This paper presents an experimental study investigating factors influencing the effective width of steel reinforced concrete (SRC) column-steel beam joints of building in order to calculate its resisting moment.Five 1...This paper presents an experimental study investigating factors influencing the effective width of steel reinforced concrete (SRC) column-steel beam joints of building in order to calculate its resisting moment.Five 1/2 scaled interior SRC column-steel beam joint specimens were made with considering parameters such as beam flange width,beam depth and SRC column width.One directional increasing moment was applied to the joint by acting forces to each ends of beam and the structural behavior of joint was studied.And previous design method suggested by Deierlein was reviewed and a modified equation was proposed from the analysis of test result.Test result indicated that the equation to calculate the effective width in Deierlein’s design method didn’t consider effectively the influence caused by the variation of beam depth so that a modified equation was suggested and the validation of it was confirmed in this paper.展开更多
Fatigue behavior of AZ31B magnesium alloy electron beam welded joint undergoing cyclic loading was investigated by infrared thermography. Temperature evolution throughout a fatigue process was presented and the mechan...Fatigue behavior of AZ31B magnesium alloy electron beam welded joint undergoing cyclic loading was investigated by infrared thermography. Temperature evolution throughout a fatigue process was presented and the mechanism of heat generationwas discussed. Fatigue limit of the welded joint was predicted and the fatigue damage was also assessed based ontheevolution of the temperatureand hotspot zone on the specimen surfaceduring fatigue tests. The presented results show that infrared thermography can not onlyquicklypredict the fatigue behavior of the welded joint, but also qualitatively identify the evolution of fatigue damage in real time. It is found that the predicted fatigue limit agrees well with the conventionalS-Nexperimental results. The evolution of the temperatureand hotspot zone on the specimen surface can be an effectivefatigue damage indicatorfor effectiveevaluationof magnesium alloy electron beam welded joint.展开更多
In practical design,the joints with outer stiffening ring were used to connect concrete beams and laminated steel tube columns.The seismic behavior of joints with outer stiffening ring with various types was studied b...In practical design,the joints with outer stiffening ring were used to connect concrete beams and laminated steel tube columns.The seismic behavior of joints with outer stiffening ring with various types was studied based on experiments.The bearing capacity,rigidity,ductility,energy dissipation capacity,deformation property and strain distribution of the joints with outer stiffening ring with various types were comprehensively evaluated based on the test results of three specimens under quasistatic cyclic loading and finite element analysis.The test results showed that the failure mode,hysteretic behavior,bearing capacity and rigidity degradation of the joints with outer stiffening ring with various types were nearly identical.Furthermore,the strain distribution of the outer stiffening ring of the three joints was nearly the same.The detailing recommendation for the outer strengthening rings was proposed for the concrete beam-laminated steel tube column joints with outer stiffening ring,in order to ensure the good seismic capacity of the joints.展开更多
Microstructure, hardness, tensile and high cycle fatigue (HCF) properties of the welded dissimilar joints of Ti60 and TC17 titanium alloys had been investigated in this study. A significant microstructural change wa...Microstructure, hardness, tensile and high cycle fatigue (HCF) properties of the welded dissimilar joints of Ti60 and TC17 titanium alloys had been investigated in this study. A significant microstructural change was observed to occur after welding, with rod-like α and β phases in the fusion zone (FZ), equiaxed et phases, fine α laths and β phases in the heat-affected zone (HAZ) of TCl7 side and acicular martensite α' phases+"ghost" α phases in the HAZ of Ti60 side, The microhardness across the joints exhibited an inhomogeneous distribution with the highest hardness of ~404 HV in FZ and the lowest hardness of ~304 HV in base material (BM) of Ti60. All the joints tested in tension fractured at BM of Ti60 side. Fatigue limits of the joints at 107 cycles were 425 MPa at room temperature and 380 MPa at 400 ℃, respectively. Welding micropores were found to be the main source of fatigue crack initiation.展开更多
Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the p...Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.展开更多
This paper studies the seismic performance of FRP-strengthened RC interior non-seismically detailed beam-wide columns and beam-wall joints after limited seismic damage.Four eccentric and concentric beam-wide column jo...This paper studies the seismic performance of FRP-strengthened RC interior non-seismically detailed beam-wide columns and beam-wall joints after limited seismic damage.Four eccentric and concentric beam-wide column joints and two beam-wall joints,initially damaged in a previous study,were repaired and tested under constant axial loads(0.1fc′Ag and 0.35fc′Ag) and lateral cyclic loading.The rapid repair technique developed,aimed to restore the original strength and to provide minimum drift capacity.The repair schemes were characterized by the use of:(a) epoxy injections and polymer modified cementitious mortar to seal the cracks and replace spalled concrete;and(b) glass(GFRP) and carbon(CFRP) sheets to enhance the joint performance.The FRP sheets were effectively prevented against possible debonding through the use of fiber anchors.Comparison between responses of specimens before and after repair clearly indicated reasonable restoration in strength,drift capacity,stiffness and cumulative energy dissipation capacity.All specimens failed with delamination of FRP sheets at beam-column joint interfaces.The rapid repair technique developed in this study is recommended for mass upgrading or repair of earthquake damaged beam-column joints.展开更多
The fiber laser welding tests for 3 mm thick TC4 titanium alloy plates are carried out,and the microstructures of the joints are analyzed by the OM and SEM,and the mechanical properties of the joints are described by ...The fiber laser welding tests for 3 mm thick TC4 titanium alloy plates are carried out,and the microstructures of the joints are analyzed by the OM and SEM,and the mechanical properties of the joints are described by tensile and hardness tests,and the SEM morpho-logies of the tensile fracture are observed.The results show that the weld zone is composed of columnarβphase with coarse grains and acicular martensiteα',and small secondaryα'phases in different directions are formed acicular martensiteα'.The microstructure at the boundary between the HAZ and the weld is composed ofα'andαphases,the microstructure at the boundary between the HAZ and the base metal is composed of the initial(αandβ)andαphases,and the microstructure of the middle transition zone of the HAZ is composed of a small amount ofα'andαphase of high temperatureβphase’transformation and initial(αandβ)phases.The average tensile strength of TC4 titanium alloy laser beam welded joints is 1056 MPa,and the average elongation is 9.0%,which are lower than the tensile strength and the elongation of the base metal respectively.The fracture is ductile fracture,and the hardness of the weld zone is the highest and that of the HAZ is the lowest.展开更多
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate...A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.展开更多
Electron beam welding of titanium alloy to aluminum alloy was carried out by melting and melt-brazing to investigate the effects of welding parameters on microstructure of the joint. The results indicated that the joi...Electron beam welding of titanium alloy to aluminum alloy was carried out by melting and melt-brazing to investigate the effects of welding parameters on microstructure of the joint. The results indicated that the joint of the specimen welded by melting was well-formed but contained a large amount of intermetallic compounds. These intermetallic compounds were mainly composed of brittle phases such as TiAl and TiAl3 that decreased the ductility of the joints and resulted in a tensile strength 50 % lower than that of the base metal. In the melt-brazing experiment, direct heat was applied to the aluminum alloy to melt the aluminum rather than the titanium alloy, creating a well-formed joint. The weld was mainly composed of Al element and only a 3 ~m thickness of intermetallic compounds formed near the fusion line at the Ti side. The ductility and the performauce of the joint were significantly improved compared with those of the melting-only joint. In addition, the tensile strength of the joint reached 80 % of that of the aluminum base metal.展开更多
This paper reports research into the microstructures and properties of electron beam welding (EBW) joints of a Ti alloy sheet. To control the TC4 sheet joint formation during electron beam welding is not an easy tas...This paper reports research into the microstructures and properties of electron beam welding (EBW) joints of a Ti alloy sheet. To control the TC4 sheet joint formation during electron beam welding is not an easy task. However, the electron beam current has a significant influence on joint formation and a good appearance of a T-joint can be obtained by increasing the heat input and using the electron beam scan method. It was found that all acicular martensite in the fusion zone (FZ) consisted primarily of α' phase titanium, with some β phase present. Grain coarsening occurred in the heat-affected zone (HAZ) due to transformation of the β phase. Butt joints possessed high strength, hardness of the fusion zone, and the heataffected zone of these joints performed better than that of the parent metal. The highest shear strength of T-joint was 615 MPa and the fracture mechanism was a gliding fracture.展开更多
The behavior of Beam-Column Joints in moment resisting frame structures are susceptible to damage caused by seismic effects due to poor performance of the joint.A good number of researches were carried out to understa...The behavior of Beam-Column Joints in moment resisting frame structures are susceptible to damage caused by seismic effects due to poor performance of the joint.A good number of researches were carried out to understand the complex mechanism of RC joints which are considered in seismic design code practices presently adopted.The traditional construction detailing of transverse reinforcement have shown serious joint failure. This paper introduces a new design philosophy involving the use of additional diagonal bars within the joint particularly suitable for low to medium seismic effects in earthquake zones throughout the world.In lieu to this study,ten(10) full-scale interior beam-column specimens were constructed with various additional reinforcement details and configurations as will be discussed in the later.The experiment provided adequate results to proof the idea of additional bars as suitable approach in reinforced concrete structures where earthquake is eminent.While compared with overall cracking observation during the test,the specimen with additional bars (diagonal and straight) had shown few cracks on the column than the ones without.Furthermore,concrete confinement is certainly an important design method as recommended by certain international codes.展开更多
A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic ...A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints.展开更多
This paper analyses the seismic performance of exterior beam-column joints strengthened with unconventional reinforcement detailing. The beam-column joint specimens were tested with reverse cyclic loading applied at t...This paper analyses the seismic performance of exterior beam-column joints strengthened with unconventional reinforcement detailing. The beam-column joint specimens were tested with reverse cyclic loading applied at the beam end. The samples were divided into two groups based on the joint reinforcement detailing. The first group (Group A) of three non-ductility specimens had joint detailing in accordance with the construction code of practice in India IS456-2000, and the second group (Group B) of three ductility specimens had joint reinforcement detailed as per IS13920-1993, with similar axial load cases as the first group. The experimental studies are proven with the analytical studies carried out by finite element models using ANSYS. The results show that the hysteresis simulation is satisfactory for both un-strengthened and ferrocement strengthened specimens. Furthermore, when ferrocement strengthening is employed, the strengthened beam-column joints exhibit better structural performance than the un-strengthened specimens of about 31.56% and 38.98 for DD-T1 and DD-T2 respectively. The analytical shear strength predictions were in line with the test results reported in the literature, thus adding confidence to the validity of the proposed models.展开更多
Beam-Column joints are critical zones in reinforced concrete structures which are most vulnerable to earthquake forces. Hence strengthening beam-column joint is vital to save the structure and its inhabitants in case ...Beam-Column joints are critical zones in reinforced concrete structures which are most vulnerable to earthquake forces. Hence strengthening beam-column joint is vital to save the structure and its inhabitants in case of seismic forces. Numerous retrofitting works using fibre reinforced polymer (FRP) composites are being undertaken worldwide. This work aims to investigate the effectiveness of strengthening beam-column joints using natural and artificial fibres. In this study, basalt (natural fibres) as monolithic composite (BFRP) and as hybrid composite along with glass (artificial fibres) were used for strengthening of beam-column joints. Totally six specimens were prepared and tested under monotonic loading. Specimen details used were: two control specimen, two specimens for monolithic wrapping and remaining two specimens for hybrid wrapping. The test results were compared with control and rehabilitated specimens. The performance of the treated joints was studied using the following parameters: initial and ultimate cracking loads, energy absorption, deflection ductility and stiffness at ultimate. From the test results, it was found that the hybrid combination of Basalt and Glass FRPs were found to be more effective in the treatment of beam-column joints. The strong column weak beam concept was achieved by failure in beam portion which helped in preventing the catastrophic failure of the entire structure.展开更多
The effects of strength mis-matching on J-integral and failure assessment line (FAL) of electron beam welded thick TC4-DT titanium alloy joints have been investigated.Elastic and elastic-plastic finite elements (FE) c...The effects of strength mis-matching on J-integral and failure assessment line (FAL) of electron beam welded thick TC4-DT titanium alloy joints have been investigated.Elastic and elastic-plastic finite elements (FE) calculations on centre crack tensile (CCT) specimens were made,and the condition of 20% strength mis-matching was considered.The results indicate that the limit load of the joint can be substituted by that of the base metal.The error of substitution is less than 5%.The failure assessment lines for both over-matching and under-matching joints are increasingly close to that of the base metal,with the ratio of weld width to specimen width (H/W) decreasing.Moreover,the failure assessment lines of the joints can be devised using the stress-strain curves of the base metal,which will be convenient for the practical application of engineering展开更多
Some parts with capillary to plate joint have important application in aerocrafi. Vacuum electron beam brazing (VEBB) technology is used to realize this jointing with capillaries. Firstly 3D finite element analysis ...Some parts with capillary to plate joint have important application in aerocrafi. Vacuum electron beam brazing (VEBB) technology is used to realize this jointing with capillaries. Firstly 3D finite element analysis model is built in this paper according to this special structure. And then ANSYS finite element analysis software is used to analyze brazing temperature field at different brazing parameters. The calculation results show that the temperature field of simulation has good agreement with that measured by experiment, which proves dependence of the model built in this paper. And also reference parameters could be provided for real brazing process through calculation in this model. Brazed joint of capiUary to plate with good performance is achieved using VEBB technology. The achievement of the study will be applied in aerocrafi in the future.展开更多
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens...To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.展开更多
There are several design equations available for calculating the torsional compliance and the maximum torsion stress of a rectangular cross-section beam, but most depend on the relative magnitude of the two dimensions...There are several design equations available for calculating the torsional compliance and the maximum torsion stress of a rectangular cross-section beam, but most depend on the relative magnitude of the two dimensions of the crosssection(i.e., the thickness and the width). After reviewing the available equations, two thickness-to-width ratio Independent equations that are symmetric with respect to the two dimensions are obtained for evaluating the maximum torsion stress of rectangular cross-section beams. Based on the resulting equations, outside lamina emergent torsional joints are analyzed and some useful design Insights are obtained. These equations, together with the previous work on symmetric equations for calculating torsional compliance, provide a convenient and effective way for designing and optimizing torsional beams in compliant mechanisms.展开更多
基金supported by a grant from the Academic Research Program of Chungju National University in 2011
文摘This paper presents an experimental study investigating factors influencing the effective width of steel reinforced concrete (SRC) column-steel beam joints of building in order to calculate its resisting moment.Five 1/2 scaled interior SRC column-steel beam joint specimens were made with considering parameters such as beam flange width,beam depth and SRC column width.One directional increasing moment was applied to the joint by acting forces to each ends of beam and the structural behavior of joint was studied.And previous design method suggested by Deierlein was reviewed and a modified equation was proposed from the analysis of test result.Test result indicated that the equation to calculate the effective width in Deierlein’s design method didn’t consider effectively the influence caused by the variation of beam depth so that a modified equation was suggested and the validation of it was confirmed in this paper.
基金Project(51305292)supported by the National Natural Science Foundation of ChinaProject(20105429001)supported by the National Aeronautical Science Foundation of China
文摘Fatigue behavior of AZ31B magnesium alloy electron beam welded joint undergoing cyclic loading was investigated by infrared thermography. Temperature evolution throughout a fatigue process was presented and the mechanism of heat generationwas discussed. Fatigue limit of the welded joint was predicted and the fatigue damage was also assessed based ontheevolution of the temperatureand hotspot zone on the specimen surfaceduring fatigue tests. The presented results show that infrared thermography can not onlyquicklypredict the fatigue behavior of the welded joint, but also qualitatively identify the evolution of fatigue damage in real time. It is found that the predicted fatigue limit agrees well with the conventionalS-Nexperimental results. The evolution of the temperatureand hotspot zone on the specimen surface can be an effectivefatigue damage indicatorfor effectiveevaluationof magnesium alloy electron beam welded joint.
基金supported by Twelfth"Five-Year"Plan Major Projects supported by the National Science and Technology Pillar Program of China(Grant No.2011BAJ09B01)Tsinghua University Initiative Scientific Research Program(Grant No.2010Z03078)
文摘In practical design,the joints with outer stiffening ring were used to connect concrete beams and laminated steel tube columns.The seismic behavior of joints with outer stiffening ring with various types was studied based on experiments.The bearing capacity,rigidity,ductility,energy dissipation capacity,deformation property and strain distribution of the joints with outer stiffening ring with various types were comprehensively evaluated based on the test results of three specimens under quasistatic cyclic loading and finite element analysis.The test results showed that the failure mode,hysteretic behavior,bearing capacity and rigidity degradation of the joints with outer stiffening ring with various types were nearly identical.Furthermore,the strain distribution of the outer stiffening ring of the three joints was nearly the same.The detailing recommendation for the outer strengthening rings was proposed for the concrete beam-laminated steel tube column joints with outer stiffening ring,in order to ensure the good seismic capacity of the joints.
文摘Microstructure, hardness, tensile and high cycle fatigue (HCF) properties of the welded dissimilar joints of Ti60 and TC17 titanium alloys had been investigated in this study. A significant microstructural change was observed to occur after welding, with rod-like α and β phases in the fusion zone (FZ), equiaxed et phases, fine α laths and β phases in the heat-affected zone (HAZ) of TCl7 side and acicular martensite α' phases+"ghost" α phases in the HAZ of Ti60 side, The microhardness across the joints exhibited an inhomogeneous distribution with the highest hardness of ~404 HV in FZ and the lowest hardness of ~304 HV in base material (BM) of Ti60. All the joints tested in tension fractured at BM of Ti60 side. Fatigue limits of the joints at 107 cycles were 425 MPa at room temperature and 380 MPa at 400 ℃, respectively. Welding micropores were found to be the main source of fatigue crack initiation.
文摘Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.
文摘This paper studies the seismic performance of FRP-strengthened RC interior non-seismically detailed beam-wide columns and beam-wall joints after limited seismic damage.Four eccentric and concentric beam-wide column joints and two beam-wall joints,initially damaged in a previous study,were repaired and tested under constant axial loads(0.1fc′Ag and 0.35fc′Ag) and lateral cyclic loading.The rapid repair technique developed,aimed to restore the original strength and to provide minimum drift capacity.The repair schemes were characterized by the use of:(a) epoxy injections and polymer modified cementitious mortar to seal the cracks and replace spalled concrete;and(b) glass(GFRP) and carbon(CFRP) sheets to enhance the joint performance.The FRP sheets were effectively prevented against possible debonding through the use of fiber anchors.Comparison between responses of specimens before and after repair clearly indicated reasonable restoration in strength,drift capacity,stiffness and cumulative energy dissipation capacity.All specimens failed with delamination of FRP sheets at beam-column joint interfaces.The rapid repair technique developed in this study is recommended for mass upgrading or repair of earthquake damaged beam-column joints.
基金supported by the Science and Technology Plan Foundation of Guizhou(Guizhou Science Support[2021]General 337)Anhui University Natural Science Key Research Project(2022AH052357).
文摘The fiber laser welding tests for 3 mm thick TC4 titanium alloy plates are carried out,and the microstructures of the joints are analyzed by the OM and SEM,and the mechanical properties of the joints are described by tensile and hardness tests,and the SEM morpho-logies of the tensile fracture are observed.The results show that the weld zone is composed of columnarβphase with coarse grains and acicular martensiteα',and small secondaryα'phases in different directions are formed acicular martensiteα'.The microstructure at the boundary between the HAZ and the weld is composed ofα'andαphases,the microstructure at the boundary between the HAZ and the base metal is composed of the initial(αandβ)andαphases,and the microstructure of the middle transition zone of the HAZ is composed of a small amount ofα'andαphase of high temperatureβphase’transformation and initial(αandβ)phases.The average tensile strength of TC4 titanium alloy laser beam welded joints is 1056 MPa,and the average elongation is 9.0%,which are lower than the tensile strength and the elongation of the base metal respectively.The fracture is ductile fracture,and the hardness of the weld zone is the highest and that of the HAZ is the lowest.
文摘A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints.
文摘Electron beam welding of titanium alloy to aluminum alloy was carried out by melting and melt-brazing to investigate the effects of welding parameters on microstructure of the joint. The results indicated that the joint of the specimen welded by melting was well-formed but contained a large amount of intermetallic compounds. These intermetallic compounds were mainly composed of brittle phases such as TiAl and TiAl3 that decreased the ductility of the joints and resulted in a tensile strength 50 % lower than that of the base metal. In the melt-brazing experiment, direct heat was applied to the aluminum alloy to melt the aluminum rather than the titanium alloy, creating a well-formed joint. The weld was mainly composed of Al element and only a 3 ~m thickness of intermetallic compounds formed near the fusion line at the Ti side. The ductility and the performauce of the joint were significantly improved compared with those of the melting-only joint. In addition, the tensile strength of the joint reached 80 % of that of the aluminum base metal.
基金Supported by National Basic Research Program (2010CB731704) and National Natural Science Foundation of China(No. 51075089).
文摘This paper reports research into the microstructures and properties of electron beam welding (EBW) joints of a Ti alloy sheet. To control the TC4 sheet joint formation during electron beam welding is not an easy task. However, the electron beam current has a significant influence on joint formation and a good appearance of a T-joint can be obtained by increasing the heat input and using the electron beam scan method. It was found that all acicular martensite in the fusion zone (FZ) consisted primarily of α' phase titanium, with some β phase present. Grain coarsening occurred in the heat-affected zone (HAZ) due to transformation of the β phase. Butt joints possessed high strength, hardness of the fusion zone, and the heataffected zone of these joints performed better than that of the parent metal. The highest shear strength of T-joint was 615 MPa and the fracture mechanism was a gliding fracture.
基金Research Institute of Structural Engineering and Seismic Disaster Prevention,Tongji University
文摘The behavior of Beam-Column Joints in moment resisting frame structures are susceptible to damage caused by seismic effects due to poor performance of the joint.A good number of researches were carried out to understand the complex mechanism of RC joints which are considered in seismic design code practices presently adopted.The traditional construction detailing of transverse reinforcement have shown serious joint failure. This paper introduces a new design philosophy involving the use of additional diagonal bars within the joint particularly suitable for low to medium seismic effects in earthquake zones throughout the world.In lieu to this study,ten(10) full-scale interior beam-column specimens were constructed with various additional reinforcement details and configurations as will be discussed in the later.The experiment provided adequate results to proof the idea of additional bars as suitable approach in reinforced concrete structures where earthquake is eminent.While compared with overall cracking observation during the test,the specimen with additional bars (diagonal and straight) had shown few cracks on the column than the ones without.Furthermore,concrete confinement is certainly an important design method as recommended by certain international codes.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50478027)
文摘A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints.
文摘This paper analyses the seismic performance of exterior beam-column joints strengthened with unconventional reinforcement detailing. The beam-column joint specimens were tested with reverse cyclic loading applied at the beam end. The samples were divided into two groups based on the joint reinforcement detailing. The first group (Group A) of three non-ductility specimens had joint detailing in accordance with the construction code of practice in India IS456-2000, and the second group (Group B) of three ductility specimens had joint reinforcement detailed as per IS13920-1993, with similar axial load cases as the first group. The experimental studies are proven with the analytical studies carried out by finite element models using ANSYS. The results show that the hysteresis simulation is satisfactory for both un-strengthened and ferrocement strengthened specimens. Furthermore, when ferrocement strengthening is employed, the strengthened beam-column joints exhibit better structural performance than the un-strengthened specimens of about 31.56% and 38.98 for DD-T1 and DD-T2 respectively. The analytical shear strength predictions were in line with the test results reported in the literature, thus adding confidence to the validity of the proposed models.
文摘Beam-Column joints are critical zones in reinforced concrete structures which are most vulnerable to earthquake forces. Hence strengthening beam-column joint is vital to save the structure and its inhabitants in case of seismic forces. Numerous retrofitting works using fibre reinforced polymer (FRP) composites are being undertaken worldwide. This work aims to investigate the effectiveness of strengthening beam-column joints using natural and artificial fibres. In this study, basalt (natural fibres) as monolithic composite (BFRP) and as hybrid composite along with glass (artificial fibres) were used for strengthening of beam-column joints. Totally six specimens were prepared and tested under monotonic loading. Specimen details used were: two control specimen, two specimens for monolithic wrapping and remaining two specimens for hybrid wrapping. The test results were compared with control and rehabilitated specimens. The performance of the treated joints was studied using the following parameters: initial and ultimate cracking loads, energy absorption, deflection ductility and stiffness at ultimate. From the test results, it was found that the hybrid combination of Basalt and Glass FRPs were found to be more effective in the treatment of beam-column joints. The strong column weak beam concept was achieved by failure in beam portion which helped in preventing the catastrophic failure of the entire structure.
文摘The effects of strength mis-matching on J-integral and failure assessment line (FAL) of electron beam welded thick TC4-DT titanium alloy joints have been investigated.Elastic and elastic-plastic finite elements (FE) calculations on centre crack tensile (CCT) specimens were made,and the condition of 20% strength mis-matching was considered.The results indicate that the limit load of the joint can be substituted by that of the base metal.The error of substitution is less than 5%.The failure assessment lines for both over-matching and under-matching joints are increasingly close to that of the base metal,with the ratio of weld width to specimen width (H/W) decreasing.Moreover,the failure assessment lines of the joints can be devised using the stress-strain curves of the base metal,which will be convenient for the practical application of engineering
文摘Some parts with capillary to plate joint have important application in aerocrafi. Vacuum electron beam brazing (VEBB) technology is used to realize this jointing with capillaries. Firstly 3D finite element analysis model is built in this paper according to this special structure. And then ANSYS finite element analysis software is used to analyze brazing temperature field at different brazing parameters. The calculation results show that the temperature field of simulation has good agreement with that measured by experiment, which proves dependence of the model built in this paper. And also reference parameters could be provided for real brazing process through calculation in this model. Brazed joint of capiUary to plate with good performance is achieved using VEBB technology. The achievement of the study will be applied in aerocrafi in the future.
基金National Natural Science Foundation of China Under Grant No.50878037
文摘To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.
基金Supported by National Science Foundation Research of the United States (Grant No.1663345)National Natural Science Foundation of China(Grant No.51675396)Fundamental Research Fund for the Central Universities(Grant No.12K5051204021)
文摘There are several design equations available for calculating the torsional compliance and the maximum torsion stress of a rectangular cross-section beam, but most depend on the relative magnitude of the two dimensions of the crosssection(i.e., the thickness and the width). After reviewing the available equations, two thickness-to-width ratio Independent equations that are symmetric with respect to the two dimensions are obtained for evaluating the maximum torsion stress of rectangular cross-section beams. Based on the resulting equations, outside lamina emergent torsional joints are analyzed and some useful design Insights are obtained. These equations, together with the previous work on symmetric equations for calculating torsional compliance, provide a convenient and effective way for designing and optimizing torsional beams in compliant mechanisms.