While the high-energy radiation effects on polypropylene, which are crucial for the cable industry for nuclear power plants, have been thoroughly studied, the property changes of PP at low-dose-rate electron-beam irra...While the high-energy radiation effects on polypropylene, which are crucial for the cable industry for nuclear power plants, have been thoroughly studied, the property changes of PP at low-dose-rate electron-beam irradiation are far from elucidated. Herein, the influence of electron-beam irradiation on the structure and properties of PP was examined. The static EB irradiation conditions were 1.2 MeV at a low dose rate of 20 kGy/h to achieve absorbed doses ranging from 45, to 60, 100, and 200 kGy.The molecular structure was first evaluated by measuring the carboxyl index and the relative radical concentrations via Fourier transform infrared spectroscopy and electron spin resonance, respectively. Mechanical, differential scanning colorimetric, and rheological tests were carried out to further investigate the changes in the properties(tensile, crystalizing, and viscoelastic properties) of irradiated PP, which showed good agreement with the structural analysis results. We found that radio-oxidative degradation(chain scission) was predominant, which can be due to the low dose rate facilitating oxygen diffusion into the PP matrix during electron-beam irradiation.展开更多
The beam divergence effects of the input pump laser on a high power nanosecond optical parametric oscillator (OPO) have been numerically simulated. The OPO conversion efficiency is affected due to the angular deviat...The beam divergence effects of the input pump laser on a high power nanosecond optical parametric oscillator (OPO) have been numerically simulated. The OPO conversion efficiency is affected due to the angular deviation of real laser beams from ideal phase matching conditions. Our theoretical model is based on the decomposition of the Gaussian beam and assumes each component has a single deviation angle and thus a particular wave vector mismatch. We take into account the variable intensity profile in the spatial and temporal domains of the Gaussian beam, the pump depletion effects for large-signal processes as well as the oscillatory effects of the three waves. Two nonlinear crystals β-BaB2O4 (BBO) and LiB305 (LBO) have been investigated in detail. The results indicate that the degree of beam divergence strongly influences the maximum pump intensity, optimum crystal length and OPO conversion efficiency. The impact of beam divergence is much more severe in the case of critical phase-matching for BBO than in the case of non-critical phase-matching for LBO. The results provide a way to choose the optimum parameters for a high power ns OPO such as the nonlinear material, the crystal length and the pump intensity, etc. Good agreement is obtained with our experimental results.展开更多
To explore the survival and dose response of organism for different radiation sources is of great importance in the research of radiobiology. In this study, the survival-dose response of Deinococcus radiodurans (E.col...To explore the survival and dose response of organism for different radiation sources is of great importance in the research of radiobiology. In this study, the survival-dose response of Deinococcus radiodurans (E.coli, as the control) for ultra-violet (UV), γ-rays radiation and ion beam exposure was investigated. The shoulder type of survival curves were found for both UV and γ-ray ionizing radiation, but the saddle type of survival curves were shown for H+、 N+( 20keV and 30keV) and Ar+ beam exposure. This dose effect of the survival initially decreased with the increase in dose and then increased in the high dose range and finally decreased again in the higher dose range. Our experimental results suggest that D. radiodurans, which is considerably radio-resistant to UV and x-ray and γ-ray ionizing radiation, do not resist ion beam exposure.展开更多
Considerations of nonlocal elasticity and surface effects in micro-and nanoscale beams are both important for the accurate prediction of natural frequency. In this study, the governing equation of a nonlocal Timoshenk...Considerations of nonlocal elasticity and surface effects in micro-and nanoscale beams are both important for the accurate prediction of natural frequency. In this study, the governing equation of a nonlocal Timoshenko beam with surface effects is established by taking into account three types of boundary conditions: hinged–hinged, clamped–clamped and clamped–hinged ends. For a hinged–hinged beam, an exact and explicit natural frequency equation is obtained. However, for clamped–clamped and clamped–hinged beams, the solutions of corresponding frequency equations must be determined numerically due to their transcendental nature. Hence, the Fredholm integral equation approach coupled with a curve fitting method is employed to derive the approximate fundamental frequency equations, which can predict the frequency values with high accuracy. In short,explicit frequency equations of the Timoshenko beam for three types of boundary conditions are proposed to exhibit directly the dependence of the natural frequency on the nonlocal elasticity, surface elasticity, residual surface stress, shear deformation and rotatory inertia, avoiding the complicated numerical computation.展开更多
A nonlinear beam formulation is presented based on the Gurtin-Murdoch surface elasticity and the modified couple stress theory. The developed model theoretically takes into account coupled effects of the energy of sur...A nonlinear beam formulation is presented based on the Gurtin-Murdoch surface elasticity and the modified couple stress theory. The developed model theoretically takes into account coupled effects of the energy of surface layer and microstructures size- dependency. The mid-plane stretching of a beam is incorporated using von-Karman nonlinear strains. Hamilton's principle is used to determine the nonlinear governing equation of motion and the corresponding boundary conditions. As a case study, pull-in instability of an electromechanical nano-bridge structure is studied using the proposed formulation. The nonlinear governing equation is solved by the analytical reduced order method (ROM) as well as the numerical solution. Effects of various parameters including surface layer, size dependency, dispersion forces, and structural damping on the pull- in parameters of the nano-bridges are discussed. Comparison of the results with the literature reveals capability of the present model in demonstrating the impact of nano- scale phenomena on the pull-in threshold of the nano-bridges.展开更多
The bending responses of functionally graded (FG) nanobeams with simply supported edges are investigated based on Timoshenko beam theory in this article. The Gurtin-Murdoch surface elasticity theory is adopted to an...The bending responses of functionally graded (FG) nanobeams with simply supported edges are investigated based on Timoshenko beam theory in this article. The Gurtin-Murdoch surface elasticity theory is adopted to analyze the influences of surface stress on bending response of FG nanobeam. The material properties are assumed to vary along the thickness of FG nanobeam in power law. The bending governing equations are derived by using the minimum total potential energy principle and explicit formulas are derived for rotation angle and deflection of nanobeams with surface effects. Illustrative examples are implemented to give the bending deformation of FG nanobeam. The influences of the aspect ratio, gradient index, and surface stress on dimensionless deflection are discussed in detail.展开更多
In this paper,a reflection magnet to be installed in the EAST neutral beam injection system is simulated and designed.The field intensity of reflection magnet of 42-cm maximum bending radius is about 1.539×10-1 T...In this paper,a reflection magnet to be installed in the EAST neutral beam injection system is simulated and designed.The field intensity of reflection magnet of 42-cm maximum bending radius is about 1.539×10-1 T for 100 keV deuterium beam.The shielding cage is formed by rods.Using the ANSOFT software,the magnetic shielding effect was estimated at about 3% at the magnet pole region.展开更多
The 0.8 Me V copper ( Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (SnO_(2)NWs) are investigated. The samples are irradiated at three different ...The 0.8 Me V copper ( Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (SnO_(2)NWs) are investigated. The samples are irradiated at three different doses 5 × 10^12 ions/cm^(2), 1 ×10^(13) ions/cm^(2) and 5 × 10^(13) ions/em^(2) at room temperature. The XRD analysis shows that the tetragonal phase of SnO_(2)NWs remains stable after Cu ion irradiation, but with increasing irradiation dose level the crystal size increases due to ion beam induced coalescence of NWs. The FTIR spectra of pristine SnO_(2)NWs exhibit the chemical composition of SnO_(2)while the Cn-O bond is also observed in the FTIR spectra after Cu ion beam irradiation. The presence of Cu impurity in SnO_(2)is further confirmed by calculating the stopping range of Cu ions by using TRM/SRIM code. Optical properties of SnO_(2)NWs are studied before and after Cu ion irradiation. Band gap analysis reveMs that the band gap of irradiated samples is found to decrease compared with the pristine sample. Therefore, ion beam irradiation is a promising technology for nanoengineering and band gap tailoring.展开更多
For positioning a moving target, a maximum intensity projection (MIP) or average intensity projection (AIP) image derived from 4DCT is often used as the reference image which is matched to free breathing cone-beam CT ...For positioning a moving target, a maximum intensity projection (MIP) or average intensity projection (AIP) image derived from 4DCT is often used as the reference image which is matched to free breathing cone-beam CT (FBCBCT) before treatment. This method can be highly accurate if the respiratory motion of the patient is stable. However, a patient’s breathing pattern is often irregular. The purpose of this study is to investigate the effects of irregular respiration on positioning accuracy for a moving target aligned with FBCBCT. Nine patients’ respiratory motion curves were selected to drive a Quasar motion phantom with one embedded cubic and two spherical targets. A 4DCT of the phantom was acquired on a CT scanner (Philips Brilliance 16) equipped with a Varian RPM system. The phase binned 4DCT images and the corresponding MIP and AIP images were transferred into Eclipse for analysis. FBCBCTs of the phantom driven by the same respiratory curves were also acquired on a Varian TrueBeam and fused such that both CBCT and MIP/AIP images share the same target zero positions. The sphere and cube volumes and centroid differences (alignment error) determined by MIP, AIP and FBCBCT images were calculated, respectively. Compared to the volume determined by MIP, the volumes of the cube, large sphere, and small sphere in AIP and FBCBCT images were smaller. The alignment errors for the cube, large sphere and small sphere with center to center matches between MIP and FBCBCT were 2.5 ± 1.8 mm, 2.4 ± 2.1 mm, and 3.8 ± 2.8 mm, and the alignment errors between AIP and FBCBCT were 0.5 ± 1.1 mm, 0.3 ± 0.8 mm, and 1.8 ± 2.0 mm, respectively. AIP images appear to be superior reference images to MIP images. However, irregular respiratory pattern could compromise the positioning accuracy, especially for smaller targets.展开更多
Mutant strains of GO112 and BM302 with a high 2-keto-L-gulonic acid (2KLG) transformation rate induced by ion beam implantation were separately and combinatorially compared with the original strains GO29 and BM80 to...Mutant strains of GO112 and BM302 with a high 2-keto-L-gulonic acid (2KLG) transformation rate induced by ion beam implantation were separately and combinatorially compared with the original strains GO29 and BM80 to study the mutagenic effects of ion beam implantation. Both the sole GOl12 and mixed BM302:GOl12 demonstrated improved SNDH activity and 2KLG yield compared to the original strains. The mutant combinations of BM302:GOl12 showed a longer stationary phase and higher biomass than BM80:GO29. The mutant BM302 exhibited a stronger capacity to maintain a stable pH environment at mixed fermentation with Gluconobacter oxydans (G. oxydans) for 2KLG transformation and facilitated the growth of G. oxydans compared with the original strain BM80. The promotive capacity to L-sorbosone dehydrogenase (L-SNDH) from the supernate of BM302 was 1.6-fold higher than that of BM80. Genes encoded SNDH in GO29 and GOl12 were amplified and sequenced, and mutations including three transitions (CG →TA, CG →TA, GC → AT) and one transversion (AT→ TA) were confirmed from GO29 to GOl12. The corresponding amino acid was changed as Leu →Phe, Arg → Gln and Asn → Lys.展开更多
Based on the Leaderman constitutive relations in nonlinear viscoelasticity and the linear geometrical assumption, a mathematical model for the bending of nonlinear viscoelastic beams was established in this paper. The...Based on the Leaderman constitutive relations in nonlinear viscoelasticity and the linear geometrical assumption, a mathematical model for the bending of nonlinear viscoelastic beams was established in this paper. The Laplace transformation method and the Titchmarsh theorem were used to prove that some relations exist between solutions to bending problems of visco- and elastic beams, which reveals the fugue effect of viscoelastic materials. The high-order Galerkin approximate solution to the quasi-static response of nonlinear viscoelastic beams under a step load was obtained by using the new method suggested in this paper as well as the Mathematica software and the Newton iteration technique.展开更多
A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antiref...A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antireflection coating. The polarization performance of PBS is discussed by rigorous couple-wave analysis (RCWA) method at a wavelength of 1550 nm. The result shows that sub-wavelength metal rectangular grating is characterized by a high reflectivity, like metal films for TE polarization, and high transmissivity, like dielectric films for TM polarization. The optimal design accords well with the results simulated by RCWA method.展开更多
The nonlinear space charge effect of a bunched beam with Gaussian distribu-tion in the longitudinal direction is discussed.Some useful formulae are derived for cal-culating the potential induced by a cylinder model of...The nonlinear space charge effect of a bunched beam with Gaussian distribu-tion in the longitudinal direction is discussed.Some useful formulae are derived for cal-culating the potential induced by a cylinder model of space charge in the waveguide of alinac with different combinations of density distribution:Gaussian distribution in thelongitudinal direction versus Kapchinskij Vladimirskij,waterbag,parabolic andGaussian distribution in the transverse direction,rcspectively.展开更多
A lumped masses-springs model is proposed to analyze the dynamic response of an elastic-plastic cantilever beam resulting from impact. The numerical results are in good agreement with those by finite-element approache...A lumped masses-springs model is proposed to analyze the dynamic response of an elastic-plastic cantilever beam resulting from impact. The numerical results are in good agreement with those by finite-element approaches. The simplified model can catch the most essential features of elastic-plastic response of beams; in particular, it demonstrates the effect of elastic deformation on the distribution of bending moment and energy dissipation, and provides valuable quatitative results.展开更多
We let a set of beam splitters of vacuum mode with a chosen transmittance parameter η in interaction with a separable coherent states.This model induces the production of an attenuated quantum channels based on entan...We let a set of beam splitters of vacuum mode with a chosen transmittance parameter η in interaction with a separable coherent states.This model induces the production of an attenuated quantum channels based on entangled optical states.Indeed,the decoherence effect is exploited positively here to generate such kind of quantum channels.Next,the amplitude damping and the entanglement amount of these produced channels are enhanced thereafter by a probabilistic quasi amplification process using again a 50 : 50 beam splitter.展开更多
Based on the beam wave synchronous interaction in transverse and longitudinal directions at the same time and starting from Maxwell’s equation and linear Vlasov equation, the beam–wave interaction ‘hot’ dispersion...Based on the beam wave synchronous interaction in transverse and longitudinal directions at the same time and starting from Maxwell’s equation and linear Vlasov equation, the beam–wave interaction ‘hot’ dispersion equation considering both cyclotron resonance and Cherenkov resonance in a staggered double metallic grating traveling wave tube is deduced.Through the reasonable selection for geometric and electrical parameters, the numerical calculation and analysis of the ‘hot’ dispersion equation shows that the beam–wave interaction gain and frequency band with the cyclotron resonance enhancement effect are higher than those with only Cherenkov resonance radiation.展开更多
It is shown that a Gaussian light beam transmitting through a planar thin dielectric slab in the air undergoes four different effects, i.e. lateral Goos-Hanchen-like (GHL) displacement, angular deflection, width mod...It is shown that a Gaussian light beam transmitting through a planar thin dielectric slab in the air undergoes four different effects, i.e. lateral Goos-Hanchen-like (GHL) displacement, angular deflection, width modification and longitudinal focal shift as compared with the results predicted by geometrical optics. According to the Taylor expansion of the exponent of transmission coefficient when expressed as an exponential form, the lateral GHL displacement and the angular deflection are the first-order effects and can be negative or positive. The width modification and the longitudinal focal shift are the second-order effects and can also be positive or negative. Owing to the waist-width dependent term, the non-geometrical effects of transmitted beam are not identical with the non-specular effects of reflected beam. The conditions for the validity of those effects are suggested and numerical simulations are also given.展开更多
Atomically thin transition metal dichalcogenide films with distorted trigonal(1T') phase have been predicted to be candidates for realizing quantum spin Hall effect. Growth of 1T' film and experimental investi...Atomically thin transition metal dichalcogenide films with distorted trigonal(1T') phase have been predicted to be candidates for realizing quantum spin Hall effect. Growth of 1T' film and experimental investigation of its electronic structure are critical. Here we report the electronic structure of 1T'-MoTe2 films grown by molecular beam epitaxy(MBE).Growth of the 1T'-MoTe2 film depends critically on the substrate temperature, and successful growth of the film is indicated by streaky stripes in the reflection high energy electron diffraction(RHEED) and sharp diffraction spots in the low energy electron diffraction(LEED). Angle-resolved photoemission spectroscopy(ARPES) measurements reveal a metallic behavior in the as-grown film with an overlap between the conduction and valence bands. First principles calculation suggests that a suitable tensile strain along the a-axis direction is needed to induce a gap to make it an insulator. Our work not only reports the electronic structure of MBE grown 1T'-MoTe2 films, but also provides insights for strain engineering to make it possible for quantum spin Hall effect.展开更多
Effects of tie beam length, width and overlap stress on settlement of foundations have been investigated. In this investigation square concrete footings have been used with dimensions (B × B × d) where (d) i...Effects of tie beam length, width and overlap stress on settlement of foundations have been investigated. In this investigation square concrete footings have been used with dimensions (B × B × d) where (d) is footing depth and (B) is footing width (1, 1.5,2 m). Width of tie beam (b) has been taken equal to 0.25, 0.30, 0.40, 0.50 and 0.75 (m). Tie beam length (L) has been taken varying from B till 3B with same footing depth = 0.50 m. Effect of overlap stress on settlement as well as effect of tie beam width and length on settlement has been determined. Also, the efficiency of tie beam length and width has been obtained. An equation is presented to compute the overlap stress zone in case of existing tie beam. It is found that the settlement increases with increasing the length of tie beam which is clear after the effect of the overlap stresses zone. The width of overlap stress zone case of existing tie beam has been found to be equal to (1.6 -1.75) B. The settlement of footings decreases with increasing tie beam width. It is found that the settlement after the effect of the overlap stress zone increases with increasing the length of tie beam.展开更多
This paper deals with the free vibration analysis of circular alumina (Al2O3) nanobeams in the presence of surface and thermal effects resting on a Pasternak foun- dation. The system of motion equations is derived u...This paper deals with the free vibration analysis of circular alumina (Al2O3) nanobeams in the presence of surface and thermal effects resting on a Pasternak foun- dation. The system of motion equations is derived using Hamilton's principle under the assumptions of the classical Timoshenko beam theory. The effects of the transverse shear deformation and rotary inertia are also considered within the framework of the mentioned theory. The separation of variables approach is employed to discretize the governing equa- tions which are then solved by an analytical method to obtain the natural frequencies of the alumina nanobeams. The results show that the surface effects lead to an increase in the natural frequency of nanobeams as compared with the classical Timoshenko beam model. In addition, for nanobeams with large diameters, the surface effects may increase the natural frequencies by increasing the thermal effects. Moreover, with regard to the Pasternak elastic foundation, the natural frequencies are increased slightly. The results of the present model are compared with the literature, showing that the present model can capture correctly the surface effects in thermal vibration of nanobeams.展开更多
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Science(No.XDA02040300)the National Natural Science Foundation of China(No.11575277)
文摘While the high-energy radiation effects on polypropylene, which are crucial for the cable industry for nuclear power plants, have been thoroughly studied, the property changes of PP at low-dose-rate electron-beam irradiation are far from elucidated. Herein, the influence of electron-beam irradiation on the structure and properties of PP was examined. The static EB irradiation conditions were 1.2 MeV at a low dose rate of 20 kGy/h to achieve absorbed doses ranging from 45, to 60, 100, and 200 kGy.The molecular structure was first evaluated by measuring the carboxyl index and the relative radical concentrations via Fourier transform infrared spectroscopy and electron spin resonance, respectively. Mechanical, differential scanning colorimetric, and rheological tests were carried out to further investigate the changes in the properties(tensile, crystalizing, and viscoelastic properties) of irradiated PP, which showed good agreement with the structural analysis results. We found that radio-oxidative degradation(chain scission) was predominant, which can be due to the low dose rate facilitating oxygen diffusion into the PP matrix during electron-beam irradiation.
文摘The beam divergence effects of the input pump laser on a high power nanosecond optical parametric oscillator (OPO) have been numerically simulated. The OPO conversion efficiency is affected due to the angular deviation of real laser beams from ideal phase matching conditions. Our theoretical model is based on the decomposition of the Gaussian beam and assumes each component has a single deviation angle and thus a particular wave vector mismatch. We take into account the variable intensity profile in the spatial and temporal domains of the Gaussian beam, the pump depletion effects for large-signal processes as well as the oscillatory effects of the three waves. Two nonlinear crystals β-BaB2O4 (BBO) and LiB305 (LBO) have been investigated in detail. The results indicate that the degree of beam divergence strongly influences the maximum pump intensity, optimum crystal length and OPO conversion efficiency. The impact of beam divergence is much more severe in the case of critical phase-matching for BBO than in the case of non-critical phase-matching for LBO. The results provide a way to choose the optimum parameters for a high power ns OPO such as the nonlinear material, the crystal length and the pump intensity, etc. Good agreement is obtained with our experimental results.
基金the National Natural Science Foundation of China! No.196O5005)
文摘To explore the survival and dose response of organism for different radiation sources is of great importance in the research of radiobiology. In this study, the survival-dose response of Deinococcus radiodurans (E.coli, as the control) for ultra-violet (UV), γ-rays radiation and ion beam exposure was investigated. The shoulder type of survival curves were found for both UV and γ-ray ionizing radiation, but the saddle type of survival curves were shown for H+、 N+( 20keV and 30keV) and Ar+ beam exposure. This dose effect of the survival initially decreased with the increase in dose and then increased in the high dose range and finally decreased again in the higher dose range. Our experimental results suggest that D. radiodurans, which is considerably radio-resistant to UV and x-ray and γ-ray ionizing radiation, do not resist ion beam exposure.
基金the School of Civil and Environmental Engineering at Nanyang Technological University, Singapore for kindly supporting this research topic
文摘Considerations of nonlocal elasticity and surface effects in micro-and nanoscale beams are both important for the accurate prediction of natural frequency. In this study, the governing equation of a nonlocal Timoshenko beam with surface effects is established by taking into account three types of boundary conditions: hinged–hinged, clamped–clamped and clamped–hinged ends. For a hinged–hinged beam, an exact and explicit natural frequency equation is obtained. However, for clamped–clamped and clamped–hinged beams, the solutions of corresponding frequency equations must be determined numerically due to their transcendental nature. Hence, the Fredholm integral equation approach coupled with a curve fitting method is employed to derive the approximate fundamental frequency equations, which can predict the frequency values with high accuracy. In short,explicit frequency equations of the Timoshenko beam for three types of boundary conditions are proposed to exhibit directly the dependence of the natural frequency on the nonlocal elasticity, surface elasticity, residual surface stress, shear deformation and rotatory inertia, avoiding the complicated numerical computation.
文摘A nonlinear beam formulation is presented based on the Gurtin-Murdoch surface elasticity and the modified couple stress theory. The developed model theoretically takes into account coupled effects of the energy of surface layer and microstructures size- dependency. The mid-plane stretching of a beam is incorporated using von-Karman nonlinear strains. Hamilton's principle is used to determine the nonlinear governing equation of motion and the corresponding boundary conditions. As a case study, pull-in instability of an electromechanical nano-bridge structure is studied using the proposed formulation. The nonlinear governing equation is solved by the analytical reduced order method (ROM) as well as the numerical solution. Effects of various parameters including surface layer, size dependency, dispersion forces, and structural damping on the pull- in parameters of the nano-bridges are discussed. Comparison of the results with the literature reveals capability of the present model in demonstrating the impact of nano- scale phenomena on the pull-in threshold of the nano-bridges.
基金supported by the National Natural Science Foundation of China(11302055)Heilongjiang Post-doctoral Scientific Research Start-up Funding(LBH-Q14046)
文摘The bending responses of functionally graded (FG) nanobeams with simply supported edges are investigated based on Timoshenko beam theory in this article. The Gurtin-Murdoch surface elasticity theory is adopted to analyze the influences of surface stress on bending response of FG nanobeam. The material properties are assumed to vary along the thickness of FG nanobeam in power law. The bending governing equations are derived by using the minimum total potential energy principle and explicit formulas are derived for rotation angle and deflection of nanobeams with surface effects. Illustrative examples are implemented to give the bending deformation of FG nanobeam. The influences of the aspect ratio, gradient index, and surface stress on dimensionless deflection are discussed in detail.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences:the study and simulation on beam interaction with background particles in neutralization area for NBI,and the key technical and physical problems study for neutral beam steady-state operationsupported by National Natural Science Foundation of China under Grant No.10875146
文摘In this paper,a reflection magnet to be installed in the EAST neutral beam injection system is simulated and designed.The field intensity of reflection magnet of 42-cm maximum bending radius is about 1.539×10-1 T for 100 keV deuterium beam.The shielding cage is formed by rods.Using the ANSOFT software,the magnetic shielding effect was estimated at about 3% at the magnet pole region.
基金Supported by the Department of Physics,the University of AJKHigh Tech.Centralized Instrumentation Lab,the University of AJK,Pakistanthe Experimental Physics Division,and the National Center for Physics,Islamabad Pakistan
文摘The 0.8 Me V copper ( Cu) ion beam irradiation-induced effects on structural, morphological and optical properties of tin dioxide nanowires (SnO_(2)NWs) are investigated. The samples are irradiated at three different doses 5 × 10^12 ions/cm^(2), 1 ×10^(13) ions/cm^(2) and 5 × 10^(13) ions/em^(2) at room temperature. The XRD analysis shows that the tetragonal phase of SnO_(2)NWs remains stable after Cu ion irradiation, but with increasing irradiation dose level the crystal size increases due to ion beam induced coalescence of NWs. The FTIR spectra of pristine SnO_(2)NWs exhibit the chemical composition of SnO_(2)while the Cn-O bond is also observed in the FTIR spectra after Cu ion beam irradiation. The presence of Cu impurity in SnO_(2)is further confirmed by calculating the stopping range of Cu ions by using TRM/SRIM code. Optical properties of SnO_(2)NWs are studied before and after Cu ion irradiation. Band gap analysis reveMs that the band gap of irradiated samples is found to decrease compared with the pristine sample. Therefore, ion beam irradiation is a promising technology for nanoengineering and band gap tailoring.
文摘For positioning a moving target, a maximum intensity projection (MIP) or average intensity projection (AIP) image derived from 4DCT is often used as the reference image which is matched to free breathing cone-beam CT (FBCBCT) before treatment. This method can be highly accurate if the respiratory motion of the patient is stable. However, a patient’s breathing pattern is often irregular. The purpose of this study is to investigate the effects of irregular respiration on positioning accuracy for a moving target aligned with FBCBCT. Nine patients’ respiratory motion curves were selected to drive a Quasar motion phantom with one embedded cubic and two spherical targets. A 4DCT of the phantom was acquired on a CT scanner (Philips Brilliance 16) equipped with a Varian RPM system. The phase binned 4DCT images and the corresponding MIP and AIP images were transferred into Eclipse for analysis. FBCBCTs of the phantom driven by the same respiratory curves were also acquired on a Varian TrueBeam and fused such that both CBCT and MIP/AIP images share the same target zero positions. The sphere and cube volumes and centroid differences (alignment error) determined by MIP, AIP and FBCBCT images were calculated, respectively. Compared to the volume determined by MIP, the volumes of the cube, large sphere, and small sphere in AIP and FBCBCT images were smaller. The alignment errors for the cube, large sphere and small sphere with center to center matches between MIP and FBCBCT were 2.5 ± 1.8 mm, 2.4 ± 2.1 mm, and 3.8 ± 2.8 mm, and the alignment errors between AIP and FBCBCT were 0.5 ± 1.1 mm, 0.3 ± 0.8 mm, and 1.8 ± 2.0 mm, respectively. AIP images appear to be superior reference images to MIP images. However, irregular respiratory pattern could compromise the positioning accuracy, especially for smaller targets.
文摘Mutant strains of GO112 and BM302 with a high 2-keto-L-gulonic acid (2KLG) transformation rate induced by ion beam implantation were separately and combinatorially compared with the original strains GO29 and BM80 to study the mutagenic effects of ion beam implantation. Both the sole GOl12 and mixed BM302:GOl12 demonstrated improved SNDH activity and 2KLG yield compared to the original strains. The mutant combinations of BM302:GOl12 showed a longer stationary phase and higher biomass than BM80:GO29. The mutant BM302 exhibited a stronger capacity to maintain a stable pH environment at mixed fermentation with Gluconobacter oxydans (G. oxydans) for 2KLG transformation and facilitated the growth of G. oxydans compared with the original strain BM80. The promotive capacity to L-sorbosone dehydrogenase (L-SNDH) from the supernate of BM302 was 1.6-fold higher than that of BM80. Genes encoded SNDH in GO29 and GOl12 were amplified and sequenced, and mutations including three transitions (CG →TA, CG →TA, GC → AT) and one transversion (AT→ TA) were confirmed from GO29 to GOl12. The corresponding amino acid was changed as Leu →Phe, Arg → Gln and Asn → Lys.
文摘Based on the Leaderman constitutive relations in nonlinear viscoelasticity and the linear geometrical assumption, a mathematical model for the bending of nonlinear viscoelastic beams was established in this paper. The Laplace transformation method and the Titchmarsh theorem were used to prove that some relations exist between solutions to bending problems of visco- and elastic beams, which reveals the fugue effect of viscoelastic materials. The high-order Galerkin approximate solution to the quasi-static response of nonlinear viscoelastic beams under a step load was obtained by using the new method suggested in this paper as well as the Mathematica software and the Newton iteration technique.
基金Project supported by Science Foundation of the Chongqing Committee of Education,China (Grant No KJ071205)
文摘A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antireflection coating. The polarization performance of PBS is discussed by rigorous couple-wave analysis (RCWA) method at a wavelength of 1550 nm. The result shows that sub-wavelength metal rectangular grating is characterized by a high reflectivity, like metal films for TE polarization, and high transmissivity, like dielectric films for TM polarization. The optimal design accords well with the results simulated by RCWA method.
基金The project supported by the National Natural Science Foundation of China and the Science Foundation of Chinese Nuclear Industry
文摘The nonlinear space charge effect of a bunched beam with Gaussian distribu-tion in the longitudinal direction is discussed.Some useful formulae are derived for cal-culating the potential induced by a cylinder model of space charge in the waveguide of alinac with different combinations of density distribution:Gaussian distribution in thelongitudinal direction versus Kapchinskij Vladimirskij,waterbag,parabolic andGaussian distribution in the transverse direction,rcspectively.
基金The project is supported by National Natural Science Foundation of China
文摘A lumped masses-springs model is proposed to analyze the dynamic response of an elastic-plastic cantilever beam resulting from impact. The numerical results are in good agreement with those by finite-element approaches. The simplified model can catch the most essential features of elastic-plastic response of beams; in particular, it demonstrates the effect of elastic deformation on the distribution of bending moment and energy dissipation, and provides valuable quatitative results.
文摘We let a set of beam splitters of vacuum mode with a chosen transmittance parameter η in interaction with a separable coherent states.This model induces the production of an attenuated quantum channels based on entangled optical states.Indeed,the decoherence effect is exploited positively here to generate such kind of quantum channels.Next,the amplitude damping and the entanglement amount of these produced channels are enhanced thereafter by a probabilistic quasi amplification process using again a 50 : 50 beam splitter.
基金supported by National Natural Science Foundation of China(No.61671431)
文摘Based on the beam wave synchronous interaction in transverse and longitudinal directions at the same time and starting from Maxwell’s equation and linear Vlasov equation, the beam–wave interaction ‘hot’ dispersion equation considering both cyclotron resonance and Cherenkov resonance in a staggered double metallic grating traveling wave tube is deduced.Through the reasonable selection for geometric and electrical parameters, the numerical calculation and analysis of the ‘hot’ dispersion equation shows that the beam–wave interaction gain and frequency band with the cyclotron resonance enhancement effect are higher than those with only Cherenkov resonance radiation.
基金supported by the National Natural Science Foundation of China (Grant No 60377025)Science and Technology Commission of Shanghai Municipal of China (Grant No 04JC14036)+1 种基金Shanghai Education Development Foundation of China (Grant No 2007CG52)the Shanghai Leading Academic Discipline Program of China (Grant No T0104)
文摘It is shown that a Gaussian light beam transmitting through a planar thin dielectric slab in the air undergoes four different effects, i.e. lateral Goos-Hanchen-like (GHL) displacement, angular deflection, width modification and longitudinal focal shift as compared with the results predicted by geometrical optics. According to the Taylor expansion of the exponent of transmission coefficient when expressed as an exponential form, the lateral GHL displacement and the angular deflection are the first-order effects and can be negative or positive. The width modification and the longitudinal focal shift are the second-order effects and can also be positive or negative. Owing to the waist-width dependent term, the non-geometrical effects of transmitted beam are not identical with the non-specular effects of reflected beam. The conditions for the validity of those effects are suggested and numerical simulations are also given.
基金Project supported by the National Basic Research Program of China(Grant Nos.2016YFA0301004 and 2015CB921001)the National Natural Science Foundation of China(Grant Nos.11334006,11725418,and 11674188)
文摘Atomically thin transition metal dichalcogenide films with distorted trigonal(1T') phase have been predicted to be candidates for realizing quantum spin Hall effect. Growth of 1T' film and experimental investigation of its electronic structure are critical. Here we report the electronic structure of 1T'-MoTe2 films grown by molecular beam epitaxy(MBE).Growth of the 1T'-MoTe2 film depends critically on the substrate temperature, and successful growth of the film is indicated by streaky stripes in the reflection high energy electron diffraction(RHEED) and sharp diffraction spots in the low energy electron diffraction(LEED). Angle-resolved photoemission spectroscopy(ARPES) measurements reveal a metallic behavior in the as-grown film with an overlap between the conduction and valence bands. First principles calculation suggests that a suitable tensile strain along the a-axis direction is needed to induce a gap to make it an insulator. Our work not only reports the electronic structure of MBE grown 1T'-MoTe2 films, but also provides insights for strain engineering to make it possible for quantum spin Hall effect.
文摘Effects of tie beam length, width and overlap stress on settlement of foundations have been investigated. In this investigation square concrete footings have been used with dimensions (B × B × d) where (d) is footing depth and (B) is footing width (1, 1.5,2 m). Width of tie beam (b) has been taken equal to 0.25, 0.30, 0.40, 0.50 and 0.75 (m). Tie beam length (L) has been taken varying from B till 3B with same footing depth = 0.50 m. Effect of overlap stress on settlement as well as effect of tie beam width and length on settlement has been determined. Also, the efficiency of tie beam length and width has been obtained. An equation is presented to compute the overlap stress zone in case of existing tie beam. It is found that the settlement increases with increasing the length of tie beam which is clear after the effect of the overlap stresses zone. The width of overlap stress zone case of existing tie beam has been found to be equal to (1.6 -1.75) B. The settlement of footings decreases with increasing tie beam width. It is found that the settlement after the effect of the overlap stress zone increases with increasing the length of tie beam.
文摘This paper deals with the free vibration analysis of circular alumina (Al2O3) nanobeams in the presence of surface and thermal effects resting on a Pasternak foun- dation. The system of motion equations is derived using Hamilton's principle under the assumptions of the classical Timoshenko beam theory. The effects of the transverse shear deformation and rotary inertia are also considered within the framework of the mentioned theory. The separation of variables approach is employed to discretize the governing equa- tions which are then solved by an analytical method to obtain the natural frequencies of the alumina nanobeams. The results show that the surface effects lead to an increase in the natural frequency of nanobeams as compared with the classical Timoshenko beam model. In addition, for nanobeams with large diameters, the surface effects may increase the natural frequencies by increasing the thermal effects. Moreover, with regard to the Pasternak elastic foundation, the natural frequencies are increased slightly. The results of the present model are compared with the literature, showing that the present model can capture correctly the surface effects in thermal vibration of nanobeams.