Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith...Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.展开更多
The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learn...The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.展开更多
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while th...A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach.展开更多
A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In con...A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In contrast with traditional methods where BN model is built by professionals,DGA is proposed for the automatic analysis of historical data and construction of BN for the estimation of system reliability.The whole solution space of BN structures is searched by DGA and a more accurate BN model is obtained.Efficacy of the proposed method is shown by some literature examples.展开更多
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ...Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.展开更多
How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible p...How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms.展开更多
Stochastic variational inference is an efficient Bayesian inference technology for massive datasets,which approximates posteriors by using noisy gradient estimates.Traditional stochastic variational inference can only...Stochastic variational inference is an efficient Bayesian inference technology for massive datasets,which approximates posteriors by using noisy gradient estimates.Traditional stochastic variational inference can only be performed in a centralized manner,which limits its applications in a wide range of situations where data is possessed by multiple nodes.Therefore,this paper develops a novel trust-region based stochastic variational inference algorithm for a general class of conjugate-exponential models over distributed and asynchronous networks,where the global parameters are diffused over the network by using the Metropolis rule and the local parameters are updated by using the trust-region method.Besides,a simple rule is introduced to balance the transmission frequencies between neighboring nodes such that the proposed distributed algorithm can be performed in an asynchronous manner.The utility of the proposed algorithm is tested by fitting the Bernoulli model and the Gaussian model to different datasets on a synthetic network,and experimental results demonstrate its effectiveness and advantages over existing works.展开更多
Inferring gene regulatory networks (GRNs) is a challenging task in Bioinformatics. In this paper, an algorithm, PCHMS, is introduced to infer GRNs. This method applies the path consistency (PC) algorithm based on ...Inferring gene regulatory networks (GRNs) is a challenging task in Bioinformatics. In this paper, an algorithm, PCHMS, is introduced to infer GRNs. This method applies the path consistency (PC) algorithm based on conditional mutual information test (PCA-CMI). In the PC-based algorithms the separator set is determined to detect the dependency between variables. The PCHMS algorithm attempts to select the set in the smart way. For this purpose, the edges of resulted skeleton are directed based on PC algorithm direction rule and mutual information test (MIT) score. Then the separator set is selected according to the directed network by considering a suitable sequential order of genes. The effectiveness of this method is benchmarked through several networks from the DREAM challenge and the widely used SOS DNA repair network of Escherichia coll. Results show that applying the PCHMS algorithm improves the precision of learning the structure of the GRNs in comparison with current popular approaches.展开更多
Automatic segmentation of ischemic stroke lesions from computed tomography(CT)images is of great significance for identifying and curing this life-threatening condition.However,in addition to the problem of low image ...Automatic segmentation of ischemic stroke lesions from computed tomography(CT)images is of great significance for identifying and curing this life-threatening condition.However,in addition to the problem of low image contrast,it is also challenged by the complex changes in the appearance of the stroke area and the difficulty in obtaining image data.Considering that it is difficult to obtain stroke data and labels,a data enhancement algorithm for one-shot medical image segmentation based on data augmentation using learned transformation was proposed to increase the number of data sets for more accurate segmentation.A deep convolutional neural network based algorithm for stroke lesion segmentation,called structural similarity with light U-structure(USSL)Net,was proposed.We embedded a convolution module that combines switchable normalization,multi-scale convolution and dilated convolution in the network for better segmentation performance.Besides,considering the strong structural similarity between multi-modal stroke CT images,the USSL Net uses the correlation maximized structural similarity loss(SSL)function as the loss function to learn the varying shapes of the lesions.The experimental results show that our framework has achieved results in the following aspects.First,the data obtained by adding our data enhancement algorithm is better than the data directly segmented from the multi-modal image.Second,the performance of our network model is better than that of other models for stroke segmentation tasks.Third,the way SSL functioned as a loss function is more helpful to the improvement of segmentation accuracy than the cross-entropy loss function.展开更多
基金supported by the National Natural Science Foundation of China(7110111671271170)+1 种基金the Program for New Century Excellent Talents in University(NCET-13-0475)the Basic Research Foundation of NPU(JC20120228)
文摘Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.
文摘The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.
基金This project was supported by the National Natural Science Foundation of China (70572045).
文摘A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach.
基金National Natural Science Foundation of China(No.61203184)
文摘A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In contrast with traditional methods where BN model is built by professionals,DGA is proposed for the automatic analysis of historical data and construction of BN for the estimation of system reliability.The whole solution space of BN structures is searched by DGA and a more accurate BN model is obtained.Efficacy of the proposed method is shown by some literature examples.
文摘Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data.
基金supported by the National Natural Science Foundation of China(61573285).
文摘How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms.
基金the National Natural Science Foundation of China under Grant Nos.61922076,61873252,61725304,and 61973324in part by Guangdong Basic and Applied Basic Research Foundation under Grant No.2021B1515020094in part by the Guangdong Provincial Key Laboratory of Computational Science under Grant No.2020B1212060032。
文摘Stochastic variational inference is an efficient Bayesian inference technology for massive datasets,which approximates posteriors by using noisy gradient estimates.Traditional stochastic variational inference can only be performed in a centralized manner,which limits its applications in a wide range of situations where data is possessed by multiple nodes.Therefore,this paper develops a novel trust-region based stochastic variational inference algorithm for a general class of conjugate-exponential models over distributed and asynchronous networks,where the global parameters are diffused over the network by using the Metropolis rule and the local parameters are updated by using the trust-region method.Besides,a simple rule is introduced to balance the transmission frequencies between neighboring nodes such that the proposed distributed algorithm can be performed in an asynchronous manner.The utility of the proposed algorithm is tested by fitting the Bernoulli model and the Gaussian model to different datasets on a synthetic network,and experimental results demonstrate its effectiveness and advantages over existing works.
文摘Inferring gene regulatory networks (GRNs) is a challenging task in Bioinformatics. In this paper, an algorithm, PCHMS, is introduced to infer GRNs. This method applies the path consistency (PC) algorithm based on conditional mutual information test (PCA-CMI). In the PC-based algorithms the separator set is determined to detect the dependency between variables. The PCHMS algorithm attempts to select the set in the smart way. For this purpose, the edges of resulted skeleton are directed based on PC algorithm direction rule and mutual information test (MIT) score. Then the separator set is selected according to the directed network by considering a suitable sequential order of genes. The effectiveness of this method is benchmarked through several networks from the DREAM challenge and the widely used SOS DNA repair network of Escherichia coll. Results show that applying the PCHMS algorithm improves the precision of learning the structure of the GRNs in comparison with current popular approaches.
基金the National Natural Science Foundation of China(No.61976091)。
文摘Automatic segmentation of ischemic stroke lesions from computed tomography(CT)images is of great significance for identifying and curing this life-threatening condition.However,in addition to the problem of low image contrast,it is also challenged by the complex changes in the appearance of the stroke area and the difficulty in obtaining image data.Considering that it is difficult to obtain stroke data and labels,a data enhancement algorithm for one-shot medical image segmentation based on data augmentation using learned transformation was proposed to increase the number of data sets for more accurate segmentation.A deep convolutional neural network based algorithm for stroke lesion segmentation,called structural similarity with light U-structure(USSL)Net,was proposed.We embedded a convolution module that combines switchable normalization,multi-scale convolution and dilated convolution in the network for better segmentation performance.Besides,considering the strong structural similarity between multi-modal stroke CT images,the USSL Net uses the correlation maximized structural similarity loss(SSL)function as the loss function to learn the varying shapes of the lesions.The experimental results show that our framework has achieved results in the following aspects.First,the data obtained by adding our data enhancement algorithm is better than the data directly segmented from the multi-modal image.Second,the performance of our network model is better than that of other models for stroke segmentation tasks.Third,the way SSL functioned as a loss function is more helpful to the improvement of segmentation accuracy than the cross-entropy loss function.