beam tests of data acquisition, environment monitoring and automatic control. The software framework is based on the CAMAC bus, VME bus and Serial Port,which are responsible for communications with the detectors. The monitor system works well in the beam test.
基金Supported by National Natural Science Foundation of China (10979003, 10875120)Major State Basic Research Development Program (2008CB817702)
文摘A prototype multi-gap resistive plate chamber (MRPC) with a 2 × 6 gap structure is developed for the upgrading of the endcap time-of-flight (ETOF) detector in the Beijing Spectrometer (BESⅢ ). The prototype MRPC is tested in the E3 beam line of the Beijing Electron Positron Collider (BEPC) with secondary charged particles (π and p, etc) of 600 MeV/c. The test results show that the time resolution of the MRPC can reach 50 ps and that the detection efficiency is greater than 98%.
文摘By the end of 2021, China's high-speed railway had operated more than 40,000 kilometers, and the transportation network of four vertical and four horizontal high-speed railway lines had basically taken shape. In order to meet the needs of China's high-speed railway construction, China Railway Corporation launched a major scientific research project "Research on Key Technologies for the Construction of Long-span Simply Supported Beams for High-speed Railways" in 2016. Beijing Railway Fangshan Bridge Co., Ltd. is mainly responsible for the manufacture of 40-meter full-scale test beams, and template assembly is an important factor affecting the quality of the test beams. The summary of formwork assembling construction technology for 40-meter full-scale test beam can provide technical guarantee for formwork assembling construction for the production of high-speed railway long-span simply supported beam in the future.
基金National Natural Science Foundation of China under Grant No.51148009National Natural Science Foundation of China under Grant No.50978005Project High-level Personnel in Beijing under Grant No.PHR20100502
文摘A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
文摘Wood beam-column frame is a popular structural system in United States and in ancient China. Chinese wood beam-column frame structures showed better seismic resistance properties than the US ones.The tenon joint is one of the reasons.This study performed monotonic and cyclic pushover tests to understand the behavior of Chinese tenon joints versus the behavior of the commonly used US wood beam-column connections. The test results indicate that the typical US wood beam-column connection is very strong under monotonic loads.The ancient Chinese tenon joint has the best behavior under cyclic loads.
基金supported by the National Natural Science Foundation of China(Grant No.51105346)
文摘The electron beam welding-brazing being used to join 5A06 Al alloy to TC4 Ti alloy decreases the formation of brittle intermetallic compound.Experiments were carried out to study the influence of electron beam welding parameters on the tensile strength of welds,based on an orthogonal test and analysis method.The welding parameters include beam current,welding speed,scanning figure,scanning frequency,figure size,beam offset and focus current.The optimum parameters for3 mm 5A06 Al alloy and 2 mm TC4 alloy were as follows:acceleration voltage was 60 kV,beam current was 11 mA,welding speed was 600 mm/min,focus current was 0 mA,scan figure was O,scanning frequency was 1 000 Hz and beam offset was 0.5 mm.The results show that the joints were with good appearance and quality welded by the optimum parameters.The successful joints could be gained and the maximum tensile strength of Al/Ti dissimilar alloy joints could be up to 222.61 MPa using electron beam welding-brazing.
基金supported by the National Natural Science Foundation of China(No.51279074)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The performance of concrete beams repaired with epoxy mortar was investigated by constructing twelve beam specimens.All the beam specimens were subjected to a constant current for accelerated corrosion.Six specimens were corroded without subsequent reparation as a control group,and the other six beam specimens were corroded and repaired utilizing epoxy mortar.All specimens were tested to failure.During test process,we focused on the failure pattern of beam specimens,structural cracks,mid-deflections,bearing capacity,and probed into the influence of corrosion degree and repair of epoxy mortar on the performance of beam specimens.It was observed that corrosion-repaired beams in the loading test were in a bending failure pattern.It is obvious that cracking loads and bending stiffness of repaired beams and corrosion-repaired beams were larger than those of unrepaired beams and secondly-corroded beams.When the mass loss of main steel bars was smaller than 10%,the bearing capacity of the repaired beams was similar to that of the unrepaired beams.When the mass loss of main steel bars was larger than 10%,the bearing capacity of the repaired beams increased significantly compared with that of the unrepaired beams.
基金Sponsored by Changjiang Scholars Program of China( Grant No 2009-37)the National Natural Science Foundation of China( Grant No 50678050)Innovative Science Foundation of HIT ( Grant No HIT2005C-3)
文摘To meet the requirement of fire endurance for concrete structures strengthened with CFRP sheets, this study develops an inorganic adhesive whose strength at 600 ℃ is not lower than that at normal room temperature. The inorganic adhesive is then used to bond CFRP sheets on reinforced concrete beams in order to strengthen them. The fire protection of the CFRP sheets is done using the thick-type fireproofing coatings for tunnel ( TFCT) and steel structure ( TFCSS) respectively. Four specimens are tested in the furnace together. Specimens are exposed to fire for 1. 5 h in according to the ISO834 standard fire curve,and then naturally cooled for 1 h. In the tests,the largest displacements at the mid-span positions of specimens are only from 1 /1400 to 1 /318 of actual span corresponding to the highest temperatures from 300 ℃ to 470 ℃. After the specimens are naturally cooled to the normal temperature and the fireproofing coatings are then removed,it can be seen that the CFRP sheets keep in a good state,which indicates that CFRP sheets can be tightly bonded on the concrete and work well together with the concrete beams during and after fire. Besides,the tests also verify that the fire performance of TFCT is superior to TFCSS for the strengthened beams.
基金supported by the Fundamental Research Funds for the Central Universities(Nos.lzujbky-2016-208 and lzujbky-2016-32)
文摘Conventional X-ray tube-based cone-beam computed tomography(CX-CBCT) systems have great potential in industrial applications. Such systems can rapidly obtain a three-dimensional(3D) image of an object.Conventional X-ray tubes fulfill the requirements for industrial applications, because of their high tube voltage and power. Continuous improvements have been made to CX-CBCT systems, such as imaging time shortening,acquisition strategy optimization, and imaging software development, etc. In this study, a CX-CBCT system is developed. Additionally, some improvements to the CX-CBCT system are proposed based on the hardware conditions of the X-ray tube and detector. A near-detector(ND)geometry condition is employed to obtain a sharper image and larger detection area. An improved acquisition strategy is proposed to simplify operations and reduce total imaging time. In the ND geometry condition, a simplified method called FBP slice stacking(SS-FBP) is proposed, which can be applied to 3D image reconstruction. SS-FBP is timesaving relative to traditional methods. Furthermore, imaging software for the CX-CBCT system is developed in the MATLAB environment. Several imaging experiments were performed. The results suggest that the CX-CBCT system works properly, and that the above improvements are feasible and practical.
文摘A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.
基金part of a collaborative project between the Steel Construction Institute, the University of Stuttgart, the University of Luxembourg, Arcelor Mittal S.A., and the University of Bradford funded by the European Community’s Research Fund for Coal and Steel (RFSR-CT-2012-00030)
文摘A full-scale composite floor plate was tested to investigate the flexural behavior and in-plane effects of the floor slab in a grillage of composite beams that reduces the tendency for longitudinal splitting of the concrete slab along the line of the primary beams. This is important in cases where the steel decking is discontinuous when it is orientated parallel to the beams. In this case, it is important to demonstrate that the amount of transverse reinforcement required to transfer local forces from the shear connectors can be reduced relative to the requirements of Eurocode 4. The mechanism under study involved in-plane compression forces being developed in the slab due to the restraining action of the floor plate, which was held in position by the peripheral composite beams;while the secondary beams acted as transverse ties to resist the forces in the floor plate that would otherwise lead to splitting of the slab along the line of the primary beams. The tendency for cracking along the center line of the primary beam and at the peripheral beams was closely monitored. This is the first large floor plate test that has been carried out under laboratory conditions since the Cardington tests in the early 1990s, although those tests were not carried out to failure. This floor plate test was designed so that the longitudinal force transferred by the primary beams was relatively high (i.e., it was designed for full shear connection), but the transverse reinforcement was taken as the minimum of 0.2% of the concrete area. The test confirmed that the primary beams reached their plastic bending resistance despite the discontinuous decking and transverse reinforcement at the minimum percentage given in Eurocode 4. Based on this test, a reduction factor due to shear connectors at edge beams without U-bars is proposed.
文摘Today, dosimeters are used generally for dosimetry of the diagnostic X-ray beam. Ionization chambers are appropriate instruments for monitoring and also the dosimetry of X-ray beam in medical diagnostic equipment. The present work introduces design and investigation of a new ring-shaped monitor chamber with a PMMA body, graphite-coated PMMA windows (0.5 mm thick), a special graphite-foil central electrode (0.1 mm thick, 0.7 g/cm3 dense) that creating two sensitive volumes and a central hole for crossing the radiation beam with less attenuation. The results of performance tests conducted at the Nuclear Science and Technology Research Institute, AEOI in Karaj- Iran proved the high short and long-term stability, the very low leakage current, the low directional dependence and very high ion collection efficiency through the special design of the collecting electrode. Moreover, the FLUKA Monte Carlo simulations certified the negligible effect of central electrode on this new ring-shaped monitor chamber. According to the results of the performance tests, the new monitor chamber can be used as a standard dosimeter in order to monitor X-ray beam in primary standard dosimetry laboratories.
文摘In the past few decades,the navigation performance of ships and structures in ice-covered waters has not been fully studied,especially the influence of ice mechanical properties on icebreaking ability.Ice bending strength is a key ice parameter for predicting ship ice loads,and accurate ice bending strength is also the key to scaling model tests results to real ship.However,numerical simulation studies on model ice bending strength of ice tanks are often neglected.In this paper,an explicit finite element method model is used to simulate the ice cantilever beam test,and the failure load and bending strength of the ice are obtained.In this model,the Tsai-Wu failure criterion is used as the material constitutive model,and the required simulation parameters are obtained from the model ice test in ice tank.Parameter sensitivity analysis shows that the cantilever beam size of the model ice has a significant effect on the flexural strength.The results show that proper rounding at the root of the cantilever beam is beneficial to reduce stress concentration and obtain more accurate bending strength;the thickness,width and length of the cantilever beam should conform to a certain ratio,and consistent with the ITTC recommended reference.Therefore,the results of this study can promote model ice experiments and numerical studies and provide ice strength data support for ship design and polar ship maneuvering.