期刊文献+
共找到609篇文章
< 1 2 31 >
每页显示 20 50 100
A Robust GNSS Navigation Filter Based on Maximum Correntropy Criterion with Variational Bayesian for Adaptivity 被引量:1
1
作者 Dah-Jing Jwo Yi Chang Ta-Shun Cho 《Computer Modeling in Engineering & Sciences》 2025年第3期2771-2789,共19页
In this paper,an advanced satellite navigation filter design,referred to as the Variational Bayesian Maximum Correntropy Extended Kalman Filter(VBMCEKF),is introduced to enhance robustness and adaptability in scenario... In this paper,an advanced satellite navigation filter design,referred to as the Variational Bayesian Maximum Correntropy Extended Kalman Filter(VBMCEKF),is introduced to enhance robustness and adaptability in scenarios with non-Gaussian noise and heavy-tailed outliers.The proposed design modifies the extended Kalman filter(EKF)for the global navigation satellite system(GNSS),integrating the maximum correntropy criterion(MCC)and the variational Bayesian(VB)method.This adaptive algorithm effectively reduces non-line-of-sight(NLOS)reception contamination and improves estimation accuracy,particularly in time-varying GNSS measurements.Experimental results show that the proposed method significantly outperforms conventional approaches in estimation accuracy under heavy-tailed outliers and non-Gaussian noise.By combining MCC with VB approximation for real-time noise covariance estimation using fixed-point iteration,the VBMCEKF achieves superior filtering performance in challenging GNSS conditions.The method’s adaptability and precision make it ideal for improving satellite navigation performance in stochastic environments. 展开更多
关键词 Maximum correntropy criterion variational bayesian extended Kalman filter GNSS
在线阅读 下载PDF
Modified unscented particle filter for nonlinear Bayesian tracking 被引量:14
2
作者 Zhan Ronghui Xin Qin Wan Jianwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期7-14,共8页
A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conv... A modified unscented particle filtering scheme for nonlinear tracking is proposed, in view of the potential drawbacks (such as, particle impoverishment and numerical sensitivity in calculating the prior) of the conventional unscented particle filter (UPF) confronted in practice. Specifically, a different derivation of the importance weight is presented in detail. The proposed method can avoid the calculation of the prior and reduce the effects of the impoverishment problem caused by sampling from the proposal distribution, Simulations have been performed using two illustrative examples and results have been provided to demonstrate the validity of the modified UPF as well as its improved performance over the conventional one. 展开更多
关键词 bayesian estimation modified unscented particle filter nonlinear filtering unscented Kalman filter
在线阅读 下载PDF
Nonlinear Bayesian Estimation: From Kalman Filtering to a Broader Horizon 被引量:12
3
作者 Huazhen Fang Ning Tian +2 位作者 Yebin Wang Meng Chu Zhou Mulugeta A. Haile 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期401-417,共17页
This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades o... This article presents an up-to-date tutorial review of nonlinear Bayesian estimation. State estimation for nonlinear systems has been a challenge encountered in a wide range of engineering fields, attracting decades of research effort. To date,one of the most promising and popular approaches is to view and address the problem from a Bayesian probabilistic perspective,which enables estimation of the unknown state variables by tracking their probabilistic distribution or statistics(e.g., mean and covariance) conditioned on a system's measurement data.This article offers a systematic introduction to the Bayesian state estimation framework and reviews various Kalman filtering(KF)techniques, progressively from the standard KF for linear systems to extended KF, unscented KF and ensemble KF for nonlinear systems. It also overviews other prominent or emerging Bayesian estimation methods including Gaussian filtering, Gaussian-sum filtering, particle filtering and moving horizon estimation and extends the discussion of state estimation to more complicated problems such as simultaneous state and parameter/input estimation. 展开更多
关键词 Index Terms-Kalman filtering (KF) nonlinear bayesian esti-mation state estimation stochastic estimation.
在线阅读 下载PDF
Variational Bayesian labeled multi-Bernoulli filter with unknown sensor noise statistics 被引量:5
4
作者 Qiu Hao Huang Gaoming Gao Jun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1378-1384,共7页
It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random... It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random finite set and variational Bayesian (VB) approximation is proposed. The variational approximation technique is introduced to the labeled multi-Bernoulli (LMB) filter to jointly estimate the states of targets and sensor noise variances. Simulation results show that the proposed method can give unbiased estimation of cardinality and has better performance than the VB probability hypothesis density (VB-PHD) filter and the VB cardinality balanced multi-target multi-Bernoulli (VB-CBMeMBer) filter in harsh situations. The simulations also confirm the robustness of the proposed method against the time-varying noise variances. The computational complexity of proposed method is higher than the VB-PHD and VB-CBMeMBer in extreme cases, while the mean execution times of the three methods are close when targets are well separated. 展开更多
关键词 Labeled random finite set Multi-Bernoulli filter Multi-target tracking Parameter estimation Variational bayesian approximation
原文传递
Variational Bayesian Kalman filter using natural gradient 被引量:3
5
作者 Yumei HU Xuezhi WANG +2 位作者 Quan PAN Zhentao HU Bill MORAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第5期1-10,共10页
We propose a technique based on the natural gradient method for variational lower bound maximization for a variational Bayesian Kalman filter.The natural gradient approach is applied to the Kullback-Leibler divergence... We propose a technique based on the natural gradient method for variational lower bound maximization for a variational Bayesian Kalman filter.The natural gradient approach is applied to the Kullback-Leibler divergence between the parameterized variational distribution and the posterior density of interest.Using a Gaussian assumption for the parametrized variational distribution,we obtain a closed-form iterative procedure for the Kullback-Leibler divergence minimization,producing estimates of the variational hyper-parameters of state estimation and the associated error covariance.Simulation results in both a Doppler radar tracking scenario and a bearing-only tracking scenario are presented,showing that the proposed natural gradient method outperforms existing methods which are based on other linearization techniques in terms of tracking accuracy. 展开更多
关键词 Kullback-Leibler divergence Natural gradient Nonlinear Kalman filter Target tracking Variational bayesian optimization
原文传递
Comparison and combination of EAKF and SIR-PF in the Bayesian filter framework 被引量:3
6
作者 SHEN Zheqi ZHANG Xiangming TANG Youmin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第3期69-78,共10页
Bayesian estimation theory provides a general approach for the state estimate of linear or nonlinear and Gaussian or non-Gaussian systems. In this study, we first explore two Bayesian-based methods: ensemble adjustme... Bayesian estimation theory provides a general approach for the state estimate of linear or nonlinear and Gaussian or non-Gaussian systems. In this study, we first explore two Bayesian-based methods: ensemble adjustment Kalman filter(EAKF) and sequential importance resampling particle filter(SIR-PF), using a well-known nonlinear and non-Gaussian model(Lorenz '63 model). The EAKF, which is a deterministic scheme of the ensemble Kalman filter(En KF), performs better than the classical(stochastic) En KF in a general framework. Comparison between the SIR-PF and the EAKF reveals that the former outperforms the latter if ensemble size is so large that can avoid the filter degeneracy, and vice versa. The impact of the probability density functions and effective ensemble sizes on assimilation performances are also explored. On the basis of comparisons between the SIR-PF and the EAKF, a mixture filter, called ensemble adjustment Kalman particle filter(EAKPF), is proposed to combine their both merits. Similar to the ensemble Kalman particle filter, which combines the stochastic En KF and SIR-PF analysis schemes with a tuning parameter, the new mixture filter essentially provides a continuous interpolation between the EAKF and SIR-PF. The same Lorenz '63 model is used as a testbed, showing that the EAKPF is able to overcome filter degeneracy while maintaining the non-Gaussian nature, and performs better than the EAKF given limited ensemble size. 展开更多
关键词 data assimilation ensemble adjustment Kalman filter particle filter bayesian estimation ensemble adjustment Kalman particle filter
在线阅读 下载PDF
Distributed adaptive Kalman filter based on variational Bayesian technique 被引量:1
7
作者 Chen HU Xiaoming HU Yiguang HONG 《Control Theory and Technology》 EI CSCD 2019年第1期37-47,共11页
In this paper, distributed Kalman filter design is studied for linear dynamics with unknown measurement noise variance, which modeled by Wishart distribution. To solve the problem in a multi-agent network, a distribut... In this paper, distributed Kalman filter design is studied for linear dynamics with unknown measurement noise variance, which modeled by Wishart distribution. To solve the problem in a multi-agent network, a distributed adaptive Kalman filter is proposed with the help of variational Bayesian, where the posterior distribution of joint state and noise variance is approximated by a free-form distribution. The con vergence of the proposed algorithm is proved in two main steps: n oise statistics is estimated, where each age nt only use its local information in variational Bayesian expectation (VB-E) step, and state is estimated by a consensus algorithm in variational Bayesian maximum (VB-M) step. Finally, a distributed target tracking problem is investigated with simulations for illustration. 展开更多
关键词 Distributed Kalman filter adaptive filter multi-agent system variational bayesian
原文传递
Skew t Distribution-Based Nonlinear Filter with Asymmetric Measurement Noise Using Variational Bayesian Inference 被引量:1
8
作者 Chen Xu Yawen Mao +2 位作者 Hongtian Chen Hongfeng Tao Fei Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期349-364,共16页
This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measurement noise.Based on the cubature Kalman filter,we propose a new nonlinear filtering algorithm that employs ... This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measurement noise.Based on the cubature Kalman filter,we propose a new nonlinear filtering algorithm that employs a skew t distribution to characterize the asymmetry of the measurement noise.The system states and the statistics of skew t noise distribution,including the shape matrix,the scale matrix,and the degree of freedom(DOF)are estimated jointly by employing variational Bayesian(VB)inference.The proposed method is validated in a target tracking example.Results of the simulation indicate that the proposed nonlinear filter can perform satisfactorily in the presence of unknown statistics of measurement noise and outperform than the existing state-of-the-art nonlinear filters. 展开更多
关键词 Nonlinear filter asymmetric measurement noise skew t distribution unknown noise statistics variational bayesian inference
在线阅读 下载PDF
A Bayesian Filter for Sound Environment System with Quantized Observation*
9
作者 Hisako Orimoto Akira Ikuta 《Intelligent Information Management》 2018年第3期87-98,共12页
In the real sound environment, the observation data are usually contaminated by additional background noise of arbitrary distribution type. In order to estimate several evaluation quantities for specific signal based ... In the real sound environment, the observation data are usually contaminated by additional background noise of arbitrary distribution type. In order to estimate several evaluation quantities for specific signal based on the observed noisy data, it is fundamental to estimate the fluctuating wave form of the specific signal. On the other hand, the observation data are very often measured in a digital level form at discrete times. This is because some signal processing methods by utilizing a digital computer are indispensable for extracting exactly various kinds of statistical evaluation for the specific signal based on the quantized level data. In this study, a Bayesian filter matched to the complicated sound environment system is derived. First, in the real situation where the sound environment system is affected by background noise of arbitrary probability distribution, a stochastic system model with quantized observation is established. Next, two types of the recursive algorithm of Bayesian filter to estimate the unknown specific signal are theoretically proposed in the quantized level form. Finally, the effectiveness of the proposed theory is experimentally confirmed by applying it to the estimation problem of real sound environment. 展开更多
关键词 bayesian filter QUANTIZED OBSERVATION SOUND ENVIRONMENT
在线阅读 下载PDF
Prognostic Kalman Filter Based Bayesian Learning Model for Data Accuracy Prediction
10
作者 S.Karthik Robin Singh Bhadoria +5 位作者 Jeong Gon Lee Arun Kumar Sivaraman Sovan Samanta A.Balasundaram Brijesh Kumar Chaurasia S.Ashokkumar 《Computers, Materials & Continua》 SCIE EI 2022年第7期243-259,共17页
Data is always a crucial issue of concern especially during its prediction and computation in digital revolution.This paper exactly helps in providing efficient learning mechanism for accurate predictability and reduc... Data is always a crucial issue of concern especially during its prediction and computation in digital revolution.This paper exactly helps in providing efficient learning mechanism for accurate predictability and reducing redundant data communication.It also discusses the Bayesian analysis that finds the conditional probability of at least two parametric based predictions for the data.The paper presents a method for improving the performance of Bayesian classification using the combination of Kalman Filter and K-means.The method is applied on a small dataset just for establishing the fact that the proposed algorithm can reduce the time for computing the clusters from data.The proposed Bayesian learning probabilistic model is used to check the statistical noise and other inaccuracies using unknown variables.This scenario is being implemented using efficient machine learning algorithm to perpetuate the Bayesian probabilistic approach.It also demonstrates the generative function forKalman-filer based prediction model and its observations.This paper implements the algorithm using open source platform of Python and efficiently integrates all different modules to piece of code via Common Platform Enumeration(CPE)for Python. 展开更多
关键词 bayesian learning model kalman filter machine learning data accuracy prediction
在线阅读 下载PDF
Adaptive cubature Kalman filter based on variational Bayesian inference under measurement uncertainty
11
作者 HU Zhentao JIA Haoqian GONG Delong 《High Technology Letters》 EI CAS 2022年第4期354-362,共9页
A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and rand... A novel variational Bayesian inference based on adaptive cubature Kalman filter(VBACKF)algorithm is proposed for the problem of state estimation in a target tracking system with time-varying measurement noise and random measurement losses.Firstly,the Inverse-Wishart(IW)distribution is chosen to model the covariance matrix of time-varying measurement noise in the cubature Kalman filter framework.Secondly,the Bernoulli random variable is introduced as the judgement factor of the measurement losses,and the Beta distribution is selected as the conjugate prior distribution of measurement loss probability to ensure that the posterior distribution and prior distribution have the same function form.Finally,the joint posterior probability density function of the estimated variables is approximately decoupled by the variational Bayesian inference,and the fixed-point iteration approach is used to update the estimated variables.The simulation results show that the proposed VBACKF algorithm considers the comprehensive effects of system nonlinearity,time-varying measurement noise and unknown measurement loss probability,moreover,effectively improves the accuracy of target state estimation in complex scene. 展开更多
关键词 variational bayesian inference cubature Kalman filter(CKF) measurement uncertainty Inverse-Wishart(IW)distribution
在线阅读 下载PDF
Distributed bearing-only target tracking algorithm based on variational Bayesian inference under random measurement anomalies
12
作者 YANG Haoran CHEN Yu +1 位作者 HU Zhentao JIA Haoqian 《High Technology Letters》 2025年第1期86-94,共9页
A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the ... A distributed bearing-only target tracking algorithm based on variational Bayesian inference(VBI)under random measurement anomalies is proposed for the problem of adverse effect of random measurement anomalies on the state estimation accuracy of moving targets in bearing-only tracking scenarios.Firstly,the measurement information of each sensor is complemented by using triangulation under the distributed framework.Secondly,the Student-t distribution is selected to model the measurement likelihood probability density function,and the joint posteriori probability density function of the estimated variables is approximately decoupled by VBI.Finally,the estimation results of each local filter are sent to the fusion center and fed back to each local filter.The simulation results show that the proposed distributed bearing-only target tracking algorithm based on VBI in the presence of abnormal measurement noise comprehensively considers the influence of system nonlinearity and random anomaly of measurement noise,and has higher estimation accuracy and robustness than other existing algorithms in the above scenarios. 展开更多
关键词 bearing-only target tracking(BOTT) variational bayesian inference(VBI) Student-t distribution cubature Kalman filter(CKF) distributed fusion
在线阅读 下载PDF
BFS-HUP模型在潼关站洪水概率预报中的应用 被引量:9
13
作者 蒋晓蕾 梁忠民 +2 位作者 王春青 刘晓伟 刘龙庆 《人民黄河》 CAS 北大核心 2015年第7期13-15,21,共4页
采用马斯京根演算法作为确定性预报模型,并选用贝叶斯预报系统(BFS)的水文不确定性处理器(HUP)作为概率预报模型,获得预报变量的概率分布,实现黄河潼关站洪水的概率预报。将预报变量概率分布的中位数作为定值预报与确定性预报进行对比,... 采用马斯京根演算法作为确定性预报模型,并选用贝叶斯预报系统(BFS)的水文不确定性处理器(HUP)作为概率预报模型,获得预报变量的概率分布,实现黄河潼关站洪水的概率预报。将预报变量概率分布的中位数作为定值预报与确定性预报进行对比,发现预报精度有所提高,表明贝叶斯模型的预报校正能力较强。通过设定不同确定性预报精度的情景方案,探讨了确定性预报精度对概率预报可靠度的影响。结果表明,随着确定性预报精度的提高,概率预报区间宽度和离散度均有所减小;HUP洪水概率预报的可靠度对确定性预报的偶然性误差比较敏感,对系统偏差相对不敏感。 展开更多
关键词 贝叶斯预报系统(bfS) 水文不确定性处理器(HUP) 洪水概率预报 潼关
在线阅读 下载PDF
免微分非线性Bayesian滤波方法评述 被引量:12
14
作者 程水英 邹继伟 汤鹏 《宇航学报》 EI CAS CSCD 北大核心 2009年第3期843-857,876,共16页
以非线性递推Bayesian滤波问题的求解及其历史渊源为起点,分两类对各种免微分非线性Bayesian滤波方法或免微分方法的原理和算法进行了评述:一类是以线性最小均方误差最优估计子为特点的免微分高斯滤波,包括无味卡尔曼滤波、均差滤波器... 以非线性递推Bayesian滤波问题的求解及其历史渊源为起点,分两类对各种免微分非线性Bayesian滤波方法或免微分方法的原理和算法进行了评述:一类是以线性最小均方误差最优估计子为特点的免微分高斯滤波,包括无味卡尔曼滤波、均差滤波器、中心差分滤波器和Gauss-Hermite滤波器或积分卡尔曼滤波器;另一类是后验密度数值逼近免微分方法,包括栅格法(GBMs)与近似栅格法、矩近似法和以粒子滤波为代表的Monte Carlo方法。其中还包括了作者的一些最新研究成果,如迭代UKF算法、裂变自举PF算法和关于粒子滤波算法有限收敛界的概念等。之后从加权统计线性回归的角度对两类免微分方法进行了统一认识,统一为以数值方法为特点的广义PF。为了建立一个关于各种免微分算法性能的整体印象,论文还通过一个复杂的递推非线性滤波估计例子,用MonteCarlo仿真实验的方法对7种典型的免微分方法和和传统的EKF算法进行了比较研究。最后对两类免微分方法进行了简单的比较,并指出了进一步研究的方向。 展开更多
关键词 非线性估计 递推bayesian滤波 扩展卡尔曼滤波 高斯滤波 无味变换 无味卡尔曼滤波 均差 滤波器 中心差分滤波器 Gauss—Hermite滤波器 积分卡尔曼滤波器 迭代无味卡尔曼滤波 栅格法 近似栅格 矩近似法 Monte CARLO方法 粒子滤波 裂变自举粒子滤波 加权统计线性回归
在线阅读 下载PDF
基于有监督Bayesian网络的垃圾邮件过滤 被引量:8
15
作者 刘震 周明天 《计算机应用》 CSCD 北大核心 2006年第3期558-561,共4页
对影响邮件特性的邮件报文格式作了仔细的分析并对垃圾邮件的特征进行了分类归纳,在此基础上构建了一个有监督的Bayesian邮件分类网络。通过对该网络作Bayesian参数估计,实现了判定邮件类别的不确定推理。对不同邮件测试集的在线学习试... 对影响邮件特性的邮件报文格式作了仔细的分析并对垃圾邮件的特征进行了分类归纳,在此基础上构建了一个有监督的Bayesian邮件分类网络。通过对该网络作Bayesian参数估计,实现了判定邮件类别的不确定推理。对不同邮件测试集的在线学习试验结果表明,有监督Bayesian邮件分类网络能够有效地实现垃圾邮件的相对完备特征学习,改善邮件过滤的准确率。 展开更多
关键词 垃圾邮件 bayesian网络 邮件过滤 参数估计
在线阅读 下载PDF
基于BF算法的网络异常流量行为检测 被引量:13
16
作者 燕发文 黄敏 王中飞 《计算机工程》 CAS CSCD 2013年第7期165-168,172,共5页
互联网异常流量行为会造成网页内容难以管理、吞噬网络带宽和传播病毒等危害。针对该问题,提出基于Bloom Filter(BF)算法的异常流量检测方法。以点对点(P2P)流量为检测对象,分析BF算法和传统的抽样方法,研究P2P流量常见的特征行为,统计... 互联网异常流量行为会造成网页内容难以管理、吞噬网络带宽和传播病毒等危害。针对该问题,提出基于Bloom Filter(BF)算法的异常流量检测方法。以点对点(P2P)流量为检测对象,分析BF算法和传统的抽样方法,研究P2P流量常见的特征行为,统计其属性组合,并基于BF算法和抽样方法对异常流量行为进行检测。实验结果证明,该方法能加快异常流量行为的检测速度,提高检测准确率。 展开更多
关键词 异常流量 分布式拒绝服务攻击 点对点网络 bf算法 抽样方法 行为
在线阅读 下载PDF
一种基于FCBF的流信息抽样测量框架及算法 被引量:2
17
作者 张峰 谭兴晔 雷振明 《计算机应用研究》 CSCD 北大核心 2005年第6期38-41,共4页
基于FCBF的高效流信息抽样测量框架不仅可以抽样测量三类流参数,而且存储开销小,只需1~3MB字节左右的存储空间;同时还可以做到几乎零概率的流信息识别统计误差。分析结果表明,该算法可以支持远高于OC48的链路速率,甚至可达OC192或更高... 基于FCBF的高效流信息抽样测量框架不仅可以抽样测量三类流参数,而且存储开销小,只需1~3MB字节左右的存储空间;同时还可以做到几乎零概率的流信息识别统计误差。分析结果表明,该算法可以支持远高于OC48的链路速率,甚至可达OC192或更高;适合于将来高速链路上细粒度的流信息抽样测量。 展开更多
关键词 bf FCbf 流信息 抽样测量 开销
在线阅读 下载PDF
ICAR-BF组合工艺处理猪粪废水的实验研究 被引量:3
18
作者 张杰 岳建芝 +1 位作者 李海华 杨世关 《环境科学与技术》 CAS CSCD 北大核心 2007年第2期90-92,共3页
采用有效容积为18L的内循环厌氧反应器(ICAR)和7.5L的生物滤池(BF)组合工艺处理猪粪废水,首先通过实验确定ICAR的水力停留时间(HRT),并使BF挂膜成功,在此基础上进行了组合工艺处理猪粪废水的研究。结果表明,在温度33±2℃I、CAR水... 采用有效容积为18L的内循环厌氧反应器(ICAR)和7.5L的生物滤池(BF)组合工艺处理猪粪废水,首先通过实验确定ICAR的水力停留时间(HRT),并使BF挂膜成功,在此基础上进行了组合工艺处理猪粪废水的研究。结果表明,在温度33±2℃I、CAR水力停留时间为6h、进水COD浓度为7000~8000mg/L时,组合工艺运行稳定;COD和NH3-N去除率分别在95%和93%左右,悬浮固体(SS)去除率在99%以上,是适于养殖场废水处理的一项新工艺。 展开更多
关键词 内循环厌氧反应器 生物滤池 猪粪废水 有机负荷率
在线阅读 下载PDF
基于Bloom Filter路由表的P2P搜索算法 被引量:2
19
作者 段世惠 王劲林 《计算机工程》 CAS CSCD 北大核心 2010年第2期25-27,35,共4页
研究非结构化P2P网络的搜索机制,提出基于布莱姆过滤器(BF)路由表的改进算法。该算法利用BF技术生成路由条目并在一定范围内相互交换本地路由表,使节点能够了解一定范围内的节点共享信息,实现有针对性的搜索,避免传统的盲目性搜索。仿... 研究非结构化P2P网络的搜索机制,提出基于布莱姆过滤器(BF)路由表的改进算法。该算法利用BF技术生成路由条目并在一定范围内相互交换本地路由表,使节点能够了解一定范围内的节点共享信息,实现有针对性的搜索,避免传统的盲目性搜索。仿真结果表明,该算法查询搜索时产生的消息数量比传统算法减少一个数量级,并能够获得较好的查全率。 展开更多
关键词 对等网络 布莱姆过滤器 路由 搜索
在线阅读 下载PDF
基于Naive Bayesian算法的客户端邮件过滤器的实现 被引量:2
20
作者 左瑞欣 徐惠民 吴聪聪 《计算机工程与设计》 CSCD 北大核心 2006年第7期1161-1163,共3页
“垃圾”邮件是Internet上面临急待解决的问题。Naive Bayesian过滤器由于其简单高效性在文本分类中应用较广,重点研究了Naive Bayesian算法,给出了一个“垃圾”邮件过滤器,依据邮件的内容而不是通过设置规则来过滤邮件,并通过实验论证... “垃圾”邮件是Internet上面临急待解决的问题。Naive Bayesian过滤器由于其简单高效性在文本分类中应用较广,重点研究了Naive Bayesian算法,给出了一个“垃圾”邮件过滤器,依据邮件的内容而不是通过设置规则来过滤邮件,并通过实验论证了它在客户端过滤邮件的可行性和有效性。 展开更多
关键词 “垃圾”邮件 特征抽取 向量空间模型 文本分类 NAIVE bayesian过滤器
在线阅读 下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部