期刊文献+
共找到285篇文章
< 1 2 15 >
每页显示 20 50 100
Learning Bayesian network structure with immune algorithm 被引量:4
1
作者 Zhiqiang Cai Shubin Si +1 位作者 Shudong Sun Hongyan Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期282-291,共10页
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith... Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently. 展开更多
关键词 structure learning bayesian network immune algorithm local optimal structure VACCINATION
在线阅读 下载PDF
Self-Organizing Genetic Algorithm Based Method for Constructing Bayesian Networks from Databases
2
作者 郑建军 刘玉树 陈立潮 《Journal of Beijing Institute of Technology》 EI CAS 2003年第1期23-27,共5页
The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learn... The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed. 展开更多
关键词 bayesian networks structure learning from databases self-organizing genetic algorithm
在线阅读 下载PDF
Learning Bayesian networks using genetic algorithm 被引量:3
3
作者 Chen Fei Wang Xiufeng Rao Yimei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期142-147,共6页
A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while th... A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not. Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach. 展开更多
关键词 bayesian networks Genetic algorithm structure learning Equivalent class
在线阅读 下载PDF
Building Bayesian Network(BN)-Based System Reliability Model by Dual Genetic Algorithm(DGA)
4
作者 游威振 钟小品 《Journal of Donghua University(English Edition)》 EI CAS 2015年第6期914-918,共5页
A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In con... A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In contrast with traditional methods where BN model is built by professionals,DGA is proposed for the automatic analysis of historical data and construction of BN for the estimation of system reliability.The whole solution space of BN structures is searched by DGA and a more accurate BN model is obtained.Efficacy of the proposed method is shown by some literature examples. 展开更多
关键词 bayesian network(BN)model dual genetic algorithm(DGA) system reliability historical data
在线阅读 下载PDF
Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks:An Empirical Study
5
作者 Shahad Alzahrani Hatim Alsuwat Emad Alsuwat 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1635-1654,共20页
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ... Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data. 展开更多
关键词 bayesian networks data poisoning attacks latent variables structure learning algorithms adversarial attacks
在线阅读 下载PDF
Causal constraint pruning for exact learning of Bayesian network structure 被引量:1
6
作者 TAN Xiangyuan GAO Xiaoguang +1 位作者 HE Chuchao WANG Zidong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期854-872,共19页
How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible p... How to improve the efficiency of exact learning of the Bayesian network structure is a challenging issue.In this paper,four different causal constraints algorithms are added into score calculations to prune possible parent sets,improving state-ofthe-art learning algorithms’efficiency.Experimental results indicate that exact learning algorithms can significantly improve the efficiency with only a slight loss of accuracy.Under causal constraints,these exact learning algorithms can prune about 70%possible parent sets and reduce about 60%running time while only losing no more than 2%accuracy on average.Additionally,with sufficient samples,exact learning algorithms with causal constraints can also obtain the optimal network.In general,adding max-min parents and children constraints has better results in terms of efficiency and accuracy among these four causal constraints algorithms. 展开更多
关键词 bayesian network structure learning exact learning algorithm causal constraint
在线阅读 下载PDF
Trust-Region Based Stochastic Variational Inference for Distributed and Asynchronous Networks
7
作者 FU Weiming QIN Jiahu +2 位作者 LING Qing KANG Yu YE Baijia 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2022年第6期2062-2076,共15页
Stochastic variational inference is an efficient Bayesian inference technology for massive datasets,which approximates posteriors by using noisy gradient estimates.Traditional stochastic variational inference can only... Stochastic variational inference is an efficient Bayesian inference technology for massive datasets,which approximates posteriors by using noisy gradient estimates.Traditional stochastic variational inference can only be performed in a centralized manner,which limits its applications in a wide range of situations where data is possessed by multiple nodes.Therefore,this paper develops a novel trust-region based stochastic variational inference algorithm for a general class of conjugate-exponential models over distributed and asynchronous networks,where the global parameters are diffused over the network by using the Metropolis rule and the local parameters are updated by using the trust-region method.Besides,a simple rule is introduced to balance the transmission frequencies between neighboring nodes such that the proposed distributed algorithm can be performed in an asynchronous manner.The utility of the proposed algorithm is tested by fitting the Bernoulli model and the Gaussian model to different datasets on a synthetic network,and experimental results demonstrate its effectiveness and advantages over existing works. 展开更多
关键词 Asynchronous networks bayesian inference distributed algorithm stochastic variational inference trust-region method
原文传递
Inferring gene regulatory networks by PCA-CMI using Hill climbing algorithm based on MIT score and SORDER method
8
作者 Rosa Aghdam MohsenAlijanpour +3 位作者 Mehrdad Azadi Ali Ebrahimi Changiz Eslahchit Abolfazl Rezvan 《International Journal of Biomathematics》 2016年第3期139-156,共18页
Inferring gene regulatory networks (GRNs) is a challenging task in Bioinformatics. In this paper, an algorithm, PCHMS, is introduced to infer GRNs. This method applies the path consistency (PC) algorithm based on ... Inferring gene regulatory networks (GRNs) is a challenging task in Bioinformatics. In this paper, an algorithm, PCHMS, is introduced to infer GRNs. This method applies the path consistency (PC) algorithm based on conditional mutual information test (PCA-CMI). In the PC-based algorithms the separator set is determined to detect the dependency between variables. The PCHMS algorithm attempts to select the set in the smart way. For this purpose, the edges of resulted skeleton are directed based on PC algorithm direction rule and mutual information test (MIT) score. Then the separator set is selected according to the directed network by considering a suitable sequential order of genes. The effectiveness of this method is benchmarked through several networks from the DREAM challenge and the widely used SOS DNA repair network of Escherichia coll. Results show that applying the PCHMS algorithm improves the precision of learning the structure of the GRNs in comparison with current popular approaches. 展开更多
关键词 Inferring gene regulatory networks bayesian network PC algorithm conditional mutual independent test MIT score.
原文传递
场地土层速度结构的贝叶斯反演方法及其应用
9
作者 李小军 张誉潇 +1 位作者 荣棉水 倪萍禾 《岩土力学》 北大核心 2025年第7期2237-2252,共16页
基于散射场理论的水平竖向谱比HVSR(horizontal-to-vertical spectral ratio)正演算法建立了地表HVSR与场地土层特性的联系,通过与地震动地表观测数据的结合实现了场地土层速度结构的反演。然而,当前的HVSR大多采用传统确定性的反演方法... 基于散射场理论的水平竖向谱比HVSR(horizontal-to-vertical spectral ratio)正演算法建立了地表HVSR与场地土层特性的联系,通过与地震动地表观测数据的结合实现了场地土层速度结构的反演。然而,当前的HVSR大多采用传统确定性的反演方法,导致反演结果具有明显的不唯一性,且难以评估其不确定性。提出了一种针对土层速度结构的贝叶斯反演方法,可以实现反演参数不确定性的评估。该方法将贝叶斯原理与地震动的水平竖向谱比(earthquake horizontal-to-vertical spectral ratio,简称EHV)正演算法相结合,以强震动观测记录的S波成分作为数据源,实现了场地土层结构的反演。通过算例验证了所提出方法的有效性和适用性。结果表明,所提出的贝叶斯反演方法能有效地识别场地土层速度结构,并能够对反演模型中参数的不确定性进行综合评估。 展开更多
关键词 水平竖向谱比(HVSR) 强震动观测记录 贝叶斯反演方法 土层速度结构 井上井下谱比(SBSR) 正演算法
原文传递
基于遗传算法的Bayesian网结构学习研究 被引量:44
10
作者 刘大有 王飞 +2 位作者 卢奕南 薛万欣 王松昕 《计算机研究与发展》 EI CSCD 北大核心 2001年第8期916-922,共7页
从不完备数据中学习网络结构是 Bayesian网学习的难点之一 ,计算复杂度高 ,实现困难 .针对该问题提出了一种进化算法 .设计了结合数学期望的适应度函数 ,该函数利用进化过程中的最好 Bayesian网把不完备数据转换成完备数据 ,从而大大简... 从不完备数据中学习网络结构是 Bayesian网学习的难点之一 ,计算复杂度高 ,实现困难 .针对该问题提出了一种进化算法 .设计了结合数学期望的适应度函数 ,该函数利用进化过程中的最好 Bayesian网把不完备数据转换成完备数据 ,从而大大简化了学习的复杂度 ,并保证算法能够向好的结构不断进化 .此外 ,给出了网络结构的编码方案 ,设计了相应的遗传算子 ,使得该算法能够收敛到全局最优的 Bayesian网结构 .模拟实验结果表明 ,该算法能有效地从不完备数据中学习 . 展开更多
关键词 bayesian 学习 遗传算法 数据处理 人工智能
在线阅读 下载PDF
基于Bayesian改进算法的回转窑故障诊断模型研究 被引量:21
11
作者 刘浩然 吕晓贺 +2 位作者 李轩 李世昭 史永红 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第7期1554-1561,共8页
贝叶斯网络是数据挖掘最有效和可靠的方法之一,而贝叶斯网络结构学习是贝叶斯网络研究的关键环节。针对现有经典结构学习算法——爬山算法易陷入局部最优、效率低的问题,通过计算互信息建立最大支撑树,并将最大支撑树与简化爬山算法相结... 贝叶斯网络是数据挖掘最有效和可靠的方法之一,而贝叶斯网络结构学习是贝叶斯网络研究的关键环节。针对现有经典结构学习算法——爬山算法易陷入局部最优、效率低的问题,通过计算互信息建立最大支撑树,并将最大支撑树与简化爬山算法相结合,提出了一种新的贝叶斯网络结构学习改进算法。通过与经典的爬山法和K2算法进行比较,结果表明该改进算法不仅能够得到较高准确率的模型,而且能够提高模型建立的效率。最后基于该改进算法,结合冀东水泥集团的水泥回转窑现场运行数据,建立了水泥回转窑故障诊断模型,实现了精确快速的故障诊断。 展开更多
关键词 最大支撑树 改进算法 贝叶斯网络结构学习 水泥回转窑 故障诊断模型
在线阅读 下载PDF
基于遗传算法的Bayesian网结构增量学习的研究 被引量:9
12
作者 王飞 刘大有 王淞昕 《计算机研究与发展》 EI CSCD 北大核心 2005年第9期1461-1466,共6页
已建成的Bayesian网与领域环境间可能存在较大偏差,加之领域本身固有的动态变化特性,因此在观察到新数据时,改善Bayesian网的性能和优化网络结构是十分必要的.提出了一种基于遗传算法的Bayesian网(包含结构和参数)求精算法.该算法基于... 已建成的Bayesian网与领域环境间可能存在较大偏差,加之领域本身固有的动态变化特性,因此在观察到新数据时,改善Bayesian网的性能和优化网络结构是十分必要的.提出了一种基于遗传算法的Bayesian网(包含结构和参数)求精算法.该算法基于上次的求精结果把已有的不完备数据转化成完备数据,以期望充分统计因子作为已有数据的主要存储形式,基于本次求精过程中的当前最佳个体对新数据进行完备化,并由遗传操作综合利用新数据和已有数据进行求精.模拟实验结果表明,该增量学习算法能较有效地从不完备数据中求精Bayesian网. 展开更多
关键词 增量学习 bayesian 不完备数据 数学期望 遗传算法
在线阅读 下载PDF
GO图网络模型算法与故障推理
13
作者 李鹏伟 段富海 《兵器装备工程学报》 北大核心 2025年第4期108-114,共7页
GO法是对多状态有时序系统进行可靠性建模分析的有效方法,现有的状态概率算法仅限于针对每个操作符进行运算,缺乏处理整体GO图的算法和相应工具软件支持。且现有GO法仅通过部件故障概率计算系统故障概率,在可靠性分析领域具有局限性,不... GO法是对多状态有时序系统进行可靠性建模分析的有效方法,现有的状态概率算法仅限于针对每个操作符进行运算,缺乏处理整体GO图的算法和相应工具软件支持。且现有GO法仅通过部件故障概率计算系统故障概率,在可靠性分析领域具有局限性,不能计算系统故障/成功对各部件的影响程度。为解决这些问题,提出了基于图数据结构的GO图网络模型算法。首先,基于图数据结构定义了GO图网络,设计了GO图网络模型算法,通过将共有信号精确算法推广并应用到GO图网络模型算法中,解决了计算共有信号时产生误差的问题。然后基于贝叶斯网络后验概率公式推导出GO操作符反求公式,使GO图网络具有诊断系统薄弱环节和故障推理的能力。此外,使用JS语言实现了GO图网络模型算法,设计了可视化界面,并通过案例验证了算法准确性。结果表明,遍历算法容易应用,具有广泛适用性,适合工程人员进行计算,为GO法应用和发展提供了重要工具支持。 展开更多
关键词 GO法 GO图网络模型 可靠性算法 贝叶斯网络 故障推理
在线阅读 下载PDF
贝叶斯网络结构学习综述 被引量:1
14
作者 孟光磊 丛泽林 +3 位作者 宋彬 李婷珽 王晨光 周铭哲 《北京航空航天大学学报》 北大核心 2025年第9期2829-2849,共21页
贝叶斯网络作为概率论与图论结合的工具,具备高效处理不确定性推理和数据分析的能力,被广泛应用于各领域解决复杂工程问题。此外,还可以结合先验知识和训练样本学习模型,克服了单纯依靠专家知识建立模型的局限性。基于此,回顾了贝叶斯... 贝叶斯网络作为概率论与图论结合的工具,具备高效处理不确定性推理和数据分析的能力,被广泛应用于各领域解决复杂工程问题。此外,还可以结合先验知识和训练样本学习模型,克服了单纯依靠专家知识建立模型的局限性。基于此,回顾了贝叶斯网络的发展历程,分别从基于约束的方法、基于评分搜索的方法、混合约束和评分搜索的方法3个方面对已提出的贝叶斯网络结构学习方法进行分类归纳,并对各类方法研究的现状进行了总结分析。由于现实应用中的数据往往具有非完备性,从缺失数据处理和隐变量学习2个维度阐释了非完备贝叶斯网络结构学习的研究现状。对贝叶斯网络在不同领域中的应用情况进行阐述,并进行总结,讨论了未来贝叶斯网络结构学习方法研究的发展趋势。 展开更多
关键词 机器学习 人工智能算法 贝叶斯网络 结构学习 隐变量
原文传递
USSL Net:Focusing on Structural Similarity with Light U-Structure for Stroke Lesion Segmentation 被引量:1
15
作者 JIANG Zhiguo CHANG Qing 《Journal of Shanghai Jiaotong university(Science)》 EI 2022年第4期485-497,共13页
Automatic segmentation of ischemic stroke lesions from computed tomography(CT)images is of great significance for identifying and curing this life-threatening condition.However,in addition to the problem of low image ... Automatic segmentation of ischemic stroke lesions from computed tomography(CT)images is of great significance for identifying and curing this life-threatening condition.However,in addition to the problem of low image contrast,it is also challenged by the complex changes in the appearance of the stroke area and the difficulty in obtaining image data.Considering that it is difficult to obtain stroke data and labels,a data enhancement algorithm for one-shot medical image segmentation based on data augmentation using learned transformation was proposed to increase the number of data sets for more accurate segmentation.A deep convolutional neural network based algorithm for stroke lesion segmentation,called structural similarity with light U-structure(USSL)Net,was proposed.We embedded a convolution module that combines switchable normalization,multi-scale convolution and dilated convolution in the network for better segmentation performance.Besides,considering the strong structural similarity between multi-modal stroke CT images,the USSL Net uses the correlation maximized structural similarity loss(SSL)function as the loss function to learn the varying shapes of the lesions.The experimental results show that our framework has achieved results in the following aspects.First,the data obtained by adding our data enhancement algorithm is better than the data directly segmented from the multi-modal image.Second,the performance of our network model is better than that of other models for stroke segmentation tasks.Third,the way SSL functioned as a loss function is more helpful to the improvement of segmentation accuracy than the cross-entropy loss function. 展开更多
关键词 structural similarity medical image segmentation deep convolution neural network automatic data enhancement algorithm
原文传递
基于并行预测模拟退火的贝叶斯网络结构学习
16
作者 黄赟 陈若言 +3 位作者 马力 蔡一鸣 陆恒杨 方伟 《计算机工程》 北大核心 2025年第10期160-172,共13页
模拟退火(SA)是贝叶斯网络结构学习(BNSL)的有效方法,但其在大规模数据下需要耗费大量搜索时间,且传统的多链SA并行方式为保证并行效率需要减少迭代次数,导致在运行过多线程时搜索不够详尽。此外,SA在信息交换过程中使用择优更新策略,... 模拟退火(SA)是贝叶斯网络结构学习(BNSL)的有效方法,但其在大规模数据下需要耗费大量搜索时间,且传统的多链SA并行方式为保证并行效率需要减少迭代次数,导致在运行过多线程时搜索不够详尽。此外,SA在信息交换过程中使用择优更新策略,易陷入局部最优。针对上述问题,提出一种基于并行预测SA(PPBSA)的BNSL算法,其在并行化过程中确保搜索的详尽性,且在信息交换过程中具有一定的跳出局部最优的能力。PPBSA在退火阶段并行生成当前解之后的数代预测解及其评分,旨在保证搜索深度同时对搜索过程进行充分加速,减少后续多步解生成和评分计算的时间消耗。在线程交换信息时采用禁忌表对陷入局部最优的线程解进行限制搜索,提高解跳出局部最优的能力。在此基础上,基于BDeu评分的可分解性,在SA扰动过程中直接计算变动前后的评分差值,减少大量计算冗余。在一组基准BN上,将所提算法与串行SA及其他算法进行对比实验,结果表明,该算法最高可以达到5倍以上的加速效果,同时能够保证精度。 展开更多
关键词 贝叶斯网络 结构学习 模拟退火 并行算法 启发式算法
在线阅读 下载PDF
基于统计推理的多类不平衡数据流集成仿真
17
作者 梁晓波 王一惠 张露 《计算机仿真》 2025年第8期496-500,共5页
多类不平衡数据流是动态变化的,这种动态性使得类别分布可能随时间发生变化,使得多类不平衡数据流集成难度增加。在处理不平衡数据流时,贝叶斯统计推理网络中的贝叶斯分类器可以通过自适应地调整不同类别的权重来平衡分类决策,以此为后... 多类不平衡数据流是动态变化的,这种动态性使得类别分布可能随时间发生变化,使得多类不平衡数据流集成难度增加。在处理不平衡数据流时,贝叶斯统计推理网络中的贝叶斯分类器可以通过自适应地调整不同类别的权重来平衡分类决策,以此为后续的数据流集成奠定重要基础,为此提出了基于统计推理的多类不平衡数据流集成仿真方法。通过过采样方法获取多类不平衡数据流,将多类不平衡数据流输入至贝叶斯统计推理网络中,网络通过调整分类器集成权重、分类器剔除、集成目标函数构建等输出多类不平衡数据流集成结果。通过仿真可知,所提方法的F-value和G-mean值较高,多类不平衡数据流集成效果好。 展开更多
关键词 统计推理 多类不平衡数据流 数据流集成 过采样方法 贝叶斯统计推理网络
在线阅读 下载PDF
基于蚁群搜索的贝叶斯网络结构学习研究
18
作者 王洋洋 《景德镇学院学报》 2025年第3期8-12,共5页
针对基于贝叶斯网络结构学习的K2算法严重依赖节点序,蚁群优化算法(Ant Colony Optimization,ACO)全局搜索能力弱,易陷入局部最优的问题,本文提出了一种改进的贝叶斯网络结构学习算法GA-ACO-K2。该算法采用ACO作为搜索框架,通过将遗传... 针对基于贝叶斯网络结构学习的K2算法严重依赖节点序,蚁群优化算法(Ant Colony Optimization,ACO)全局搜索能力弱,易陷入局部最优的问题,本文提出了一种改进的贝叶斯网络结构学习算法GA-ACO-K2。该算法采用ACO作为搜索框架,通过将遗传算法特性嵌入蚁群优化算法,获取节点顺序,并采用K2评分函数筛选得到最优贝叶斯网络结构。为了验证算法性能,将其应用于物流配送路径优化问题求解,比较GA-ACO-K2、ACO-K2与ACO算法在搜索最优贝叶斯网络结构上的性能。结果表明,与ACO-K2算法、ACO算法相比,GA-ACO-K2算法能够在节点序未知的情况下构建评分最高的贝叶斯网络结构,显著提高了寻找最优解的效率。 展开更多
关键词 蚁群优化 贝叶斯网络结构 K2算法 结构学习
在线阅读 下载PDF
基于5G与人工智能算法的网络数据任务调度技术研究
19
作者 孙云 《电脑与信息技术》 2025年第4期7-10,15,共5页
为保证不同来源网络数据的及时传输、存储与调用,基于Hadoop分布式软件架构、Hadoop分布式文件系统(Hadoop Distributed File System,HDFS)存储、HBase数据库、VMWare虚拟机、TaskDecomp任务调度器、元数据服务器、弹性云服务器(Elastic... 为保证不同来源网络数据的及时传输、存储与调用,基于Hadoop分布式软件架构、Hadoop分布式文件系统(Hadoop Distributed File System,HDFS)存储、HBase数据库、VMWare虚拟机、TaskDecomp任务调度器、元数据服务器、弹性云服务器(Elastic Cloud Server,ECS)等软硬件构建了分布式任务调度管理系统。该系统按照不同网络数据块文件的大小和任务优先级进行排序,使用Reduce端连接(Reduce Side Join,RSJ)算法进行网络节点端数据块的查询与标记处理,利用递归算法(Recursive Algorithm,RA)结构树算法为交错网络二分图的多任务执行作出最优任务调度资源分配,以实现5G跨域网络通信的复杂节点任务调度、文件索引检索与存储管理。 展开更多
关键词 5G无线通信 RSJ算法 RA结构树算法 网络数据任务调度
在线阅读 下载PDF
基于改进爬山算法的Bayesian网结构增量学习方法
20
作者 万猛 刘勇 《兰州理工大学学报》 CAS 北大核心 2013年第5期78-81,共4页
已建成的贝叶斯网与领域环境间可能存在较大偏差,加之领域本身固有的动态变化特征,因此在观察到新数据时,改善贝叶斯网的性能和优化网络结构是十分必要的.对传统爬山算法进行研究并改进Gamez等提出的爬山算法,该算法通过引入删除结点时... 已建成的贝叶斯网与领域环境间可能存在较大偏差,加之领域本身固有的动态变化特征,因此在观察到新数据时,改善贝叶斯网的性能和优化网络结构是十分必要的.对传统爬山算法进行研究并改进Gamez等提出的爬山算法,该算法通过引入删除结点时的禁忌表和环路禁忌表,避免搜索不必要的冗余结点,提高搜索效率,并给出禁忌表的更新方法.在ALARM数据集上进行实验,结果表明该算法是有效的. 展开更多
关键词 贝叶斯网络 增量学习 结构学习 爬山算法 禁忌表
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部